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Abstract

This study examines representations of
protein–protein interactions focusing on
the mapping between simple, pairwise
annotation and complex, structured an-
notation. A simple semantic network
representation equivalent to the BioInfer
predicate formalism is introduced and used
to transform the complex annotation of
BioInfer into pairwise annotation through
hand-written rules. Evaluation shows that
this binarisation can be largely validly
performed with limited loss of information,
but also reveals specific challenges. The
binarised BioInfer is the first corpus of
this type where the inclusion rules are
formalised to the level of a computational
implementation and is freely available at
http://www.it.utu.fi/BioInfer .

1 Introduction

The identification of protein-protein interactions
(PPI) from free text is one of the most important
and widely studied information extraction tasks
in biomedical natural language processing. Auto-
matic PPI extraction would benefit a wide range
of applications, from advanced search engines to
automated pathway database construction.

The great majority of PPI extraction methods
and annotated corpora have cast the task as one of
identifying pairs of protein names for which some
relationship is stated. While the simplest case
of extracting unordered pairs is the most widely
studied, approaches targeting e.g. ordered pairs
or pairs with a connecting relationship type (e.g.
Ding et al. (2002), Ńedellec (2005)) have also
been published, as have some methods for ex-
tractingn-ary (forn > 2) relations (McDonald et

al., 2005). However, pairwise approaches remain
the norm and the information extracted by these
constitutes only a small part of the knowledge in
biomedical literature.

Recently two corpora that contain PPI annota-
tion considerably more detailed than pairwise re-
lations have been introduced. These resources,
the BioInfer (Pyysalo et al., 2007) and GENIA
Event (Kim et al., 2008) corpora, aid the develop-
ment of extraction systems that capture complex
PPI—here, understood to refer ton-ary interac-
tions of proteins and to include also structured
(nested) relations where, for example, a protein
affects the interaction of other proteins. This pa-
per explores the relationship between this type of
complex annotation and the prevailing pairwise
annotation.

First, it is argued that a representation capable
of capturing the core of information in complex
relationships while remaining practical to extract
is needed in complex PPI extraction. In this paper,
protein relationships are represented as semantic
networks. Since they are based on the BioInfer
annotation, these networks follow the textual ex-
pressions of the statements of those relationships
and are capable of expressing complex PPI. While
this is not a fully formal knowledge represen-
tation, it aims to support automatic, consistent
derivation of simpler, more easily extracted tar-
gets and serve as a practical intermediate between
textual expressions and formal biological knowl-
edge.

Second, the representation is applied together
with a transformation ruleset tailored for the task
of transforming the complex relationships in the
BioInfer corpus into typed binary (i.e. pairwise)
relationships where the types preserve consider-
ably more information regarding the nature of



Figure 1: Examples of annotation in a) AIMed, b) LLL and c) BioInfer as semantic networks. Note that the
original annotation does not include this representation.

PPI than simple protein pairs. This transforma-
tion aims to capture all (and only) biologically
meaningful relationships in the original annota-
tion. The transformation is evaluated in a detailed
analysis where the magnitude and properties of
the information loss necessarily entailed by such
a simplification is further discussed along with its
significance to the PPI extraction task.

2 Representing biomedical knowledge

The PPI annotation schemes in most domain cor-
pora aim at capturing simple facts about proteins
rather than serving as a knowledge representation
in the sense of a computable model that supports
deductive inference.

Figure 1 illustrates the information contents of
annotations in the AIMed (Bunescu et al., 2005),
LLL (N édellec, 2005) and BioInfer corpora as
informal semantic networks1. AIMed and LLL
model interactions as pairwise relationships while
BioInfer allows complex relationships. Further-
more, AIMed is not annotated for direction or
type while LLL and BioInfer are. The key lim-
itation of pairwise relationship annotation is its
incapability to express complex structured rela-
tionships. Thus, the annotation involves decom-
position that leads to approximations and loss of
information. For example, in the LLL annotation
in Figure 1b, the effect of SpoIIE on sigmaF is not
explicitly annotated and cannot be inferred from
the annotation shown in the figure, which is in-

1Note that not all the information in Figure 1 is explicitly
represented in the corpora: for example, interaction types in
LLL are found as comments in the corpus file.

distinguishable from the annotation that would be
given, for example, toSpoIIE activates SpoIIAA
which binds SigmaF.

