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Abstract— We construct some geometrically dense matrix lat-
tices with good minimum determinants for 4 transmit antenna
MISO applications. The construction is based on the theory
of rings of algebraic integers and related subrings of the
Hamiltonian quaternions. Simulations in a quasi-static Rayleigh
fading channel show that our dense quaternionic constructions
outperform the earlier rectangular lattices as well as the DAST-
lattice.

I. BACKGROUND AND BASIC DEFINITIONS

We are interested in the coherent multiple input-single
output (MISO) case where the receiver perfectly knows the
channel coefficients. The received signal is

Yixn = b1k Xkxn + Dixn,

where X is the transmitted codeword taken from Space-
Time Block Code (STBC), h is the Rayleigh fading channel
response and the components of the noise vector n are i.i.d.
complex Gaussian random variables.

A lattice is a discrete finitely generated free abelian sub-
group L of a real (or complex) finite dimensional vector space
V, called the ambient space. In the space-time setting a natural
ambient space is the space M, (C) of complex n X n-matrices.
When a code is a subset of a lattice L in this ambient space,
the rank criterion states that any non-zero matrix in L must
be invertible. This follows from the fact that the difference
of any two matrices from L is again in L. As a main design
criterion we recall the minimum determinant of the code C. In
the case of square matrix lattice this takes the form

6C = minMecyM;ﬁo{det(MM*) % },

where M* is the adjoint of the matrix M and & is the number
of transmit antennas. The receiver, however, (recall that we
work in the MISO setting) sees vector lattices instead of matrix
lattices. When the channel state is h, the receiver expects to
see the lattice hL.

This work is a continuation of the reports [1] and [2]. The
reader interested in more background is referred to [3]-[9].

II. RINGS OF ALGEBRAIC NUMBERS, QUATERNIONS AND
LATTICE CONSTRUCTIONS

It is widely known how the so called Alamouti design
represents multiplication in the ring of quaternions. As the
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quaternions form a division algebra, such matrices must be
invertible, i.e. the resulting STBC meets the rank criterion.
Matrix representations of other division algebras have been
proposed as STBC codes at least in [2],[10],[11],[12], and
(though without explicitly saying so) [13]. The most recent
work ([11],[12] and [13]) has concentrated on adding mul-
tiplexing gain (i.e. MIMO applications) and/or combining it
with a good minimum determinant. We do not seek any
multiplexing gains, but want to improve upon e.g. the DAST-
lattices introduced in [10] by using non-commutative division
algebras.

The set {ay + a2t + azj + ask| a; € R Vi}, where
i? = j2 = k> = -1, ij = k, is recalled as the ring of
Hamiltonian quaternions. We shall use extension rings of the
Gaussian integers G = {a + bila,b € Z} inside a given
division algebra as they fit nicely with the popular 16-QAM
and QPSK alphabets. Natural examples of such rings are the
rings of algebraic integers inside an extension field of the
quotient fields of G, as well as their counterparts inside the
quaternions. To that end we need division algebras A that are
also 4-dimensional vectors spaces over the field K = Q(i).
Let ¢ = e™/® (resp. £ = e™/* = (1 + i)/+/2) be primitive
16" (resp. 8") root of unity. Our main examples of such
division algebras are the number field L = Q(¢) and the
division algebra H = Q(&) ® Q(£)j. As zj = jz* for all
complex numbers z, and as the field Q(&) is stable under the
usual complex conjugation (*), the set H is a subskewfield of
the quaternions.

As always, multiplication (from the left) by a non-zero
element of the division algebra A is an invertible Q(%)-linear
mapping (with Q(%) acting from the right). Therefore its
matrix with respect to a chosen Q(i)-basis B of A is also
invertible. Our example division algebras L. and H have as
natural Q(i)-bases the sets By, = {1,(,(?,¢3} and By =
{1,&,7,7&} respectively. Thus we immediately arrive at the
following matrix representations of our division algebras.

