
Technical Debt and the Effect of Agile Software
Development Practices on It – An Industry

Practitioner Survey

Johannes Holvitie & Ville Leppänen
TUCS - Turku Centre for Computer Science

Software Development Laboratory &
Department of Information Technology

University of Turku
Turku, Finland

{jjholv, ville.leppanen}@utu.fi

Sami Hyrynsalmi
TUCS - Turku Centre for Computer Science

Software Development Laboratory &
Department of Management and Entrepreneurship

University of Turku
Turku, Finland
sthyry@utu.fi

Abstract—A major reason for the popularity of agile and
lean software methods is their capability to function in resource
scarce and requirement erratic environments. Both of these
characteristics cause accumulation of technical debt, something
that is the end result of either intentional or unintentional
decisions. The ability of these methods to function with techni-
cal debt indicates that they contain components with inherent
technical debt management capabilities. This study conducts
a survey on industry practitioners to discover what is their
level of technical debt knowledge, how does technical debt
manifest in their projects and which of the applied components
of agile software development—both processes and practices—
are sensitive to technical debt. This paper contributes to the
technical debt discussion by showing differences in assumed and
indicated technical debt knowledge. Furthermore, components
closest to implementation and its maintenance are perceived to
have the most positive effects on technical debt management.
Finally, the most encountered instances of technical debt are
caused by architectural inadequacies, they are internal legacy,
and increase in size as a result of continued implementation.

I. INTRODUCTION AND MOTIVATION

The modern software development environment expects
projects to cope with frequently changing requirements and op-
timally scarce resources while efficiently delivering complete
software products or services. Few decades ago it was seen
that traditional plan-driven methods of software development
(c.f. [1]) would not cope within these premises [2]. This fact
was emergent to a school of development methods which
divided the implementation effort into smaller, manageable
iterations that would pursue completion of partial software
components, i.e. increments. This group of methodologies is
generally referred to as the agile—and the lean—development
methods and their formal definition can be seen to come in
the form of a manifesto [3].

Agile development methods describe processes and intro-
duce practices that solve a number of software development
issues [4]. For example, agile methods tackle issues related
to resource allocation for constantly changing requirements.
While this matter has resulted in wide adoption for these
development methods, projects using them do not go without
their shortcomings. One reason for this is that they are still

applied by individuals which makes them sensitive to sub-
jective decisions. We as individuals make decisions based on
the information that is available to us. When this information
is not exhaustive, the end result can deviate from optimal.
Similarly, we may perceive that an optimal solution is not
required but rather that an adequate one should be fitted now
to save us some time and money. The results of the two afore-
described mechanisms represent the two types of technical debt
introduced by McConnell [5].

The concept of ‘technical debt’ [6] captures the devia-
tions that are present in a software product, how continued
development affects them, and what is their effect onto the
hosting development process. The involvement of individuals
into development ensures that there is technical debt in each
and every software development undertaking. The success
of agile software development methods, however, indicates
that the processes and practices they offer are capable of
managing the technical debt within. While there is a plethora
of work related to technical debt and its management (e.g.
[7]–[9]), to the best of authors’ knowledge, extant research
regarding professionals’ perceptions about the technical debt
capabilities of existing agile software practices and processes is
scarce. This paper addresses this gap by conducting an online
survey for the professional software developers in Finland and
received 54 applicable responses.

The results show that knowledge of the technical debt
concept varies widely among the respondents. When an expla-
nation of the concept is given, the respondents’ confidence in-
creases. The rise of respondents’ confidence seems to indicate
that the used technical debt type [5] and effect [10] definitions
seem to be intuitive and practical. Nevertheless, there is a
remarkable share of software development professionals who
were not familiar with the concept.

We also show which agile software practices are felt to
either reduce technical debt or enhance its management in
development projects and which practices are perceived to do
the opposite. Finally, the results reveal that almost nine out
of ten technical debt instances reside in the implementation,
they are caused by inadequacies in the architecture, and they
are organization’s internal legacy. This and capturing a low



number of out-of-scope reasons, seems to indicate that the used
technical debt cause listing, by Kruchten et al. [11], captures
the space rather well.

