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Abstract—This paper presents quantitative analysis of monitor-
ing interconnect architecture alternatives in hierarchical agent-
based NoC platform. Hierarchical monitoring design methodol-
ogy provides scalable dynamic management services with agents
monitoring different levels. To enable low-latency and low-
energy agent communication, we examined three interconnect
alternatives: TDM-based virtual channeling, unified dedicated
monitoring network, and separate dedicated monitoring net-
works. With Orion and Cadence simulators, we estimated the
energy and latency of monitoring communications on the three
architectures for an 8*8 mesh network in 65nm technology.
The results suggest that separate dedicate links mostly minimize
the communication delay and energy consumption (66.7% and
82.1% respectively compared to TDM-based interconnect), while
incurring moderate area penalty.

I. INTRODUCTION

The size of NoCs (Network-on-chip) is constantly increas-
ing with technology scaling. The recently released TeraFLOPS
processor [1] and TILE64 processor [2] integrate 80 and 64
cores respectively on a single chip. In academia, thousand-
core processors have been projected and discussed [3]. While
parallelizing applications onto many processing elements leads
to high potential speedup, the system suffers from a number
of challenging problems. Technology scaling introduces larger
variations in the circuits, which reduce the reliability and yield
of the products [4]. Exacerbated by the increasing variations,
faults and errors become more distributed and unpredictable
[5, 6]. Power consumption, especially the dramatic increase of
leakage power in sub-100nm technology, poses even tougher
power wall to the system [7]. The variations and faults
only worsen the power constraints as the design margin is
lowered to allow for parametric variations. To tackle with
the run-time unpredictability and maximize power efficiency,
online monitoring techniques need to be exploited from the
architectural level.

Based on previous works addressing the issues of system
monitoring, particularly those on NoC platforms [8, 9, 10],
we identified several design mottos for monitoring architecture
on NoCs. Firstly, monitoring services have to be provided
distributedly as a requirement of scalability. Distributed mon-
itoring reduces the interconnect latency for urgent monitor-
ing services and prevents the appearance of communication
bottleneck. However, no matter how large the systems are,
centralized monitoring is still an indispensable complement
to localized monitoring schemes. Theoretically, a centralized
monitor is able to coordinate the functioning of all components

and optimizes the overall system performance. In practice, as
an example, [11] adopts a single processing unit for dynamic
testing operations and a global-level scheduler. Admittedly,
centralized monitors have only been applied to multi-core
systems, but an analogy to the complicated nervous system of
human beings can help motivate the need of centralized mon-
itors. The human nervous system is a large-scale monitoring
network with numerous distributed neurons as local monitors.
These neurons are coordinated by upper-level centralized
monitors such as the spinal cord and the brain, which balance
and optimize the general body function. Thirdly, the energy
efficiency of monitoring services should be maximized .

Observing these requirements for monitoring architecture of
NoCs, we have proposed a novel design method: hierarchical
agent monitoring architecture. This method adds a layer of
monitoring components called “agents” on the system software
and hardware. These agents are structured in four levels:
from the top level to the bottom, they are the application
agent, the platform agent, the cluster agents and the cell
agents. Each level of agents are autonomous and adaptive in
monitoring the components at their corresponding level while
being supervised by higher level agents. This monitoring ar-
chitecture learns from the structure of human nervous network,
while adopting efficient simplification for more regular NoC
structures. This paper briefly explains the concept, functional
partition and mapping of agent hierarchy, which are more elab-
orately discussed in our previous works [12]. The focus of this
paper is on architecturing the monitoring communication on
the NoC platform. There are different alternatives in realizing
the monitoring communication, either as virtual channels or
as dedicated links. We discuss three monitoring interconnect
methods both qualitatively and quantitatively. The quantitative
analysis of area, latency and energy overhead was performed
by using state-of-the-art simulators. From these analyses, we
clearly identify the benefits and issues of each monitoring
interconnect method, which are very meaningful to further
design exploration.

The rest of the paper is organized as follows: Section
II explains the agent hierarchy, mapping and functions of
each level of agents; Section III illustrates three alternative
monitoring interconnect architectures; Section IV presents
our quantitative estimation of the area, latency and energy
overhead of each architecture; Section V concludes the paper.
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Figure 1. Hierarchical Agent Monitoring Approach

II. HIERARCHICAL AGENT MONITORING APPROACH

We provide a 4-level hierarchical monitoring structure for
on-chip systems of any scale. Each level of monitoring is
handled by agents at this level. From the top to the bottom,
the system has a single application agent, a single platform
agent, distributed cluster agents and cell agents (Fig. 1).
The application agent is a piece of software capturing the
application’s functionality and run-time performance require-
ments and constraints. The platform agent summons enough
resources for the application, parallelizes and maps instruction
blocks onto acquired functional units, configures the network
and monitors the system performance when the application
is running. Each cluster agent monitors a group of functional
units and memories with the tasks assigned by the platform
agent. It tracks the performance of the components inside its
own cluster at a finer granularity. The lowest-level cell agent
closely monitors the circuit condition of each processing core,
a switch or simply a link.

