
Hierarchical Agent Monitoring Services on
Reconfigurable NoC Platform : A Formal Approach

Liang Guang, Juha Plosila, Jouni Isoaho, Hannu Tenhunen
Department of Information Technology, University of Turku, Finland

{liagua, juha.plosila, jisoaho, hatenhu}@utu.fi

I. INTRODUCTION

The constant integration of on-chip resources calls for
dynamic run-time monitoring services. Many-core architecures
have become the mainstream platform with the releases of 80-
core TeraFLOPS processor [5] and 64-core TILE64 processor
[1] in the industry. The large number of on-chip processing
units with accessory components including memories, caches,
I/O interface etc.. have formed a parallel and distributed
system. Conventional control methods, for instance with a
centralized monitor, are no longer efficient nor scalable.
The underlying transistor scaling only excerbates the design
complexity by introducing a more profound influence from
transistor and circuit level variations [2]. These runtime design
issues are beyond the analysis and management capability of
any static methods, thus systematic and scalable monitoring
approach is needed on such parallel systems.

Previous work [6] presents a scalable design approach,
hierarchical agent monitored system, which provides hier-
archical monitors on distributed components. The analysis
and application of the approach focus on many-core on-chip
systems with NoC (network-on-chip) communication infras-
tructure. Monitoring services are organized by and partitioned
into several levels of agents, and the interactions among these
agents provide dynamic tracing and reconfiguring operations
from the circuit to the system level.

This paper addresses the initial but novel research work
proposing a formal model of such hierarchical agent monitored
system. The model abstracts on-chip resources and agents at
each architectural level and specifies how the components can
be monitored by each level of agents. It provides a proper
system abstraction that enables designers to specify various
reconfiguration alternatives while hiding the implementation
details. Compared to exisiting system modeling languages,
this formal model is tailored for high-level specification and
straightforward for theoretical verification. And the seperation
between monitoring components and functional components
as well as the hierarchization of system structure are essential
for monitoring-centric parallel system design. Compared to
exisiting formal methods, the formal model is targeted at
defining the monitoring services on reconfigurable platform,
which has not yet been captured by formal languages to the
best of our knowledge.

The rest of the paper is outlined as follows: Section II
overviews the hierarchical agent monitoring design approach.

Application Agent Platform Agent

Communication

Platform

Order

Cluster Agent Cluster

Report

Trace

Configure

Trace

Order

Cluster Agent Cluster

Report

Configure

Trace

Configure

Figure 1. Generic Hierarchical Agent Monitoring Architecture

Section III specifies the initial formal model. Section IV
examplies the application of the formal model on a study
case of hierarchical power monitoring. Section V explains the
ongoing work and concludes the paper.

II. HIERARCHICAL AGENT MONITORING SERVICES

In hierarchical agent monitoring architecture, all monitor-
ing operations are handled by agents, which are capable of
monitoring the system at certain architectural level. Fig. 1
presents our abstraction of agent hierarchy. The platform is
equipped with three levels of monitors: cell agents, cluster
agents and platform agents. The monitoring of the application
is simplified to be handled by one application agent as it is
beyond our current work to address program parallelization
and hierarchization.

The platform agent (unique for each platform), the highest
level monitor of all on-chip resources, provides coarse-grained
resource management. Typical services include resource ac-
quirement and clusterization, network configuration, as well
as high-level fault management. These operations have con-
siderable and universal influence on all components, and are
usually required infrequently. Since these chip-wide operations
tend to require large processing capacity and diversity to
provide various optimizations with the information of all
resources, the platform agent is to be implemented as a
software component. Each cluster agent monitors a cluster
of components (a dynamically configured group of atomic
units) with finer-grainular operations which mostly influence
the performance within the cluster. Dependent upon the com-
plexity of monitoring algorithms required and the size of the
cluster, the cluster agent is either a software component or