The rest of the paper is structured as follows. Earlier survey
studies regarding technical debt in software development are
discussed in Section II. Section III formalizes the research
questions for this study. Based on them, a survey is designed in
Section IV. There are three consecutive parts to the survey that
capture general information, used software development tech-
niques, and perceptions about technical debt and encountered
instances. Section V describes the survey implementation as
a web based questionnaire and the process of data collection.
Results are presented and analyzed in Section VI. Based on
this, limitations and discussion is carried in Section VII. And
finally, conclusions are drawn in Section VIII.

II. RELATED WORK

Even though the term ‘technical debt’ was coined over
twenty years ago by Ward Cunningham [6], research on the
matter has been scarce up until the last few years (e.g. [7]–
[9], [12]). This trend has also been emergent to a number of
industry studies explaining technical debt in applied software
development. Many of these studies, like the one in question,
are conducted as practitioner surveys.

Klinger et al. [13] interviewed four experienced software
architects regarding technical debt accumulation. They con-
cluded that many times the decisions to incur technical debt
come from non-technical stakeholders, stakeholders often have
competing interests for which the best fit is usually technically
non-optimal. Snipes et al. [14] conducted an interview on
members of software change control boards regarding defect
debt management. In this, they concluded that majority of the
defect debt cost came from investigating and validating it,
and that there are six major components that affect decisions
on incurring/paying defect debt. Both the cost and decision
component factors together influence how efficient the chosen
strategy is in managing defect debt. Spinola et al. [15] collected
a number of common phrases regarding technical debt into a
‘folklore list’ and surveyed practitioners to indicate with which
they agreed and how spread the consensus was regarding them.

We found two survey studies regarding software devel-
opment practices and singular instances of technical debt.
Codabux and Williams [16] conducted a study to identify
how technical debt should be characterized, what are its
consequences on to the development process, what are its
current management approaches and how should technical debt
be prioritized for management. Respective to this, they found
that developers considered their own taxonomy for technical
debt to often be the best fit, dedicated teams as well as
allocated maintenance tasks were considered for management,
the technical debt consequences varied according to inten-
tionality and stakeholder involvement, and finally customer
needs were predominant while debt severity followed this
for prioritization. This study was conducted within a large
software organization using semi-structured interviews and
questionnaires with open-ended questions. Finally, Lim et
al. [17] interviewed 37 practitioners regarding how technical
debt manifested, in which contexts, and what management
practices were applied for it. The study found that 75% of

participants were not familiar with technical debt, many said
that it was incurred due to informed decisions and often due
to competing concerns, the effects were mainly long-term and
affected internal quality, and management was seen difficult as
measuring non-uniform debt is a challenge.

In this study, we focus on distinguishing individual agile
software development practices and processes by using a more
close-ended approach than what the previously described sur-
veys did; however, we aim to retain comparability by adhering
to their structures where possible (e.g. capturing individuals’
development background and the used verbal scales).

III. RESEARCH QUESTIONS

As per Section I, the success of agile development methods
indicates that they are capable of managing or at least accom-
modating technical debt within the project. These development
methods are defined through the processes they describe and
the practices they use. In this study, a mapping of common
agile processes and practices sensitive to technical debt is built
by conducting a survey on industry practitioners. Two notable
factors affect the aggregation of the mapping: individual’s soft-
ware development background and technical debt knowledge.
From these subjective factors, we can only record the state of
the former but we can improve the latter during the survey.
That is, as part of the study we ensure that the respondents
are exposed to and understand the definition of technical debt.
We formalize studying these two factors and aggregation of
the mapping in the following three research question groups.

First, we want to establish what is the individuals’
software development background and how does this re-
flect in what he/she perceives his/hers assumed and ac-
tual technical debt knowledge to be. For this reason we
formulate research question group RQ1 as the following:

For an individual
RQ1.1 does work experience,
RQ1.2 do used agile development practices, or
RQ1.3 do associated project responsibilities

correlate with what the respondent perceives his/hers
assumed or actual technical debt knowledge to be?
RQ1.4 in which mediums has he/she seen or heard

the term technical debt be used?
RQ1.5 in which situations has he/she or his colleagues

applied the concept of technical debt?
RQ1.6 in which situations does he perceive the use of

the technical debt concept as helpful?