In addition to loss of information, the decom-
position can lead to inconsistencies. There is
large variation in annotation principles (see e.g.
Pyysalo et al. (2008)) which evidently leads to an-
notation of a variety of interaction types across
domain resources. For individual corpus anno-
tation efforts, inconsistencies in decomposition
principles may contribute to low inter-annotator
agreement (see e.g. Alex et al. (2008)).

Despite the limitations of pairwise annotation,
pairwise relationships may be necessary in appli-
cations such as querying for interactions between
two proteins. Assuming that complex relation-
ships are a useful target for information extraction
efforts and that simple relationships have benefits
in post-extraction applications, a mapping from
complex to simple relationships is needed. Fur-
ther, significant challenges still remain even in
pairwise PPI extraction (Krallinger et al., 2007),
and while carefully hand-crafted systems extract-
ing complex PPI have been introduced (Fried-
man et al., 2001), reliable machine-learning ap-
proaches to complex PPI extraction may not
emerge in the near future. A reliable mapping
of the BioInfer and GENIA annotations to pair-
wise annotations would thus serve to increase the
applicability of these resources to presently avail-
able extraction methods.



3 Methods and resources

3.1 Corpora

BioInfer was the first domain corpus to introduce
the annotation of complex protein relationships.
It consists of 1100 sentences annotated for protein
names, their relationships, and dependency syn-
tax and uses a predicate formalism in its PPI an-
notation (see Figure 1c). The GENIA event cor-
pus contains similar annotation, but its relation-
ship annotation of 1000 PubMed abstracts was
published late during the present study, which
thus focuses on the BioInfer corpus. The essential
features of the PPI annotation of the BioInfer and
GENIA corpora are largely identical: complex re-
lationships are annotated, participants in relation-
ships are not restricted to protein names but refer
to the actual participants even when these are e.g.
abstract entities such asgene expression, and the
annotation is fully bound to the text. Therefore,
the methods described in this paper could well be
applied to GENIA in a future study.

3.2 Semantic network representation

The term semantic networkcan refer to a va-
riety of graphical representations of knowledge
which differ in expressive strength and complex-
ity. A graph representation is a natural choice for
semantics, and several well-developed and pow-
erful formalisms have been introduced (Sowa,
1976; Mel’̌cuk, 1988). However, their complexity
makes them difficult targets for automated extrac-
tion. An ideal representation for PPI extraction
would be as simple as possible, yet capable of
capturing all PPI statement types in natural lan-
guage, and formally well-founded.

In the context of this paper, a semantic net-
work is understood to refer to a directed graph
in which the nodes represent biological con-
cepts and the edges represent the stated roles of
these concepts. As the applied networks derive
from the BioInfer predicate annotation, the graphs
are further acyclic, that is, DAGs. The nodes
are bound to their corresponding textual expres-
sions throughtext bindingsfollowing the original
BioInfer annotation. A relationship is defined as
a directed subtree with at least two leaves, and a
relationship composed of an entire subtree rooted
at a source (DAG “root”) is termed a complete re-
lationship. In this model a binary relationship is
defined as a relationship containing exactly three

type meaning
agent agent in an asymmetric process

patient patient in an asymmetric process
participant participant in a symmetric process

sub substructure or member
super superstructure, family or group

identity identical entities
possessor possessor of a property

Table 1: Edge types used in the semantic network.

nodes, two of which are leaves, and a complex
relationship is one that is not binary.

The nodes and the edges in the network can
represent any concept of interest and any seman-
tically sound role, respectively. However, the set
of valid edge types is restricted by the type of the
predecessor. For example,actin (a physical en-
tity) can have an agent or patient role indepoly-
merisation(a process) but not infilaments(an-
other physical entity). A controlled vocabulary
or, ideally, an ontology must be employed to ac-
curately and formally express the knowledge.