Proposition 2.1: Let the variables ¢y, ce, c3,c4 range over
all the elements of Q(z). The division algebras L and H can
be identified via an isomorphism ¢ with the following rings



of matrices
c1 icg 1C3  1Cy
C2 (6] iC4 iC3
c3 €y C1 icy
C4 C3 C2 C1

and
¢ e —cy —cy
-k *
C2 C1 1y —Cs
H = M:M(Cl,CQ,C3,C4): . % %
c3 iy c c3
cy c3 —ich c}

The isomorphism ¢ from L into the matrix ring is determined
by Q(4)-linearity and the fact that  corresponds to the choice
¢y = 1,¢1 = c¢3 = ¢4 = 0. The isomorphism ¢ from H into
the matrix ring is determined by Q(%)-linearity and the facts
that £ corresponds to the choice co = 1, ¢; = ¢35 = ¢4 = 0,
and j corresponds to the choice c3 =1, ¢y = co = ¢4 = 0.
In particular the determinants of these matrices are non-zero
whenever at least one of the coefficients ¢y, ¢o, ¢3, ¢4 is non-
Zero. [ ]

Remark 2.1: The algebra H could also be viewed as cyclic
division algebra in the sense of [11]. As it is a subring of the
Hamiltonian quaternions, its center consists of the intersection
HNR = Q(v/2). Also Q(&) is an example of a splitting field
of H. In the notation of section 7 of [11] we have an obvious
isomorphism

H ~ (Q(¢)/Q(V2),0,-1),

where o is the usual complex conjugation.

In order to get STBC-lattices and useful bounds for the
minimum determinant we need to identify suitable subrings
R of the algebra H. We shall do this by placing certain
restrictions for the elements ¢y, s, c3, c4.

In the case of the field L we are only interested in its ring
of integers Op = Z[(] that is a free G-module with basis
By, In this case the ring ¢(O},) consists of those matrices of
L that have all the coefficients ¢, ¢z, ¢3,¢4 € G. Similarly,
the G-module spanned by our earlier basis By is a ring £
of the required type. We call this ring the ring of Lipschitz’
integers of H. Again ¢(L£) consists of those matrices of H that
have all the coefficients ¢y, ¢, ¢3, ¢4 € G. While Oy, is known
to be maximal among the rings satisfying our requirements,
the same is not true about £. The ring of Hurwitz’ integral
quaternions also has an extension of the prescribed type inside
H. This ring, denoted by H, is the (right) G-module generated
by the basis By = {p, p€,j,5&}, where p = (1 +i+ 5 +
k)/2. The fact that  is a subring can easily be verified by
straightforward computations, e.g. £p = p&— j7&. For future use
we express the ring H in terms of the basis By of Proposition
2.1. We easily see that the quaternion ¢ = ¢ +&co+jcs+j€cq
is an element of H, if and only if the coefficients ¢;,t =
1,2,3, 4 satisfy the requirements (1 + i)¢; € G for all ¢ and
c1+cs,co+cq € G. As the ideal generated by 1+ is of index
two in G, we see that £ is an additive subgroup of index four
in H. We summarize these findings in the next proposition.

The bound on the minimum determinant is a consequence of
the fact that all the elements of G have norm at least 1.

Proposition 2.2: The following rings of matrices form
STBC-lattices of minimum determinant 1.

c1 icqg 1c3  icy
co €1 1cg icg
C3 Co C1 iC4
C4 C3 Co (4]

by
[

|(31,CQ,03,C4 Eg )

Ly = {M(c1,c¢2,¢3,¢4)|c1,¢2,¢3,c4 € G},

1414
2

g,

Ly = {M(c1,¢2,¢3,c4)|c1,¢2,03,¢4 €

c1+ce3 €G, e+ ey Eg}
|

Remark 2.2: The lattice L; is quite similar to the DAST-
lattice in the sense that all of its matrices can be diagonalized
simultaneously. The lattice Lo, for its part, is a more developed
case from the so-called quasi-orthogonal STBC suggested e.g.
in [14]. The matrix of L, can be found as an example also
in [11], but no optimization has been done there by using, for
example, ideals as we do here.