Monitoring services are provided in a hierarchical manner
by the joint efforts from these agents. On Fig.1, we can
identify the generic monitoring interactions among the agents.
Before execution, the system, including processing elements,
memories and the network, is configured with initial setting. A
certain ratio of functional units are reserved as spares in case
of component failures. After the application starts running, all
agents become active monitors. At the circuit-level, cell agents
are closely tracing their local circuit conditions, including
(leakage) current, workload, and any faults or failures (for
instance a link failure or a malfunctioning processing unit).
These low level information is sent to the cluster agents, which
figures out optimal cell settings (for instance supply voltage,
bias voltage and frequency) and necessary reconfiguration
within the cluster. The monitoring algorithm is only processed
by the cluster agent, which takes the status of all cells into
account. This manner not only reduces the implementation
overhead when each cell needs to process the monitoring algo-

rithm itself, but also achieves the overall optimal performance
in the cluster. Similar monitoring interactions exist between the
cluster agents and the platform agent. But instead of sending
low-level circuit parameters, cluster agents send component-
level resource status to the platform agent, including cluster
temperature and power consumption. They also ask for more
resource from spares in case of many component failures.
These informations is processed by the platform agent, which
may determine to adjust the working of a certain cluster,
for instance scaling down the supply voltage and frequency
for reducing the power or lowering the temperature. If more
resources need to be provided for certain clusters, the platform
may need to reconfigure the network. The platform agent is
communicating with the application agent, which modifies the
application requirements based on external inputs. In this case,
the platform agent will change the resource utilization and
reconfigure the network.

The online hierarchical monitoring approach, first of all,
maximizes the monitoring efficiency in a scalable manner.
Circuit-level setting is monitored by the low-level cell and
cluster agents, and the localized monitoring provides faster
services and reduces the communication to the platform agent.
The parallelized services also minimize the total implemen-
tation overhead compared to the conventional single man-
agement unit scheme, which is not scalable for thousand-
core systems. With post-silicon tuning enabled by fine-grained
online monitoring services, the end product can maintain
optimal performance under the influence of variations and
unpredictable faults with manufacturing yield improved.

III. MONITORING COMMUNICATION INTERCONNECT

A. Agent Mapping on Regular NoC Platform

On a tile-based general-purpose NoC structure, a conven-
tional tile comprises of a PE (processing element), a NI
(network interface) and a switch. The cell agent is monitoring
one of the tiles, and physically it shares the space with a
processing element (Fig. 2). The cluster agents are distributed
evenly among the tiles when no application pattern is assumed
to specific any particular cluster topology. Depending upon
the complexity of cluster monitoring algorithm, a cluster
agent may physically replace a conventional PE (Fig. 2) or
still shares the space with a PE. The application agent and
the platform agent monitor over the whole system; without
application-specific assumptions, we assume they are located
together at the geographic center of the tiling area.

B. Interconnect Architecture Alternatives

Agents exchange monitoring information with their higher
or lower counterparts as illustrated in Fig. 1. Compared to data
communication, the monitoring information requires much
lower throughput since the information volume is small ([13]
reports 8% and 5% debugging monitoring traffic overhead for
two streaming applications). Instead, other features are of more
importance to monitoring communication: 1) reconfigurability.
If the initial configuration fails (link failures or component
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Figure 3. Non-reconfigurable Star Networks for Agent Monitoring Intercon-
nect

failures), the system needs be reconfigured with agent commu-
nication resumed. Some traditional interconnect methods do
not support reconfigurability. For instance, if the cluster agent
is connected in dedicated star network to its cell agents (Fig.
3), spares can not be dynamically configured to this cluster as
new cell agents in case of component failures. 2) low latency.
Even though not all monitoring services are under strict timing
deadlines, the interconnect should provide the possibility of
setting up low-latency connection for urgent services (for
instance to deal with functional failures on processing element
or links). 3) low energy. The energy overhead of monitoring
communication should be minimized. The wiring area over-
head has become less of a design constraint as multi-layer
fabrication process provides quite abundant wiring potential
for on-chip systems ([10]; TILE64 processors incorporate 5
physically separate networks, each of them being 64-bit wide).
Considering these features, we identified three alternative
interconnect architectures for monitoring communication:

1) TDM-based Virtual Channel: TDM (Time-Division-
Multiplexing) is a conventional manner for virtual channel
implementation [14, 15]. Fig. 4 illustrates the monitoring in-
terconnect realized as TDM-based virtual channels on existing
data links. This interconnect architecture incurs design com-
plexity in virtual channel arbitration and allocation, increases
the switch latency of both monitoring interconnect and data
communication. The virtual channel arbitration and allocation
also incur energy overhead. Wiring overhead, however, is
kept to the minimum though the switch area is moderately
increased.

