
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

QoS Manager for Energy Efficient Many-Core Operating Systems

Simon Holmbacka, Dag Ågren, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
Email: firstname.lastname@abo.fi

Abstract—The oncoming many-core platforms is a hot topic
these days, and this next generation hardware sets new focus
on energy and thermal awareness. With a more and more
dense packing of transistors, the system must be made energy
aware to not suffer from overheating and energy waste. As a
step towards increased energy efficiency, we intend to add the
notion of QoS handling to the OS level and to applications. We
suggest the design of a QoS manager as a plug-in OS extension
capable of providing applications with the necessary resources
leading to better energy efficiency.

Keywords-QoS, Distributed Operating Systems, Many-Core
Systems, Energy Efficiency

I. INTRODUCTION

Pollack’s rule [1] describes the performance increase of
a CPU as an increase proportional to the square root of the
increase in core complexity. As a result of this rule, chips
with less complex but more cores are becoming popular.
Twice the core complexity will, according to Pollack’s rule,
result in only about 40% performance speed-up, while using
the same amount of transistors for adding more available
cores increases the performance potentially by 70-80% [1].
While processing power can be increased by simply adding
more cores, developing the software for many-core chips
utilizing the parallelism is not trivial. Scalability issues can
arise from both performance bottlenecks and new types of
power constraints these chips introduce. In this paper we
tackle the energy and thermal issues present in many-core
chips due to the difficulty of managing the power dissipation
efficiently.

Performance is usually maximized by spreading out tasks
evenly on the chip, which also results in less thermal
hotspots. On the other hand if tasks are scheduled to only
a few cores, the idle cores could be shut down and as a
result the total energy consumption decreases. A problem
arises from this dynamic management and from optimiza-
tion for energy efficiency without introducing performance
degradation. Applications in computer systems usually strive
towards high performance; an aim in the opposite direction
to lowering the energy consumption. The compromise is to
lower the energy consumption as much as possible while still
provide the necessary processing power. For this cause we
will investigate how to allocate the right amount of resources
to the applications at the right time in order to provide
sufficient Quality-of-Service (QoS).

QoS is a metric describing the level of performance

compared to a stated specification [2]. By introducing
QoS awareness into the applications, resource allocation
can become more energy efficient because applications can
deliberately ask for only a defined amount of processing
power. The notion of QoS extends applications’ influence
over resources, and expands energy scalability by enabling
control of the resource distribution. A QoS manager is
therefore vital to a system level point of QoS control.

This paper presents the design of a QoS manager capable
of regulating performance of many-core operating systems.
The suggested manager is an OS service to which appli-
cations and other OS services can connect and establish
the information flow necessary for QoS control. Besides
the QoS manager, this paper also focuses on the declaration
language the applications use to express their requirements.
The contributions of the paper are:

• The QoS manager: a standardized link between appli-
cations and resources

• The possibility of applications to hint their resource
need to the OS

II. NOTION OF PERFORMANCE AND QOS

QoS is a term used in real-time systems [3], usually in
order to describe the relation to soft deadlines. It is also
a term used in cloud computing [4], to enable the selling
of a bundle of processing power to the user with a certain
quality. In both cases, QoS is used to describe the average
feasibility of a system without looking at sharp deadlines –
a feature we intend to extend the OS with. This notion will
enable us to create a more energy efficient system.

Energy is consumed as cores dissipate power over time
and by the cooling infrastructure required for actively lead-
ing the heat away. Power is required for executing tasks
on the processing elements, which in turn create the waste
heat. In order to create an energy efficient system, the tasks
should: a) execute on the appropriate execution unit and b)
be only allocated the necessary amount of resources. For
this, the notion of performance is an important measurement
for deriving QoS values and how well an application is able
to satisfy the user.

The QoS value for an application is determined by
comparing the performance requirement in the specification
with the actual measured performance. The ratio between
these two values is the drop in QoS. If the QoS drop is
more than allowed by the specification, the system must

control some actors giving the application more resources
and thus higher QoS. Similarly, if the performance is too
high, the system should decrease the amount of resources
to the corresponding application in order to reduce energy
waste. For this reason we suggest a new single entity – the
QoS manager – controlling the QoS for the applications.