A drawback shared by the lattices L; and Lo is that in
the ambient space of the transmitter they are isometric to the
rectangular lattice Z®. The rectangular shape does carry the
advantage that the sets of information carrying coefficients of
the basic matrices are simple and all identical (this is useful in
e.g. sphere decoding), but this shape is very wasteful in terms
of transmission power. Geometrically denser sublattices of Z%,
e.g. the checkerboard lattice Dg and the diamond lattice Fjg
are well known (cf. e.g. [15]). However, we must be careful
when picking the copies of the sublattices, as it is the minimum
determinant we want to keep an eye on.

As our earlier simulations ([1],[2]) showed that L» outper-
forms L;, we concentrate on finding good sublattices of Lo.
The units of the ring Ly are exactly the non-zero matrices,
whose determinants have the minimal absolute value of one.
Thus an intuitive way to find a sublattice with a better
minimum determinant is to take the lattice ¢(Z), where Z C R
is a proper ideal. This idea has appeared in [2] and [12]. Even
earlier, ideals of rings of algebraic integers were used in [8] to
produce dense lattices. Let us first record the following simple
fact. For the proof, see [2].

Lemma 2.3: Let A and B be diagonalizable complex square
matrices of the same size. Assume that they commute and that
their eigenvalues are all real and non-negative. Then

det (A + B) > det A + det B,

and we have a strict inequality, if both A and B are invertible.
| ]

Proposition 2.4: Let T be the prime ideal of the ring G
generated by 1 + ¢. Define

Ir ={(c1 +&ca) +j(cs+&cs) € Ller +ca+c3+ ¢y €TF.



Then Z. is an ideal of index two in L. The corresponding
lattice
L, = {MELQlCl +c2+c3+cy EI}

is a rank 2 sublattice in Lo. Furthermore, the absolute value
of det(MM*), M € L4\ {0}, is then at least 4.

Proof: 1Tt is straightforward to check that 7, is stable
under (left or right) multiplication with the quaternions ¢ and
j, so Zp is an ideal in L.

Let us consider a matrix M € L4 and write it in the block

form n B
w4 ),
We see that
« [ AA*+ BB* 0
MM _< 0 AA*—i—BB*)’
and

AA*+BB*=<°‘ ’“ )

kE «

where o = 2;21 lej|? is a non-negative integer and k =
—icicy + cac] — icgcy + cqcy is a Gaussian integer with
the property k* = ik. We are to prove that det M M* =
(a® — |k|2)2 > 4. Assume first that ¢ = ¢4 = 0, i.e. the
block B = 0. Then det(A4) is the relative norm det(A4) =
Ng((f)) (c1 + &ca), which is a Gaussian integer. As ¢; + £co is
a non-zero element of the ideal Z, we conclude that det(A) is
a non-zero non-unit. Therefore det(A4) det(A*) > 2, and the
claim follows.

Let us then assume that both A and B are non-zero. Then
det(A) and det(B) are non-zero Gaussian integers and have a
norm of at least one. The matrices A, A*, B, B* all commute,
so by Lemma 2.3 we get

det(MM*) > det(AA*)? 4 det(BB*)* > 2.

As det(MM*) = (o — |k|2)2 is the square of a rational
integer, it must be at least 4. [ ]

Remark 2.3: It is easy to see that in the previous proposi-
tion, a+bi € Z, iff a+0b is an even integer. Thus geometrically
the matrix lattice L, is, indeed, isometric to Dsg.

We proceed to describe two more interesting sublattices of Lo
with even better minimum determinants. To that end we use
the ring ‘H (or the lattice L3). The first sublattice is isometric
to the direct sum D4 L D, of two 4-dimensional checkerboard
lattices.

Proposition 2.5: Let again Z be the ideal (1 + 4)G and
M(cy, co, c3,cq) be the matrices of Proposition 2.1. The lattice
Ls = {M(c1,c2,¢3,¢4) € La|cy + 3,62 + ¢4 €T}

has minimum determinant equal to 2.