2) Unified Dedicated Monitoring Network: A single dedi-
cated network for the monitoring communication exploits the
wiring resources and simplifies the switch arbitration (Fig. 5).
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Figure 4. TDM-based virtual channel for monitoring interconnect
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Figure 5. Unified Dedicated Network for Monitoring Interconnects

Without being overlapped on the data links and switches, the
monitoring communication latency and energy consumption
are reduced. This dedicated monitoring network combines both
the monitoring communication between the cluster and cell
agents as well as that between the platform and cluster agents.

3) Separate Dedicated Monitoring Networks: We can fur-
ther separate the monitoring communication between the
platform agent and cluster agents on a separate dedicated
network as in Fig. 6. The interconnects between cluster agents
and the platform agent are fixed, which are different from
those between the cell and cluster agents since cells can be
reconfigured to different clusters. Building a separate network
connecting the single platform agent to a small number of
cluster agents reduces the communication latency and energy
between these two levels of agents. It is a result of a much
simpler crossbar structure and switching arbitration with the
H-tree topology. The interconnects are layouted as segmented
wires in parallel to the other two networks. The area penalty
is small since the number of cluster agents is limited.

IV. QUANTITATIVE COMPARISON OF MONITORING
ARCHITECTURES

A. Area, Latency and Energy modeling of NoC components

The NoC communication structure comprises of switches
and links. We assume input-buffered switches with the struc-
ture as Fig. 7 (similar to that suggested by [16]). When a data
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Figure 7. A 5-ported input-buffered on-chip switch model

flit 1 arrives at the switch, it will be put into the buffers 2. The
length of buffers is a design choice based on the traffic pattern,
flow control mechanism, and performance/cost trade-off. After
a flit has come to the head of the buffer, it will be routed
and traversed through the crossbar structure to the output.
There are two major crossbar structures: multiplexor-tree and
matrix crossbar [17]. The virtual channel allocation, switching
and routing of a data flit are all controlled by arbitration
logics. The area, latency and energy overhead of a switch are
contributed by the input buffers, the crossbar structure and
the arbitration logic. NoC links can be modeled as segmented
wires with drivers and evenly inserted repeaters. The interval
length between repeaters is a design trade-off of latency and
power efficiency. The smaller the interval is, the shorter the
latency becomes as the result of larger driving while the power
consumption including the leakage on the repeaters increases.

We estimate area and energy overhead of switches by
simulating with Orion [18], a widely-used on-chip switch
power simulator. The switch latency is estimated based on
[16]. The wires are modeled and simulated by Cadence; with

1flit stands for flow control unit; a whole data packet is segmented into a
number of flits each sent at once on the link

2there are bufferless NoC platforms as well
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parameter value
length 2mm
width 210nm

spacing 210nm
repeater interval 0.25mm

repeater size 10x
driver size 12x

Table I
PARAMETERS USED IN WIRE MODELS (65NM TECHNOLOGY)

a specific latency constraint dependent on the link frequency,
the repeater and driver parameters are adjusted to achieve the
minimal energy.

B. Experiment Setup

We model a network similar to the TeraFLOPS processor
in the same 65nm technology for realistic evaluation. The
network has 8*8 processing elements mapped on a regular tile-
based mesh topology. Data links are 32 bits wide and 2 mm
long (TeraFLOPS uses 2mm * 1.5 mm tiles, while we simplify
the tiles to be squares as 2 mm * 2 mm). The locations of the
platform agent, cluster agents and cells (with cell agents) are
illustrated in Fig. 8. Dedicated monitoring link is 8-bit wide
and equally long. Table I gives the wiring parameters used in
Cadence simulation 3. Each router has 5 IN/OUT ports with
input-buffering. For TDM channels, the buffer is 4 units (a
unit is one flit wide) long since the data communication has
higher workload while the unified separate network has 2-unit
long buffer at each IN port. The other dedicated network for
communication between cluster agents and the platform agent
assumes no buffer as the traffic on this network is exclusive
and infrequent. The arbitration assumes wormhole routing.
The crossbar is modeled with the matrix structure. The whole
NoC system is mesochronous (TeraFLOPS uses phase-tolerant
mesochronous synchronization), and the frequency is set as
1GHz with the supply voltage as 1V.