III. THE QOS MANAGER

The presented QoS manager is implemented as an OS
extension. The manager is able to measure QoS values
from the applications (referred to as sensors), and with
the obtained information control the resource allocation on
system level. The structure of the manager is shown in
Figure 1. It contains the manager, applications and actuators
interconnected. The system is built from a sensor-controller-

Figure 1. Structure of the OS containing the QoS Manager

actuator structure shown in Figure 1, and is described below.
Sensor: A sensor is a unit capable of connecting to the

manager, expressing QoS and sending measurements to the
QoS manager, hence the name sensor. Initially, the sensor
registers its own QoS requirements and type of resources
to use to the QoS manager with a declaration language
described in Section IV. Afterwards, the sensor measures
its own performance periodically with an implementation
specific mechanism in the sensor itself. The performance
values are sent to the QoS manager for QoS evaluation. As
long as the values are within the specified QoS range, the
task of the QoS manager is simply monitoring. In Figure
1 three sensors are connected to the controller: web server,
transcoder, and power observer.

Controller: The controller is the part managing the link
between sensors and the resources. It contains a database
over all established sensor connections and the control unit.
Furthermore, the controller handles the resource allocation
if the measured QoS from the sensors is too low. Since the
sensors are able to hint what kind of resource they lack
in such a situation, the controller functions as a plug-in
system connecting application directly to the right part of
the hardware. All control theoretical implementations are
put into the control unit. In this paper we used a simple
P-controller (proportional controller) due to its simplicity.
The P-controller determines how much more/less resources
should be allocated to a certain sensor depending on its
QoS value. In future work, we intend to investigate more
advanced control methods.

Actuator: Actuators are units capable of indirectly
altering the sensors’ performance by regulating some re-
sources (hardware or software). The way performance in-
creases is sensor dependent, which means that such an
actuators must be available, that the requests from the sensor
can be fulfilled. A common actuator is the DVFS governor
capable of setting the CPU voltage and frequency of a pro-
cessor. Other actuators could handle sleep states, or migrate
tasks from core to core to adjust the level of parallelism.
Specific hardware related actuators could shut down memory
banks on demand to decrease power dissipation. Even fan
controllers can be used to set the fan speed for energy
efficient cooling. Sensor choose which actuators to use with
a declaration language describe in the following section.

IV. DECLARATION LANGUAGE

A simple language has been derived to let the programmer
determine QoS requirements for sensors and what actuators
are connected to the sensors.

Overview: The declaration language is used during
the implementation of the applications, and is compiled
to c-code used for the registration and transmission of
measurements used in the sensors. Rules and measurements
are sent to the QoS manager during runtime. The sensors
should therefore use the language to describe required QoS.
A template for using the language is shown in Listing 1 and
explained below.

QoS MyTemplate {
requirements{

boundary: <condition1>: <value>;
boundary: <condition2>: <value>;
... }

priority <value>
control{

actuator: <Actuator candidate1> <sign>;
actuator: <Actuator candidate2> <sign>;
... } }

Listing 1. Template for specifying QoS

The declaration language used in the sensors is divided
into fields for expressing the performance and QoS. A field
contains an entity needed to specify what is intended from
the system upon a measurement.

Requirements: The requirements field describes the
actual limits for determining QoS boundaries. QoS require-
ments in form of a performance description is therefore
inserted in this field and is compared against a selected
setpoint. By setting a setpoint, the QoS manager can relate
the performance measurements to what would be considered
too low (poor performance) or too high (energy waste). In
order to specify the accepted range of performance the user
must also specify a QoS limit, which gives the lower
bound of what is considered acceptable. For example the
programmer of a webserver can choose a setpoint of 500
requests/sec and the QoS limit of 450 requests/sec.