Symbol Explanation
Res generally referring to any resource in

the system
CEAG cell agent
CLAG cluster agent
PAG platform agent
AAG application agent
⊕ union of components of different types
:⇔ represented as
→ connector of phrases in a monitoring

operation
Res : Property the property of a resource
Res : Property `
NewV alue

a new value is given to the property of
the resource

{ } set, a list of elements with no order
() tuple, an ordered list of elements
/ or

Table I
SELECTED LIST OF NOTATIONS USED IN THE FORMAL SPECIFICATION

a SW/HW co-design. Each cell agent monitors a cell, which
is the basic reconfiguration unit with a few atomic functional
units. The monitoring operations at this level include timing-
critical actions such as error detection and power gating, which
are commonly implemented as dedicated hardware circuits.
Software may still be used for some monitoring operations
even at this low level of hierarchy if required and feasible, for
instance a software monitor embedded in a processor core. The
operations labeled in Fig. 1 are formally defined and explained
in Section III.

It is important to note that the concept of clusters is scalable.
In case of a large number of on-chip components, clusters can
be grouped into sub-clusters. The hierarchy presented in Fig. 1
should be correspondingly expanded. Moreover, the hierarchy
can be applied to multi-application-multiple-platform systems,
in which case additional interactions are needed to handle the
arbitration between different applications and platforms. The
description in this paper is based on single-application-single-
platform system with one level of clusters.

III. FORMAL MODELS

A. Resources and Their Properties

1) Resources: Any resource (functional unit, cell, cluster
or the whole system) is represented by a tuple including its
resource ID and the set of its properties. The notations used
throughput the paper are summarized in Table I.

Res :⇔ (ID, Properties)
ID: unique identifier of the resource
Properties: the set of observable and controllable proper-

ties of the resource
2) Properties: A property of a resource is a dynamic

parameter of the resource, indicating its working state. A
property can be a direct parameter, for instance, the working
frequency of a processor, or the temperature of certain region
(measured by a thermal sensor, for instance). It can also be an
abstract parameter, for instance, the structure of a resource
group. Generically, the following properties are commonly
required:

• Affiliation: to which resource group the resource directly
belongs to. For instance, the affiliation of a cell is the
identifier of the cluster it belongs to. Any resource not
assigned to any resource group is uniqued labelled and the
top resource group (the platform) is uniquely annotated
as well.

• Status: the current status of the resource. It can be
an enumeration type. For instance, {proper, temporally
unavailable, broken}. More elaborated status types are to
be defined based on the platform and monitoring services.

• Structure: the dynamic formation of a resource group,
for instance:

Celli : Structure = {FU |FU . Celli} ⊕ CEAGi

The structure of a cell is the dynamic union of the functional
units assigned to the cell and the cell agent.

3) Categorization of Properties: As an important classifica-
tion required for monitoring services, properties of a resource
are categorized into controllable and observable properties
(non-exclusive).

• OP: the set of observable properties. An observable
property is a property that can be observed by agents
(directly measured or indirectly induced). For instance,
if the temperature of a processor can be sensed by the
temperature sensor and reported to the agent, it is an
observable property.

• CP: the set of controllable properties. A controllable
property is a property than be configured by agents. For
instance, in a DVFS-enabled system, the VDD can be
configured dynamically by the agent.

For instance, Affiliation is a controllable property and Status
is an observable property.

The properties can also be categorized into electrical prop-
erties or logic properties to facilitate the system engineering.

• EP: Electrical properties of any resource. For in-
stance, VDDand VT (threshold voltage), Freq(working
frequency)

• LP: logic properites of any resource (in the form of digital
circuitry). For instance, a certain output/input (likely of
special purposes, for instance, for testing) of a digital
device.

4) Example: To give a simple example, if a cluster is
composed of processor1-processor6 and a cluster agent at
location XY; the working frequency of the cluster can be
dynamically adjusted from the set (100MHz, 500MHz, 1GHz);
the temperature of the cluster can be measured by a thermal
sensor. The cluster can be formally specified as:

Cluster : ID = XY
Cluster : Structure = {Processor1 − 6}
⊕CLAG|CLAG : ID = XY }

Cluster : OP = Cluster : Temperature
Cluster : CP = Cluster : Frequency |

FrequencyV alue ∈ {100MHz, 500MHz, 1GHz}

B. Monitoring Operations
As labelled in Fig. 1, five types of monitoring operations

are defined to realize the monitoring interactions between

the agents. The five types of operations are not designed as
being atomic. Dependent upon actual implementation, each
operation may be fulfilled by a sequence of suboperations.