A predicate representation such as that of
BioInfer can be directly mapped into an equiva-
lent semantic network where the node types cor-
respond to predicates and their arguments and
the edge types only distinguish between the argu-
ment positions (1st, 2nd etc.). In case of BioInfer,
the node types thus correspond to types in the
BioInfer ontologies. Further, edge types (shown
in Table 1) are indirectly obtained from the de-
scription of the nesting and the predicates (see
Section 3.3.1). Thus, the network representation
can capture the same general set of biomedical
relationships as the original BioInfer annotation.
However, the network representation has several
practical advantages over the predicate represen-
tation of BioInfer. Biological concepts, which can
be either physical, such as molecules or cell com-
ponents, or abstract, such as processes, properties
or relationships, are represented in a unified man-
ner, unlike in the predicate representation that dif-
ferentiates between predicates (relationships) and
entities. Further, the participant roles are explic-
itly represented, facilitating processing of rela-
tionships. Finally, the network representation is
naturally extensible: for example, information re-
garding cell type could be added simply by attach-
ing additional edges to the network.

Figure 2 provides an example of a seman-
tic network that uses the BioInfer ontologies.



Figure 2: Example of a semantic network representing
the sentenceInhibition of B by A causes stimulation of
phosphorylation of D filaments by C. Agentis abbrevi-
ated asa andpatientasp.

The fact that no agent is stated for the node
STIM.(STIMULATE) renders this particular rela-
tionship unexpressable in the BioInfer formalism
without adding an anonymous entity.

3.3 Binarisation process

Here, binarisation is defined as a process of
mapping a complex relationship into a set of
(typed) binary relationships, aiming at sound
(valid, truth-preserving) inference as well as to
preserve the key biological information of the
original relationship. This is achieved through
a corpus-specific set of hand-written inference
rules. Instead of formal inference (as understood
in logic) aiming at finding new (unstated) knowl-
edge, the purpose of the inference rules is to re-
duce original annotation into binary annotation by
applying transformations that generate the most
accurate approximation of the original informa-
tion content.

The validity of inference is evaluated with re-
spect to biologists’ understanding of whether the
generated binary relationships describe relations
stated in the text. Ideally, the binary annotation
includes all (and only) pairwise PPI that are bio-
logically relevant, along with appropriate types.
Note that not all protein pairs forming a rela-
tionship generate biologically relevant binary re-
lationships: for example, no such relationship can
be validly inferred betweenp1 and p3 from the
statementp1 prevents the phosphorylation ofp2

by p3. By contrast, forp1 prevents the binding of
p2 to p3, a p1–p3 relationship could be inferred
becausebind is a symmetric relationship.

Before binarisation, the semantic network is
preprocessed to simplify the binarisation process
and to separate the binarisation from refinement
of relationships.

3.3.1 Preprocessing of the network

The BioInfer corpus contains annotation for a
number of non-biological relationship types, such
as equality and coreference, which are used to de-
tail the expression of other, biological, relation-
ships. Non-biological relationships are excluded
from the binarised corpus. However, to preserve
as much biological information as possible, these
relationships are resolved by graph transforma-
tions following their interpretations, as given in
(Pyysalo et al., 2007).

For example, in BioInfer the EQUAL predicate
is used to express identity relationships, mostly
in abbreviations and synonym definitions, and the
COREFER predicate is used to express corefer-
ence. Only the first argument of these predicates
is then used in other relationships, and thus in the
network these relationships are introduced for the
second argument by copying edges and nodes, as
illustrated in Figure 3.

Figure 3: Preprocessing EQUAL predicates. The an-
notation AFFECT(p1,p2) EQUAL(p2,p3) for the ex-
pressionp1 affectsp2 (also calledp3) is preprocessed
into AFFECT(p1,p2) AFFECT(p1,p3).

In the BioInfer entity annotation, entities can
be nested, i.e. contain other entities: for example,
p1 subunitis annotated as two entities,p1 subunit
and the nestedp1. However, the annotation does
not specify the type of the relations implied by
nesting. These relations are represented as edges
in the network and their types can be resolved re-
liably by heuristics based on the types and text
bindings of the end nodes of the edges. For exam-
ple, in [depolymerisation of [[actin] filaments]]
the edge fromdepolymerisation ofto filamentsis
resolved intopatient(rule: physical entity nested
in a process withof in its text binding) and the
edge fromfilamentsto actin is resolved intosub
(rule: physical entity nested in larger physical en-
tity). The special predicate REL-ENT, implying
indirect nesting, is resolved similarly.