Priority: The priority field determines which (if exists
many) of the connected sensors have the highest weight.
Situations can occur in which two different sensors’ require-
ments completely conflict each other. In these cases the
priority selects how much is weighted from which client.
The priority from a thermal guard would for example be
prioritized higher than a performance request from a web
server if physical damage is imminent because of heat issues.
Currently the weighing system is implemented to discard
lower prioritized measurements in favor of measurements
with higher priority. A more comprehensive way of express-
ing priorities is part of future work.

Control: The control field is used to describe what
actuators should be used by the sensors. Actuators are cho-
sen name wise based on available actuators in the controller
database. All actuators are related to a control sign (+ or -).
The sign determines in which direction the actuator should
aim its output signal for the specific sensor. An example
shown in Listing 2 describes is a power observer which
strives to minimize the power dissipation of the system.

control{
actuator: CPU freq, −;
actuator: CPU nr, −;
actuator: Parallelize, −;

}

Listing 2. Example of control for a power observer

This sensor has a negative signs on CPU frequency and
number of active CPU cores as it aims to shut down and
scale down cores in order to reach low power dissipation. It
also tries to parallelize as little as possible in order to enable
the shut down of cores. A webserver or transcoder could, on
the other hand, use positive signs to request more resources
if the QoS drops too low.

V. EVALUATION

We evaluated a simple system with two sensors: a JPEG
decoder which decodes JPEG images in an infinite loop and
a power observer which is used to keep the dissipated power
under a certain value in order to act as an on-demand power
saving mode. The applications were run on top of FreeRTOS
[5]. The system was mapped on the Versatile Express board
equipped with an ARM Cortex-A9 based CoreTile 9x4 quad-
core chip running at 400 MHz with 1 GB of DDR2 memory.
Our FreeRTOS port is available at [6]. Figure 2 shows four
CPU cores each running one separate instance of FreeRTOS.
Our system consist of one master core running the QoS
manager and three worker cores. Each core has one JPEG
decoder task running. Each decoder task runs completely
independent of the other decoders. In this architecture, we
are therefore able to decode up to four pictures in parallel.

Measurement data describe how many pictures per second
(p/s) a core is able to decode, and is sent to the master.
The total sum of p/s of all four separate JPEG decoding

Figure 2. Mapping of the QoS manager on an ARM Cortex-A9 quad-core

instances gives the final p/s number for the whole system.
Furthermore, the master core implements a power observer,
which is used as a on-demand power saving feature. A sleep
state mechanism was implemented as actuator; giving the
master core the opportunity to shut down individual worker
cores in order to lower the power dissipation. Experiments
were conducted to show how the energy consumption be-
haves according to what performance requirements are set
in the QoS manager.

Without power requirements: The first set of experi-
ments were conducted without power requirements. Table I
shows the requirements for the JPEG decoder in five differ-
ent tests. The first test (1) has a performance requirement of
7.5 p/s with a QoS of 93.3% etc.

Table I
REQUIREMENTS FOR THE FIRST EXPERIMENT

Test nr. 1 2 3 4 5
Setpoint [p/s] 7.5 5.5 4.0 3.8 2.0
QoS [%] 93.3 90.9 97.5 84.2 75.0

Results from the first run is shown in Figure 3. Figure
3(A) shows the picture rate of each test run. From the figure
it is clear that the cases with a steady curve are successfully
provided with the demanded resources most of the execution
time. The oscillating curve is a result of demanding such
a picture rate that 2.5 active cores are required. To avoid
the oscillations, additional actuators such as DVFS could
scale down one core in order close the gap between setpoint
and requirement more exact. The power dissipation was also
measured during the same experiments. Figure 3(B) shows
the power output from the same use cases as in Table I, with
the oscillating case (test 3) removed for illustrative reasons.

Figure 4 shows the final energy consumption for a 5
minute run on the Cortex-A9 for all mentioned test cases
and four additional configurations. It shows clearly how the
energy consumption increases steadily as the performance
requirements (p/s) increase. The result is a nearly linear
relationship between performance and energy consumption
due to the QoS manager with the sleep state actuator.