While capturing RQ1, we simultaneously ensure that the
respondents are introduced to definitions given for technical
debt and its effects (see Section IV-C). Relying onto ensured
technical debt knowledge, we proceed to map which agile
development practices does the respondent use and how does
he/she perceive them to affect the project’s technical debt.
These form our second group of research questions (RQ2):

Are there certain software development practices for which
RQ2.1 their effect on technical debt is seen to be

significantly positive, neutral or negative?
RQ2.2 it is seen that they (do not) cover the team’s or

the project’s development management needs?
RQ2.3 it is seen that they (are not) able to

cover the entire space of matters that
require management?



After RQ1 and RQ2, we have established the fun-
damentals of technical debt for the targeted individu-
als in addition to querying the role of technical debt
in their software development organization. Based on to
this, the respondents are asked if they can distinguish
singular instances of technical debt. Gathering informa-
tion on these different manifestations of technical debt
is formalized in our last research question group RQ3:

For a concrete instance of technical debt
RQ3.1 in which project component does it reside?
RQ3.2 what are the causes for its emergence?
RQ3.3 is it legacy?
RQ3.4 is its size dynamic?
RQ3.5 does its effects correlate with its size?

The following section describes the survey designed to cap-
ture the previously introduced three research question groups
as opinions of industry practitioners.

IV. STUDY DESIGN AND BACKGROUND

The study in question aims to establish which agile soft-
ware development processes and practices are sensitive to
technical debt through surveying industry practitioners. This
section describes the three consecutive parts of the survey
designed to implement the study. The three parts are derived
from the research questions introduced in Section III. Each of
the following subsections discusses objectives for a single part
and derives survey contents from supporting related work.

A. General Information

The first part of the study establishes the respondents’
software development background. The questions focus on
discovering basic details. The only purely personal information
queried is the individuals’ involvement in software develop-
ment and it is recorded as a selection from three options: under
three years, three to six years or over six years of experience.
This is the first component to discovering RQ1.1 and roughly
divides the respondents into novices, experienced ones and
veterans as per Salo and Abrahamsson used in [18].

Organizational details are queried at the project and at the
company level. For the company level, basic information re-
garding size and the number of concurrent projects is recorded.
Project level questions expand on the company ones and focus
on the respondent’s host project. If a person is working on
multiple projects, the survey limits questioning to the one
the respondent feels the most affiliated with. Project details
queried include scoping the software product deliverable, the
number of team members, and the development cycle times.
What is also recorded is what project responsibilities does the
respondent assume or to which ones is he appointed to in the
project. Used responsibility classification is adopted from [19]
and it is the first component to discovering RQ1.3.

B. Used Development Techniques

The second part of the study focuses on establishing which
agile software development processes and practices are applied
by the respondent’s team or project. Time and other limitations
forbid querying this with an exhaustive option list. As such, a
compilation of the most common agile practices and processes
was composed for this purpose. The list of practices (see

TABLE I. PRACTICES OF THE EXTREME PROGRAMMING METHOD

Planning Game Continuous Integration

Simple Design 40-Hour Week

Test-Driven Development On-Site Customer

Refactoring Coding Standards

Pair Programming Open Office Space

Collective Code Ownership

Table I) was formed based onto the guidelines of the Extreme
Programming (XP) method [20]. In XP, some practices are
introduced as strategies, for these the same translation to
practices was used as in [18]. Extreme Programming is a
widely adopted [21], practice-heavy, agile software develop-
ment method. A lot of XP practices are either adopted or their
use is encouraged by other agile methods [22].

Another widely adopted and popular agile method is the
Scrum [23]. Scrum is an example of a method which can
be used concurrently with XP because it focuses on defining
process components and leaves the practicalities open for
choice [22]. The list of queried agile processes is based on an
abstraction of the process components defined by the Scrum
development method (see Table II).