Proof: The matrices A in the lattice Lj are of the form
A = (1 4+ i)M, where M is a matrix in the lattice L3 of
Proposition 2.2. Thus det(AA*) = 16det(M M*), so the
claim follows from Proposition 2.2. [ |

The root lattice Eg can be described in terms of Gaussian
integers as follows (cf. [16]):

(01762763764) S g4|C1 +I = Ct +I7

8 — 7 .

141

4
t=2,3,4, Y ¢ €2G}.

t=1

By our identification of quadruples (c;,¢2,c3,¢4) € G* and
elements of H it is readily verified that A = (1 + i) Fg has
{2,(1+0) + (L+)E (1+D)E+ (1+i)j, 1+ E+j+jE} C L
as a G-basis, whence the set {1+4,14+&,&+J,p+p{} CH
is a G-basis for Eg. By another simple computation we see
that Es = H(1 + &), i.e. Eg is the left ideal of the ring #
generated by 1 + &.

Proposition 2.6: The lattice
Le = {M(c1,c2,¢3,¢c4) € Lo| c1 + T = + I,

4
t=2,3,4, Y ¢ €20}
t=1
is an index 16 sublattice of Lo. Furthermore, the minimum
determinant of Lg is 2v/2.

Proof: Let My = M(1,1,0,0) be the matrix ¢(1 +
&) under the isomorphism of Proposition 2.1. We see that
det(M;M[) = 4. By the preceding discussion any matrix A
of the lattice Lg is of the form A = M Mj(1+1), where M is a
matrix from . As in the proof of Proposition 2.5, we see that
det AA* = 16 det(M M) det(M M*). Therefore the claim
on the minimum distance follows from Proposition 2.2. We
see that the coefficient ¢; can be chosen arbitrarily within G.
The coefficients ¢y and ¢3 then must belong to the coset ¢; +Z,
and ¢4 must be chosen such that ¢; +c¢o +c5+ ¢4 € 2G = T2,
As T is of index two in G, we see that the index of Lg in Lo
is 16 as claimed. |

Remark 2.4: We have now produced a nested sequence of
lattices

2Z° = 2Ly C Lg C L5 C Ly C Ly = Z°(C Ly).

We concentrate on the lattices that are sandwiched between
278 and Z8. Such lattices are in a bijective correspondence
with binary linear code of length 8 by "projection modulo 2".
As it happens, within this sequence of lattices the minimum
Hamming distance of the binary linear code and the minimum
determinant of the lattice are somewhat related.

The 8-dimensional rectangular grid Z® (no coding)
K
The checkerboard lattice Dg (<> overall parity check code
of length 8)
N
The lattice Dy 1 Dy (4> two blocks of the overall parity
check code of length 4)
K
The root lattice Fg (++ extended Hamming-code of
length 8).



The obvious question now is what happens if we simply
concatenate the use of Ly with a good binary code (extended
over several Ls-blocks, if need be), and then were done with
it. While the binary linear codes appearing above are the first
ones that come to mind, we want to caution the unwary end-
user. Namely, the ring in question may contain high weight
units. If such binary words are included, then the minimum
determinant of the corresponding lattice is equal to 1, i.e. no
coding gain will take place. E.g. the unit (1 —&3)/(1 —¢&) =
1+ &+ €2 = (1+14)+ & of the ring £ corresponds to the
matrix M (14 4,1,0,0) of determinant 1, and thus we must
not allow such words of weight 3 to be included in the code.
If the lattice L, were used, the situation would be even worse,
as then we would have units like (1 —¢7)/(1 — () in the ring
Oy, that would be mapped to a word of Hamming weight 7.
A construction based on ideals provides a mechanism to avoid
this problem caused by units.

III. SIMULATION RESULTS

We summarize the findings of Propositions 2.2-2.6 in the
following.

Proposition 3.1: (1) The lattice L, is isometric to the
rectangular lattice Z® and has minimum determinant 1.