3.3.2 Extraction of binary relationships

Binary relationships are extracted in a two-step
process. First, candidate relationships are gen-
erated from the original graph by forming all
possible relationships with exactly two proteins



as leaves. In order to determine the polarity
of the resulting binary relationship, all adjacent
nodes of type NOT are included into the relation-
ship. Since the edges are explicitly labeled with
roles whose interpretation is independent of other
edges, such a subgraph is sufficient to preserve all
the details of the relationship between the two se-
lected proteins while being easier to process than
the entire graph.

Second, the relationships are transformed with
a set of rules that reduce them into binary rela-
tionships. Each rule defines a transformation that
aims to preserve the information content while
simplifying the relationship by removing nodes
and/or altering the types of the nodes and edges.
Unlike in formal inference, each transformation
produces an approximated relationship, and the
validity of the inference is not guaranteed. To
minimise the overall extent of approximations
and to avoid invalid inference, the rules are manu-
ally ordered so that more reliable and less approx-
imative rules have priority.

Rules including the root determine the final re-
lationship type and are applied first. Essentially
these rules process nodes representing verbs with
little semantic content as well as determine the
overall regulatory effect. Rules applying to leaves
remove nodes whose information content cannot
be included in the final relationship, and are ap-
plied only if other rules do not match. In most
cases, the removed information concerns the de-
tails of the exact types of the physical entities. By
iteratively applying the first matching rule, each
relationship is transformed until a binary relation-
ship is obtained or none of the rules match. The
semantic network representing all valid binary re-
lationships is simply the union of the binary rela-
tionships obtained in this step.

Figure 4 illustrates the transformation process.
In step a), a node representing the verbcauseis
removed. This is a minor approximation since
the node (CAUSE) indicates thatp1 is (indirectly)
an agent in the stimulation process. Similarly, an
agent of a regulatory process (INHIBIT) causing
another process (STIM.) is indirectly the agent of
that other process. Hence,INHIBIT is removed
in step b). Step c) is a rearrangement of nodes:
a regulatory process (STIM.) is processed into the
effect attribute (see Section 4.1) of the affected
physical process (PHOS.). In step d), it is ap-
proximated that anything that is stated for a phys-

Figure 4: An example of candidate relationship pro-
cessing. See Figure 2 for description of notation and
Section 4.1 for REG(+) attribute description.

ical entity (PHYS.) is also valid for its component
(p4). In this example the resulting relationship is
REG(+) PHOSPHORYLATE(p1,p4).

3.4 Development and evaluation protocol

In order to be able to fairly evaluate the effect
of the binarisation process on previously-unseen
data, the software and rules were developed on
a random sample of 437 sentences. The pro-
cess was then applied to the complete BioInfer
corpus and all relations in a random sample of
50 previously-unseen sentences of the binarised
BioInfer were analysed by a biologist to deter-
mine the quality of the binarisation.

In the error analysis, instances of information
loss were counted and their causes examined. The
losses were categorised as follows, in decreas-
ing order of severity: missing interaction, in-
valid inference, invalid interaction text binding,



approximated interaction type, and lost interac-
tion detail. The latter two were considered as
approximations while the other as errors. The
lost interaction details were divided into three cat-
egories (process/property, structure/membership,
identity) and evaluated by counting the entities
that did not contribute to the corresponding bina-
rised relationship.

The applied proof-of-concept software is im-
plemented in Python and Prolog. Any similar
programming language or inference tool would
be equally good provided that it supports the or-
dering of the rules and the search for the first se-
quence (based on the rule order) of transforma-
tions leading to a binary relationship.

4 Results and discussion

4.1 Binarisation details

Single BioInfer predicate types are not alone
sufficient to summarise complex relationships.
In particular, polarity needs to be preserved
to separate explicit negative statements, origi-
nally annotated with the NOT predicate, from
unannotated (i.e. non-existing) statements (see
Pyysalo et al. (2007)). In addition, complex re-
lationships can combine aspects of regulation to
the primary effect: for example, the annotation
for p1 suppresses the polymerisation ofp2 in-
cludes both the SUPPRESS and POLYMERIZE
types but neither alone is sufficient to express the
whole relationship. To make it possible to pre-
serve negation and regulatory aspects, the predi-
cates are augmented withpolarity andeffectat-
tributes.