TABLE II. ABSTRACTED PROCESS COMPONENTS OF THE SCRUM
METHOD

Iteration Planning Meetings Iteration Reviews/Retrospectives

Iterations Daily Meetings

Iteration Backlog Product Backlog

In querying the respondents about their projects’ adoption
of the aforementioned agile processes and practices, we used
the five point verbal scale defined by Alreck and Settle [24]. In
addition, to establishing the adoption levels, the respondents
were asked to indicate if they considered the adopted group of
processes and practices to be generally sufficient in covering
their team’s or project’s development management needs and
were they actually able to cover the entire space of matters that
required management. The information recorded in this part of
the survey is used to discover answers for research questions
RQ1.2, RQ2.2, and RQ2.3.

C. Technical Debt

The final and largest part focuses on technical debt and
it is divided into two sub-parts. The first sub-part establishes
what is a respondent’s knowledge about technical debt and
ensures that it is in line with the definitions discussed in
academic research. The second part relies on the respondent’s
refined knowledge and asks him/her to identify technical debt
in his/her work and to classify the effects of adopted agile
software development processes and practices on it.

The first technical debt sub-part starts by querying the
respondent’s prior knowledge about technical debt. Recording
assumed knowledge is the second component for research
questions RQ1.1-1.3. In addition to recording the general level
of knowledge, the respondent is also asked to describe the
concept. Further questions are made after this in order to
establish where the respondent has seen or heard the term
being used and in which situations. These questions record
data for RQ1.4 and RQ1.5. After establishing the base level of



knowledge, we ask the respondent to look at two definitions
for technical debt. The first definition is by Steve McConnell
[5] and it describes the processes for accumulating technical
debt either intentionally or unintentionally:

The first kind of technical debt is the kind that
is incurred unintentionally. For example, a design
approach just turns out to be error-prone or a junior
programmer just writes bad code. This technical
debt is the non-strategic result of doing a poor job.
In some cases, this kind of debt can be incurred
unknowingly. . .

The second kind of technical debt is the kind that is
incurred intentionally. This commonly occurs when
an organization makes a conscious decision to op-
timize for the present rather than for the future. “If
we don’t get this release done on time, there won’t
be a next release”. . .

We chose not to provide our own definition here because
we considered the one above to be prompt, intuitive, and ex-
haustive. Another definition was, however, required to describe
the effects of technical debt. We used the one given by Brown
et al. [7]. In this, an abstract definition for the possible effects
is given by relating technical debt to financial debt:

The metaphor highlights that, like financial debt,
technical debt incurs interest payments in the form
of increased future costs owing to earlier quick
and dirty design and implementation choices. Like
financial debt, sometimes technical debt can be nec-
essary. One can continue paying interest, or pay
down the principal by re-architecting and refactoring
to reduce future interest payments.

After seeing both the definitions, the respondent is asked to
indicate how close his/hers definition was to them. Indicated
actual knowledge is the third component for research questions
RQ1.1-1.3. Finally, for RQ1.6, the respondent is asked to
indicate in which situations he/she would see the use of the
technical debt concept beneficial.

Having ensured that the respondent understands the con-
cept of technical debt, the second technical debt sub-part focus
on concrete matters. Here it is established if the respondent
perceives that there are components to his/her work that are
affected by technical debt. This question is followed by the
same agile practice (see Table I) and process (see Table II)
lists as before. This time, the respondent is asked to indicate
for each applied practice and process the overall effect it has
on technical debt. The effect for each is recorded as an option
chosen from the five point verbal scale: very positive, positive,
neutral, negative, or very negative effect. The abstract term
‘effect’ is described to the respondent: if a practice or a process
has a positive effect it “can for example enhance technical
debt management, lower its accumulation, or decrease its
effects”. A negated definition is given for the negative options.
Analyzing the captured process and practice data corresponds
to studying the main research question RQ2.1.

After indicating if there is technical debt in their work,
the respondents are asked if they can provide a more detailed
description for a single component affected by technical debt.

The detailed description captures in which high-level project
phase does the component reside: requirements elicitation
and analysis, design, implementation, or testing as described
in [19]. The causes or the reasons for the technical debt’s
existence are captured as choices from The Technical Debt
Landscape as presented by Kruchten et al. [11]. The com-
ponent’s origin is also of great interest and it is captured as
possible legacy from an internal or external team or project
(see Figure 8). Finally, the correspondent is asked to estimate
the dynamics of both the technical debt instance’s size as
well as its perceived effects. Together, the component specific
questions provide data for analyzing the third research question
group RQ3.1-3.5.