With power requirements: The next set of experiments
included power requirements to give a more realistic situ-
ation with multiple parameters to match. Similarly to the
first experiment, a JPEG decoder was used as application
with the same range of performance requirements. A power
observer application was added to the system. The power
observer measures the power dissipation of the chip. Ideally

Figure 3. Power dissipation with different performance settings

Figure 4. Energy consumption with different performance settings

it requires 650 mW of dissipated power, but accepts power
dissipation up to 700 mW . The power observer uses also a
higher priority than the JPEG decoder sensor to function as
a power saving and heat protection feature.

With these settings experiments were run for the first
settings in Table I. Without power constraints the system
activated four cores during the whole test and dissipated
roughly 900mW on average.

Figure 5. Results from experiment with power constraints ([7.5-7.0]p/s)

By adding power constraints, the system is forced to shut
down some cores in order to meet the higher prioritized
requirement from the power observer. Figure 5 shows how
the system is forced to operate mostly with three active cores
with occasional usage of only two cores. This experiment
shows that the system is able to override requirements on
demand by higher prioritized sensors in order to obtain

power saving feature etc.

VI. RELATED WORK

QoS management and monitoring exist in different areas;
from cloud infrastructures and web servers [4], [7] to OS
level on single computers and real-time systems [3], [8], [9]
etc. Language constructs for injecting QoS support has also
earlier been presented. Aagedal presented in his PhD thesis
[2] CQML; a language having the property of describing
QoS requirements. In this work, applications specify what
performance is to be expected from it and what is considered
as performance in context of the application. Applications
also monitor own performance and signal this value to the
QoS manager periodically.

We use similar notations inspired by the languages to
describe QoS in applications, with more focus on the OS-
level support. Our manager will be implemented as an
OS extension capable of system level control many-core
systems. Furthermore we have added the control output,
by which applications can choose which action needs to be
taken if the desired QoS is not achieved.

Design choices for a run-time manager was presented in
[10], consisting of a resource manager and a quality (QoS)
manager. The task of the QoS manager was to optimize an
operation point such that the system is maximally utilized.
Utilization is controlled by adjusting quality points in the
applications i.e. selecting one of many performance levels
an application specifies. Video resolutions or frame rate
for a transcoder are examples of such performance levels.
Similarly in [11], a system PowerDial is used to insert con-
figuration parameters (knobs) into applications and tune their
values to achieve the best accuracy vs. performance trade-
off. Complementary to Hoffman’s work [11], his application
tuning knobs can be used as a single actuator in our model,
which forms an application to be both a sensor and actuator
at the same time. Instead of controlling the applications, our
manager is intended to only monitor the applications which
indirectly influence the resources.

The managers in [9] and [10] require the application pro-
grammer to specify required processing power, memory and
communication capabilities. We intend to simplify require-
ment notation by only requiring an abstract quality value
freely defined by the programmer. The programmer does
not need to modify the application or analyze performance
points in order to use the presented QoS manager.

VII. CONCLUSIONS

In this paper we have introduced a QoS manager for
improving the energy efficiency of many-core systems. The
manager is intended to make the system better utilize the
resources of the platform depending on the workload. Appli-
cations are referred to as sensors; actors capable of declaring
performance and QoS requirements. By introducing the
notion of QoS, sensors are able to signal their resource

requirements and, through the QoS manager, allocate the
resources. The QoS manager control a set of actuators
capable of altering the performance characteristics for the
sensors. Sensors also set what type of actuator is required
for increasing performance of a certain type of sensor,
which gives the programmer opportunities to tailor the
resources more exact to the application. It also allows future
optimization techniques to be plugged in to the QoS manager
and used by any sensor if suitable.

The QoS manager has been evaluated on a quad-core
ARM Cortex-A9 with a JPEG decoder and its picture rate as
use case. The experiments have shown that the QoS manager
is able to scale down the energy consumption of the chip in
two different ways. Firstly, the application can by itself relax
the performance requirements to a given rate and thereby
request less resources. Secondly, other sensors with higher
priority can force the system to allocate less resources to
lower prioritized sensors.