(2) The lattice L, is an index two sublattice of Lo and has
minimum determinant /2.

(3) The lattice L5 is an index four sublattice of Lo and has
minimum determinant 2.

(4) The lattice Lg is an index 16 sublattice of Lo and has
minimum determinant 2v/2. |

In order to compare these lattices we scale them to the same
minimum determinant. When a real scaling factor p is used the
minimum determinant is multiplied by p?. As all the lattices
have rank 8, the fundamental volume is then multiplied by
p8. Let us choose the units so that the fundamental volume
of Ly is m(Ls) = 1. Then after scaling m(Ls) = 1/2,
m(Ls) = 1/4 and m(Lg) = 1/4. As the density of a lattice
is inversely proportional to the fundamental volume, we thus
expect the codes constructed within e.g. the lattices Ly and
Lg to outperform the codes of the same size within Lo.

Figure 1 shows the block error rates of the various compet-
ing lattice codes at the rate 2 bits/s/Hz, i.e. all the codes contain
256 matrices. For the lattices L1, Lo, Lpast and Lagpa [17]
this simply amounted to letting the coefficients ¢y, ca,c3, ¢4
take all the values in the QPSK-alphabet. Therefore, it would
have been easy to obtain bit error rates as well. For the lattices
Ly, Ls and Lg a more or less random set of 256 shortest
vectors was chosen. As there is no natural way to assign bit
patterns to vectors of Dg, Dy 1 Dy or Eg, we chose to show
the block error rates instead of the bit error rates. Figure 1
shows that the lattice Lg wins over all the other lattices.

The simulations were set up here so that the 95 per cent
reliability range amounts to a relative error of about 3 per
cent at the low SNR end, and to about 10 per cent at the high
SNR end (or to about 4000 and 400 error events respectively).
One receiver was used for all the lattices.

Figure 2 shows the block error rates of the code within
Lg and the Golden code [12] at the rate 4 bits/s/Hz with two
receivers. At the rate 4 bits/s/Hz one block of our code consists
of 16 bits, whereas one block of the Golden code carries 8 bits
only. For that reason we decided to show the error rate of two
consecutive blocks of the Golden code; i.e. if the usual error
rate of the block of length two is p, the rate we show is 2p—p?.
To maintain the quasi-static channel assumption, the channel
matrix was changed only after every fourth time slot for both
codes.

We can conclude that the lattice Lg outperforms the Golden
code when SNR reaches about 13 dB. However, this is
an unfair comparison because our code uses four transmit
antennas while the Golden code uses only two — this is just
a manifestation of the diversity gain, but we were interested
in finding the approximate crossing point. The fact that the
Golden code triumphs over our lattice at the low SNR end is
not such a severe drawback either, since our codes are designed
mainly for MISO channels while the Golden code is intended
wholly for MIMO channels.

IV. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

In this paper, we present new constructions of rate one, full
diversity, and energy efficient 4 x 4 space-time codes by using
the theory of rings of algebraic integers and their counterparts
within the division rings of Lipschitz’ and Hurwitz’ integral
quaternions. A comfortable, purely number theoretic way to
improve space-time lattice constellations is introduced. The
use of ideals provides us denser lattices and an easy way to
present the exact proofs for the minimum determinants. The
constructions can be extended to a larger number of transmit
antennas and they fit nicely with the popular Q>-QAM and
QPSK modulation alphabets.

Comparisons with DAST-code show that our codes provide
lower energy and block error rates due to their good minimum
determinant and high density. Despite the fact that our codes
are mainly designed to use only one receiver antenna, compar-
isons with the Golden code give hope that, with some slight
changes, the ideas of this paper will also work with multiple
receivers. For that reason, our next goal is to improve these
ideas and codes so that they would perform well also in MIMO
channels. At the moment we are searching for well-performing
MIMO codes arising from the theory of crossed product
algebras and maximal orders of cyclic division aigebras. As a
matter of fact, we have already proved that our densest lattice
code Lg corresponds to a maximal order within the cyclic
division algebra H.
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