V. STUDY IMPLEMENTATION AND DATA COLLECTION

Three research groups where introduced in Section III to
study the general level of knowledge industry practitioners
have of the technical debt concept, which agile software
development practices and processes are sensitive to technical
debt and how do concrete instances of technical debt manifest.
A survey was designed in Section IV to facilitate answering
these research questions. This design was implemented as a
web-based questionnaire that was sent to a predefined group
of software development organizations.

The choice of a web-based questionnaire was made
in order to increase response rate and minimize data
handling errors [25]. The Google Forms platform (see
https://docs.google.com/forms/ ) was used for the survey’s con-
struction, distribution and data collection, while the Bitly
service (see https://bitly.com/ ) was used for link management
and tracking. The final questionnaire contained 37 questions.
From these, 34 were close-ended and 3 were open-ended
questions. An answer was required to all but one question
in the main part of the questionnaire. The optional technical
debt component definition part contained six questions that
required to be answered. All questions were organized and
trialed so as to ensure the respondents’ motivation [26]. Also,
the entire survey was designed to take around ten minutes
to answer, while opting to define a technical debt component
would increase this by a couple of minutes.

The finalized survey was sent to a predefined group of
software companies based in Finland. The set was built from
companies for which a clear software product development
role could be established: either the company belonged to a na-
tional level software development organization or its standard
industrial classification [27] indicated software development
activity. For the chosen group of organizations, if the prelimi-
nary investigation yielded direct contact details for all people
working with software development, these individuals were
approached directly. For organizations for which these details
were not revealed, we contacted management and asked them
to distribute the survey internally. Regardless of the approach,
all people were informed about the survey with a cover letter
that detailed the motives and goals of the study [26].

VI. RESULTS AND ANALYSIS

The study in question surveyed industry practitioners to
establish 1) what is the level of technical debt knowledge for
them, 2) which common agile software development practices



and processes are perceived to be sensitive to technical debt,
and 3) how does technical debt manifest in their work. Section
III formalized studying these matters as research question
groups, a survey was designed based on to these groups in Sec-
tion IV and applied in Section V. In total, 507 individuals were
approached in 153 companies and 80 responses were received.
From these, 54 had completed the survey questionnaire. In
this study, we focus on the answers from these 54 respondents
(N=54). While our survey set consisted from software com-
panies based in Finland, we recorded accesses to our survey
also from India, Sweden, Greece and one other unidentified
European country. The following subsections present results
and analysis for the research question groups in Section III.

A. Individual Perceptions about Technical Debt – RQ1

Research question group RQ1 focused on individual per-
ceptions about technical debt. Figure 1 captures respondents’
prior technical debt knowledge and their closeness to the
presented definitions. These distributions were classified ac-
cording to respondents’ work experience (RQ1.1), applied
software development techniques (RQ1.2) and assumed roles
(RQ1.3). There was no significant difference between the
distributions of these variables. As such, the most general one
is presented here. From Figure 1 it is visible that perceptions
about prior technical debt knowledge seem to be rather nor-
mally distributed with most respondents indicating it as being
either good or adequate. After having seen the definitions for
technical debt’s types and its effects, the distribution changed.
Now over 80% of the respondents indicated that their definition
was either close or very close to the shown ones. It is also
worthwhile to note that over 20% of the respondents indicated
poor or no technical debt knowledge and this shifts to an even
worse after having seen the definitions.

Very good/close Good/Close Adequate/Far Poor/Very far No knowledge
0%

20%

40%

60%
Prior technical debt knowl.

Closeness to given defin.

Fig. 1. Distributions for perceived prior technical debt knowledge and
closeness to given technical debt definitions

The respondents were asked where they had either seen or
heard the term technical debt used (Figure 2). As expected,
occupation related areas are dominant and, surprisingly, over
half of the respondents reported the term has been used in
work meetings. On the other hand, 15% of the respondents
reported never seeing nor hearing the term being used.