1) Communicate:
• Format

Agent → Communicate → (message)
→ DestinationAgent

• Explanation
One agent sends message to the destination agent. There is no
supervising relation between the two, which is different from
Order operation. The receiver agent decides if it will act upon
the message received.

• Note
At present, this operation only takes place between application
agent and platform agent. Between different agent levels, there
is either Order operation from higher level agent to lower
level ones; or Report operation from lower level agent to its
monitoring agent. Currently, agents at the same level can not
send message to each other (this limitation is to be explored
in the future).

2) Configure:
• Format

Agent → |TriggeringEvent|(OPT) →
Configure → [Resi : Property|
Property ∈ Resi : CP ` NewV alue]
• Explanation

One agent attempts to configure certain property of a resource
(under its supervision) to a new value. The property must be
a controllable property of the resource. This operation may
be triggered by another event TriggeringEvent, for instance
a Report operation. |TriggeringEvent|(OPT) means the
triggering event is optional.

3) Trace:
• Format

Agent → Trace →
[Resi : Property|Property ∈ Resi : OP]
• Explanation

One agent attempts to trace (observe dynamically) certain
property of a resource (under its supervision). The property
must be an observable property of the resource.

4) Order:
• Format

Agent → |Report(Agenti)|OPT → Order
→ [Resj : Property|Property ∈ Resj : CP
` NewV alue]
• Explanation

One agent orders a lower level resource to be configured (its
property/properties to have a new value). This operation may
be triggered by the report from a lower level agent (indicating
the lower level resource is working improperly, for instance).
The Order operation is always sent firstly to the lower level
agent which monitors the resource to be configured. Order
operation always triggers a Configure operation, by which
the lower level agent configures the resource according to the
Order operation issued by the higher level agent.

5) Report:
• Format

Agent → Report → ({Resi : Property|
Property ∈ Resi : OP performance})
→ AgentSUP

• Explanation
One agent reports the performance (as special type of observ-
able properties; denoted by OPperformance) of its monitored
resource (group) to its supervising agent (AgentSUP).

C. Formal Representation of Hierarchically Monitored System

A hierarchically monitored system can be formally specified
on each level with the expressions defined above. At the
platform level:

Platform :⇔ (PlatformID, Structure, Status, OP, CP)
Platform: Structure = PAG⊕
{Cluster |Cluster : Affiliation = Platform}
⊕{Res |Res : Affiliation = NonAssigned}

The Structure of the platform is dynamically assigned as
the union of the platform agent, all configured clusters and all
non-assigned resources.

PAG :⇔ (ID, Status, Operations)
PAG : Operations :=
{Communication, Trace, Order, Configure} The

operations of the platform agent are such a set.
Other observable (OP) and controllable (CP) properties

of the platform are design specific based on the underlying
system. Each cluster and cell can be similarly defined and
omitted here for brevity.

IV. HIERARCHICAL NOC POWER MONITORING IN
FORMAL EXPRESSION

A short-version example is illustrated here to demonstrate
applying the formal model to specify hierarchical power
monitoring service on NoC platforms. We assume that there
are n ∗ k processors (each connected to the network via a
switch) partitioned into n clusters (each with k processors and
one cluster agent), and each cluster is assigned with a voltage
regulator and a PLL. The power of each cluster can be mea-
sured from the voltage regulator [3]. The controllable proper-
ties of a cluster include its Structure, VDD−cluster (supply
voltage), Fcluster(working frequency), formally expressed as
Clusteri=1..n

i : CP = {Structure, VDD−Cluster, FCluster}.
And the observable properties include its Pcluster(power con-
sumption). Each processor with its switch are grouped into
a cell with a cell agent, which can trace the buffer load in
the switch dynamically (observable property). The monitoring
service is to minimize the total interconnection power of all
clusters with the average buffer load in each cluster lower than
a threshold value Lth

1.
At initiation stage, default supply voltages and frequencies

are assigned to each cluster by the platform agent.
PAG → Order → [Clusteri=1..n

i : VDD, Fcluster

1Buffer load, as a major indicator of network congestion, determines the
average packet latency in a best-effort transmission [4].