The base predicate specifies the relevant bi-
ological process while the effect attribute de-
scribes how this process is affected by the agent.
The effect can be positive, negative, or unspec-
ified regulation or a direct action. For simplic-
ity, when polarity or effect have their “default”
values (positive and direct action, respectively)
these are omitted from the augmented predicate:
thus, instead of POSDIRECT INHIBIT simply
INHIBIT is used as the name. Hence, for ex-
ample, NEGPOLYMERIZE indicates the agent
does not polymerise the patient, REG(-)BIND
indicates that the agent negatively regulates the
binding of the patient (to an unspecified entity).

The BioInfer ontologies are modified to bet-
ter support the binarisation as follows. The
Processentity subtree in the entity ontology is

mapped to the relationship ontology: for exam-
ple, the process entity DEPOLYMERIZATION
is mapped to the predicate DEPOLYMERIZE. In
addition, to be able to determine the effect at-
tribute in the binarisation, relationship types con-
sidered regulatory (Dynamics and Amount sub-
trees and the PREVENT type) were flagged.

4.2 Statistics

This section briefly summarises the key statistics
relating to the binarisation. The original BioInfer
corpus in the graph representation contains 2662
complete relationships, 942 of which are binary.
Note that some of these binary relationships (such
as EQUAL) are preprocessed into other relation-
ships. The binarised BioInfer contains 2762 rela-
tionships of which 94.4% (vs. 93.9% in the origi-
nal) have positive polarity and 89.7% direct action
effect.

During the binarisation process, the rules
matched 4794 times in total: the fraction of rules
involving the root is 39.7% and those involving
leaves 51.6%. The most applied root-matching
rules were those processing CAUSE, regulatory
relationship types, and CONTAIN (10.3%, 9.8%,
8.4% resp.) while leaf-matching rules were ap-
plied mostly to remove edges of identity (21.3%)
or structure/membership (17.3%) types.

The distributions of predicates in the original
and binarised BioInfer are clearly different. In the
binarised corpus, general predicates (for exam-
ple PARTICIPATE, AFFECT, and CONDITION)
have nearly all been removed while the number
of predicates in the Change-subtree has increased
63% even though the number of predicates in
its Dynamics-subtree have decreased 25%. The
former two observations confirm that the gen-
eral predicates have been transformed to biologi-
cally relevant ones, as intended. The last observa-
tion corresponds to the regulatory predicates be-
ing reinterpreted as effect attributes.

4.3 Error analysis

Table 2 shows the observed errors and approxima-
tions in the sample. For those types that can oc-
cur only once per relationship, the expected num-
ber per relationship in the binarised BioInfer is
shown. For the lost interaction details, the ex-
pected number per non-leaf entity in the original
BioInfer is shown.

Three of the observed missing interactions are



error type count E
missing interaction 7 0.07

invalid inference 13 0.12
invalid interaction text binding 0 0.00

total 20 0.19

approximation type count E
approximated interaction type 8 0.08

lost entity (process/property) 9 0.06
lost entity (structure/membership) 15 0.09

lost entity (identity) 7 0.04
total 31 0.19

Table 2: The errors and approximations observed
in the analysed sample of the binarised BioInfer.
ExpectationE for errors and approximated interac-
tion types given per-relationship, other approxima-
tions per-relation, where per-relationship expectations
refer to the binarised corpus and per-entity expecta-
tions to the original corpus.

duplicates of existing interactions. For example,
two regulatory relationships would be annotated
in the sentenceActin regulates cofilin phosphory-
lation and dephoshorylation,but the binary an-
notation cannot express the difference and hence
produces only one relationship. Another three
missing interactions are deliberately removed as
self-interactions (which are not relationships in
the applied semantic network model). The last
missing interaction is due to the failure in nest-
ing role resolution, caused by an invalid nesting
in a phraseactin-bound nucleotide exchange. The
nesting is technically allowed by the BioInfer an-
notation but the role ofactin in exchangecannot
be expressed with a single edge.