Finally, a mapping of common decision situations in devel-
opment is shown in Figure 3. From this, it is visible that more
than half of the respondents perceived the use of the technical
debt concept useful in all presented scenarios. Current practice

Other

Never seen the term used

Communication with friends or family

Web sites (social media, blogs)

Work (excl. meetings)

Work (meetings)

Field specific or scientific literature

News media

0% 20% 40% 60%

Fig. 2. Respondent technical debt usage in different mediums

however is different: from the same figure it is visible that
only 35% of the respondents and their colleagues had applied
the concept while a similar portion had never applied it.
Noteworthy is also that more than 15% of the respondents
perceived that use of the technical debt concept would not
bring any gains to development decision making.

B. Agile Software Development Practices – RQ2

The main research question group RQ2 focused on the
capabilities and effects of common agile software development
practices and processes. Figures 4 and 5 capture perceived
effects on technical debt for discussed practices (see Table I)
and processes (see Table II) respectively. What is visible from
Figure 4 is that practices immediate to the product implemen-
tation (Simple design, TDD, Coding standards, Refactoring,
Continuous integration, Collective code ownership and Pair
Programming) are indicated as having positive or very positive
effect on technical debt by over half of the respondents. Coding
standards is perceived to have the most positive effect from
all. Many practices are also perceived neutral to technical debt.
Especially, over half of the respondents indicate 40-hour week
and Open office space as neutral. Finally, the widest effect
distribution is recorded for On-site customer practice: 40%
perceive this as neutral while both positive and negative effect
have a 20% share.

No large differences are present in Figure 5 which captures
perceptions about effects on technical debt for used agile pro-

Unpredicted situation
Development infrastructure

Integrated resources
Development conduction

Not used (No gains)
Other

0%

20%

40%

60%
Respondent has applied

Colleague has applied

Respondent perceives useful

Fig. 3. Respondents’ application of and perceived usefulness of applying the
‘technical debt’ concept for different development scenarios



Very positive Positive Neutral Negative Very negative Not used
0%

20%

40%

60%
Simple design 40-hour w eek
Test-Driven Development Planning game
Coding standards Refactoring
Continuous integration Collective code ow nership
Open off ice space On-site customer
Pair-programming

Fig. 4. Perceived effect of agile software development practices on technical debt

cesses. Opinions are less distributed here than in the practice
chart (c.f. Figure 4). For all processes, circa two thirds from the
respondents perceive them as either positive or very positive.
Iteration reviews/retrospectives process is perceived to have
the most positive effect from all. Somewhat surprising is that
6% of the respondents indicated that Iterations have a negative
effect on technical debt.

Very positive Positive Neutral Negative Very negative Not used
0%

20%

40%

60%
Iteration planning meetings

Iterations

Iteration backlog

Iteration reviews/retrospectives

Daily meetings

Product backlog

Fig. 5. Perceived effect of agile software development processes on technical
debt

Related to the practices and processes, the respondents
were also queried if the combination of agile techniques they
used were adequate for the team’s or the project’s management
needs (see RQ2.2) and were the techniques able to cover all
aspects that require management (see RQ2.3). For singular
practices, processes and their adoption rates, not a single
combination could be identified for which the difference in
their management or cover characteristics was statistically
significant.

C. Manifestations of Technical Debt – RQ3

The last research question group RQ3 concentrated on
identifying instances of technical debt. While 93% of the
respondents indicated that there are components to their work
that are affected by technical debt, only 30% (Ncomp=16)
opted to describe an instance. While this number disallows
making of statistically significant decisions, some interesting
observations can still be made.

Figure 6 displays the distribution of technical debt in-
stances as a function of project components (see RQ3.1).

In general, a single technical debt component was indicated
to affect a bit over two project components (avg. 2.3). Un-
surprisingly, the most affected project component was the
Implementation itself. More surprising was that both Require-
ments/Analysis and Design were indicated as more affected
than the Testing component. The differences however are small
between these components.