` Vdefault, Fdefault]
After application starts running, at the lowest level, cell

agents trace the buffer loads of their own cells, and report
the figures to their supervising cluster agents.

CEAGj=1..n∗k
j → Trace → [Cellj :BufferLoad]

CEAGj=1..n∗k
j → Report →

(Cellj :BufferLoad) → CLAGsup

Each cluster agent examines the average buffer load of
all affiliated cells, and increases the voltage and frequency
if it exceeds the threshold or decreases them otherwise.
|Avg({Cell|Cell . Clusteri} : BufferLoad) > Lth| is the
formal notation expressing a triggering event that the average
of all cell buffer loads is higher than the threshold. The
cluster agent also reports the cluster power consumption to
the platform agent.

CLAGi=1..n
i →

|Avg({Cell|Cell . Clusteri} :BufferLoad) > Lth|
→Configure→ [Clusteri : VDD, Fcluster

` HigherVDD,HigherFcluster]2

CLAGi=1..n
i → Report → [Clusteri : Pcluster] → PAG

At the highest level, the platform agent reports the total
power to the application agent. More complicated interactions
between them can be defined in the similar manner.

PAG → Report → [Platform: Power] → AAG

V. ONGOING WORK & CONCLUSION

The presented formal model for hierarchically monitored
system demonstrates the feasibility of a highly abstracted
framework which exposes the necessary parameters for defin-
ing and specifying monitoring operations on a reconfigurable
platform. Such a formal framework not only enables conve-
nient design space exploration in the design process, but also
theoretical verification of system properties.

Currently we are elaborating the specification of on-chip
components to support more detailed and flexible definition of
reconfigurable operations. The types of monitoring operations
are being slightly diversified to address better the hierarchical
manner of system monitoring. The state space of such hierar-
chically monitored parallel systems is to be analyzed so as to
theoretically verify the expected system properties.

REFERENCES

[1] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce,
Vince Leung, John MacKay, Mike Reif, Liewei Bao, John Brown,
Matthew Mattina, Chyi-Chang Miao, Carl Ramey, David Wentzlaff,
Walker Anderson, Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan
Montenegro, Jay Stickney, and John Zook. Tile64tm processor: A 64-
core soc with mesh interconnect. In Proc. Digest of Technical Papers.
IEEE International Solid-State Circuits Conference ISSCC 2008, pages
88–598, 2008.

[2] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R.
Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer. High-performance
cmos variability in the 65-nm regime and beyond. IBM Journal of
Research and Development, 50(4/5):433–449, 2006.

[3] Chuen-Song Chen. On-chip current and power measurement techniques
for integrated circuits with regulated power. PhD thesis, University of
Rhode Island, 2008.

2The expression for decreasing the voltage and frequency is similar and
omitted here.

[4] G. Liang and A. Jantsch. Adaptive power management for the on-chip
communication network. In Proc. 9th EUROMICRO DSD Conference,
pages 649–656, 2006.

[5] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote,
N. Borkar, and S. Borkar. An 80-tile sub-100-w teraflops processor in
65-nm cmos. IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

[6] Alexander Wei Yin, Liang Guang, Pasi Liljeberg, Pekka Rantala, Ethiopia
Nigussie, Jouni Isoaho, and Hannu Tenhunen. Hierarchical agent ar-
chitecture for scalable noc design with online monitoring services. 1st
International Workshop on Network on Chip Architectures (in conjunction
with MICRO41), 2008.