In contrast to current systems, more awareness on the
thermal distribution inside the chip must be made when
using many-core systems because of the very dense packing
of cores and the spacial locality. Controlling QoS will
therefore be an important part of the many-core evolution.
By using the system level QoS manager, the distributed
many-core system can more easily be optimized for a global
maximum since the applications can hint the controller of
how resources should be used.

VIII. FUTURE WORK

An issue not addressed in this paper is the control
theoretical view of the QoS controller. Since this part is
the system level of control, methods such as PID or MP
or fuzzy control should be tested and evaluated complete
with stability analysis and tuning rules etc. As this system
uses multiple inputs from sensors and multiple outputs to
the actuators, a state spaced-based method could enable
the possibility for constructing a more efficient controller.
Other alternatives would be to formulate the system as
a optimization problem in which the objective function
minimizes the power dissipation and QoS requirements are
the constraints. This would also improve the current priority
model since the system would, with more rigorous methods,
determine the lowest total cost (power vs. performance) of
the system.

The complexity of the controller is also an important
parameters especially in a large many-core system, as the
number of inputs/outputs is likely to grow rapidly. As the
number of cores grow towards extreme numbers (1000+) a
single manager will become a bottleneck for communication
even if the complexity is very low. To solve the issue, the
manager must be decentralized and function as a distributed
system with sub-managers handling certain islands of cores
eventually grouped into continents of cores.

We intend to develop the complete environment for
demonstrating the scaling effects of the QoS manager on a

true many-core platform such as the SCC [12] or TilePro64
[13] and also construct the necessary actuators needed
to control such a system efficiently. For example energy
efficient scheduling, task migration and dynamic voltage and
frequency scaling are techniques useful to create the required
actuators. We also intend to use a more complex mix
of applications requesting different actuators with different
priorities for a more realistic conclusion.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,”
in Proceedings of the 44th annual DAC. New York, NY,
USA: ACM, 2007, pp. 746–749.

[2] J. Aagedal, “Quality of service support in development of
distributed systems,” Ph.D. dissertation, University of Oslo,
Oslo, Norway, March 2001.

[3] F. Monaco, E. Mamani, M. Nery, and P. Nobile, “A novel
qos modeling approach for soft real-time systems with per-
formance guarantees,” in HPCS ’09., june 2009, pp. 89 –95.

[4] P. Zhang and Z. Yan, “A qos-aware system for mobile cloud
computing,” in CCIS, 2011 IEEE International Conference,
sept. 2011, pp. 518 –522.

[5] R. Barry, FreeRTOS Reference Manual: API functions and
Configuration Options, Real Time Engineers Ltd, 2009.

[6] D. Ågren. Freertos cortex-a9 mpcore port. Åbo Akademi
University. [Online]. Available: https://github.com/ESLab/
FreeRTOS---ARM-Cortex-A9-VersatileExpress-Quad-Core-port

[7] T. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance
guarantees for web server end-systems: A control-theoretical
approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, p. 2002, 2001.

[8] B. Li and K. Nahrstedt, “A control-based middleware frame-
work for quality-of-service adaptations,” Selected Areas in
Communications, IEEE Journal on, vol. 17, no. 9, pp. 1632
–1650, sep 1999.

[9] V. Segovia, “Adaptive cpu resource management for multicore
platforms,” Licentiate Thesis, Lund University, Sep. 2011.

[10] V. Nollet, D. Verkest, and H. Corporaal, “A safari through
the mpsoc run-time management jungle,” Journal of Signal
Processing Systems, vol. 60, no. 2, pp. 251–268, 2008.

[11] H. Hoffmann and S. Sidiroglou, “Dynamic knobs for respon-
sive power-aware computing,” in Proceedings of the sixteenth
ASPLOS conference. New York, NY, USA: ACM, 2011, pp.
199–212.

[12] P. Thanarungroj and C. Liu, “Power and energy consumption
analysis on intel scc many-core system,” in 30th (IPCCC),
2011, nov. 2011, pp. 1 –2.

[13] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-
wards, C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and
A. Agarwal, “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, pp. 15–31, 2007.