For the majority of the observed invalid infer-
ences the cause is an incorrectly identified effect
attribute. In six cases, the regulatory effect of a
node is missed or falsely assumed. For example,
in the sentenceAddition of profilin caused actin
depolymerisation,the processaddition(annotated
as INCREASE) does not refer to positive regu-
lation but rather to an experimental setup. The
two other effects are misidentified due to a similar
case of nesting as described in the previous para-
graph (consider the phraseconcentration required
for polymerisation). In the remaining five cases,
the true agent is an unexpressed process while the
claimed agent (protein) has an unstated relation-
ship with the patient. This renders the binarised
relationship invalid. Consider the sentenceDe-

phosphorylation of cofilin leads to actin depoly-
merisationas an example in whichdephosphory-
lation causesdepolymerisationwhile the effect of
cofilin as such onactin is unstated.

The expectations for losing information in en-
tities is surprisingly low given that leaf-targeting
rules were the most applied. Moreover, since
words carrying little biologically relevant infor-
mation, such as “protein” and “function”, are in-
cluded in these numbers, the biological informa-
tion loss is even less. The observed approxima-
tions in the interaction types are minor, such as
the type INITIATE being generalised to positive
regulation in mapping to an attribute.

In short, the error analysis reveals some weak-
nesses of the original BioInfer annotation scheme,
especially nesting, while the binarisation fails
mostly on identifying a regulatory effect. Given
that regulatory relationships are a small minority,
the effect attribute could be completely dismissed.

5 Conclusions

This paper has provided the first study of the rela-
tionship between the pairwise annotations com-
monly used to annotate PPI and the complex
annotations in recent corpora such as BioInfer
and the GENIA Event corpus. A simple se-
mantic network representation was presented, and
the BioInfer predicate annotation was mapped
into this representation. This mapping uni-
fies some arguably unnecessary distinctions in
the original annotation, such as the mirroring
of some relationship types with entity types
(e.g. PHOSPRORYLATE vs. PHOSPHORYLA-
TION), and explicitly represents all relationships
between entities, including relationships whose
type is unspecified in the original annotation (e.g.
sub/superstructure). The semantic network thus
provides a more consistent representation of the
relevant information, facilitating rule-based infer-
ence.

The binarisation of the BioInfer relationship
annotation was implemented as a set of graph
transformation rules. This transformation aimed
to determine which biologically relevant rela-
tionships between two proteins can be inferred
from the full semantic network and how much of
the original information content can be preserved
with BioInfer relationship types augmented with
polarity and effect (direct/regulatory) attributes.
A study of the resulting binary PPI indicated that



while the original annotation and the chosen rep-
resentation are, in general, capable of supporting
this form of inference, a number of errors were
produced in the process. The study of these er-
rors suggested some weaknesses in the original
annotation and further indicated that while the ex-
istence of relationships was inferred correctly, the
effect attribute could not always be reliably de-
termined. The evaluation further provided an es-
timate of the approximations inherent to binary
annotation even when regulatory effects are sepa-
rately captured.

The results suggest that it is sufficient to sum-
marise the relationships between proteins with
a pairwise annotation for use in various appli-
cations. However, information extraction could
benefit from the details available in complex re-
lationships. Thus, together with the possibility to
transform complex relationship into binary ones,
the extraction of semantic networks could prove
to be a feasible approach to PPI information ex-
traction.

The similarities between the network represen-
tation considered here and the conceptual graph
(CG) model of Sowa (1976) suggest that the CG
model could be adopted as a knowledge repre-
sentation for PPI extraction. As a well-founded
formalism, the CG model would provide a means
to robustly express extracted relationships. How-
ever, the CG model may need to be adjusted to
address the linguistic aspects of information ex-
traction in the biomedical domain.

The created binary BioInfer is the first corpus
with pairwise PPI annotation where the rationale
for including or excluding a particular pair is for-
malised to the level of computationally imple-
mented rules. As binary PPI annotation is still
dominant in particular in machine-learning-based
PPI extraction, this resource can provide valu-
able data to a field where annotation consistency
has been a challenge. Similarly, the semantic
network form of the corpus can provide a more
approachable target for automatic PPI extraction
than the original predicate form. The software
tools and the data (in the original BioInfer format)
produced in this study are freely available from
http://www.it.utu.fi/BioInfer .
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