The Orion simulator does not produce result for 65nm
technology directly, thus we apply scaling factors (based on

3driver and repeater sizes are relative to the minimal inverter size.



Interconnect Architecture Delay
(cluster <->
cell agents)

Delay (platform
<-> cluster

agents)
TDM-based 24 cycles 24 cycles

Unified Dedicated Network 16 cycles 16 cycles
Separate Dedicated Networks 16 cycles 8 cycles

Table II
LATENCY COMPARISON OF THREE MONITORING INTERCONNECT

ARCHITECTURES (NETWORK WORKING AT 1GHZ)

Interconnect Architecture Energy
(cluster <->
cell agents)

Energy
(platform <->
cluster agents)

TDM-based 12.92 pJ 12.92 pJ
Unified Dedicated Network 5.40 pJ 5.40 pJ

Separate Dedicated Networks 5.40 pJ 2.31 pJ

Table III
ONE-FLIT MONITORING COMMUNICATION ENERGY OF THREE

MONITORING INTERCONNECT ARCHITECTURES (NETWORK WORKING AT
1GHZ)

[19]) to the result of 70nm technology simulation using Orion.
The scaling factors for energy, area, and latency are 0.86, 0.86
and 0.93 respectively. The energy of wires are simulated by
Cadence. The latency in the switch buffer assumes an average
50% occupancy ratio. Virtual channel allocation, routing/
decoding and crossbar traversal each takes 1 cycle (based on
[16] for pipelined routers).

C. Estimation Result

1) Latency: The latency is calculated in cycles considering
the longest distances between the platform agent and a cluster
agent and between a cluster agent to one of its cell agent. From
Fig. 8, we see that both distances are at maximum 4 hop counts
with minimal routing. The wire latency is simulated to be
198ps, and each pipeline stage latency in switches is estimated
to be lower than 300ps ([16], assuming an FO4 inverter delay
to be 15ps in 65nm technology). With 1GHz frequency, each
link and one router pipeline stage (virtual channel allocation,
routing and decoding, crossbar traversal) take 1 cycle delay.
Table II summarizes the latency comparison for monitoring
communication in each interconnect architecture.

2) Energy Consumption: The energy is calculated by the
amount of energy consumed by an 8-bit flit (as we assume
dedicated monitoring networks are 8-bit wide) traversing on
the longest paths between the platform agent and a cluster
agent, and between a cluster agent to one of its cell agent (4
hop counts as in Fig. 8 with no misrouting). Table III summa-
rizes the energy consumption for monitoring communication
in each interconnect architecture.

3) Area : We analyzed the total wiring and switch area for
each interconnect architecture as a percentage of a TeraFLOPS
chip (275mm2) (Table IV).

4) Overhead Analysis and Trade-off: From the estimation,
we can observe that TDM-based interconnect architecture
incurs the most latency and energy overhead, mainly as a

Monitoring Interconnect Architecture Area (mm2) Percentage (of
a chip area)

TDM-based 7.44 2.71%
Unified Dedicated Network 8.95 3.26%

Separate Dedicated Networks 9.11 3.32%

Table IV
AREA OVERHEAD OF THREE MONITORING INTERCONNECT

ARCHITECTURES

result of complicated switch arbitration and channel alloca-
tion process. Unified dedicated network architecture reduces
the latency and energy by 33.3% and 58.2% respectively
for monitoring communications. Separate dedicated network
architecture reduces the latency and energy of the monitoring
communication between the platform and the cluster agents
further more (66.7% and 82.1% respectively). Understandably,
there is area penalty involved for dedicated networks, but
compared to the overall chip size, the area overhead should
be affordable.

V. CONCLUSION

This paper overviews the hierarchical agent-based NoC
monitoring architecture and elaborately examines the latency,
energy and area overhead of three alternative monitoring inter-
connect schemes. The TDM-based monitoring interconnection
is most area efficient, but requires considerably more latency
and energy overhead. Unified dedicated monitoring network,
which transmits all monitoring communication network on
a physically independent network, reduces the latency and
energy by a great amount (33.3% and 58.2% respectively).
Separated dedicated monitoring networks, which separate the
monitoring communication between the platform and cluster
agents onto another network with a small number of desti-
nations, further reduces the latency and energy overhead for
monitoring communication between these two levels of agents
(66.7% and 82.1% respectively). Area analysis shows that
dedicated networks incur an affordable amount of area penalty
compared to the overall chip size. Our quantitative analysis
was performed by using state-of-the-art Orion and Cadence
simulators.

This work has demonstrated the effectiveness of using
separate monitoring interconnect networks for hierarchical
agent-based monitoring services in large-scale NoC-based em-
bedded systems. As a prioritized future work, we are looking
into specific monitoring services to be implemented on such
systems.
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