Requirements/Analysis Design Implementation Testing Other
0%

20%

40%

60%

80%

100%
Project component

Fig. 6. Distribution of technical debt by project components

The causes were also recorded for each technical debt
instances (see RQ3.2) and they are presented in Figure 7. For
each instance a bit over four and a half causes were indicated
(avg. 4.6) which is quite high considering that the pre-specified
list consisted of a total of nine causes. Most frequently
indicated causes were Inadequate architecture and Inadequate
documentation. Indicated as a cause in 13 and 11 cases out of
16 respectively. Less frequent were New features are required
at 4 incidents and Defects or bugs at 5 incidents. All in all, it
seems that obfuscation of implementation structures is seen to
cause much more technical debt than incomplete functionality.

RQ3.3 was interested in the origins of technical debt prone
components and the distribution for this is captured in Figure
8. In three cases out of four, the technical debt is indicated to
be legacy. From this, 90% is indicated to be internal legacy.

For RQ3.4 the respondents were queried if they perceived
that continued development for the components affected the
size of the technical debt in them. The results are depicted in
Figure 9. Over half of the respondents indicated an increase
in size but no one indicated it to be a large one. A fourth



Other

New features are required

Defects or bugs

Violation of best practices or style guides

Complexity

Additional functionality is required

Tests are inadequate

Structure is inadequate

Documentation is inadequate

Architecture is inadequate

0 4 8 12 16

Technical Debt Cause

Fig. 7. Indicated causes for technical debt instances

indicated either a decrease or a large decrease in size while
one fifth indicated no change in size.

Finally, related to the previous paragraph, respondents were
asked if they saw a correlation between the size of the technical
debt component and the magnitude of effects it caused on
development (see RQ3.4). From Figure 10, we see that in
almost 90% of the cases the effects magnitude is seen to
correlate with size. From this, in a bit over 60% of the cases
the respondents were however unable to specify in any detail,
how the size correlated. For two cases, respondents indicated
that size and effects magnitude were not connected.

VII. DISCUSSION AND LIMITATIONS

The research questions and the implications of the study
are discussed in the following. Regarding research question
group RQ1, practitioners are quite familiar with the concept
of technical debt but they assume less of themselves. This
can be one reason for why technical debt is generally applied
in 20% less cases than it is seen useful for. While the general
outlook regarding the concept’s increased use is positive, there
is still a large portion of over 15% that have no knowledge of
the term and have never seen or heard it being used.

For the second research question group RQ2, we note that
agile software development practices which safe guard the state
of the implementation itself are considered as having the most
positive effect on technical debt and its management. Similarly
to other discussed surveys, the competing interests of various

Legacy from an earlier 
team/invididual working on the 
same project/product

Legacy from an unrelated 
project/product within the 
organization

Legacy from outside the 
organization (e.g. from an 
acquisition)

Is not legacy

Fig. 8. Origins of components carrying technical debt

Large increase Increase No change Decrease Large decrease
0%

20%

40%

60%
Effect on technical debt size

Fig. 9. Effect of continued development on size of technical debt instances

stakeholder groups are shown for the practices as well. The
on-site customer practice has the widest distribution. While
it is possible that this practice actually has a negative effect
on technical debt, we speculate that another option is that
application of this practice has resulted in developers feeling
intimidated by their less technically orientated customers. Less
can be said about the surveyed agile software development
processes. While for all processes a generally positive effect
is indicated, the iteration review/retrospective has the highest
score. From the perspective of competing stakeholder interests,
this is an interesting process: the customer is often on-site, but
the floor is generally received for developers, who use it to
communicate about technical matters. It seems that limited,
controlled customer involvement works best, while unlimited
does not—or its least effective.

Finally, the third and last research question group RQ3
focused on instances of technical debt. In almost nine cases
out of ten, the project component affected by technical debt
was the implementation itself. This provides further reason-
ing for why the practices focusing on implementation state
maintenance (see Figure 4) are perceived to have the most
positive effect on technical debt. Of interest is also the fact that
several respondents indicated that the root cause for the project
components’ technical debt was inadequate architecture. This
is partially explained by the fact that in over half of the
cases the implementation design is considered to be prone to
technical debt. However, further studies with a larger sample
are required to confirm this. Finally, we observed that in three

Size is directly proportional to 
effects magnitude

Size is inversely proportional to 
effects magnitude

Size is somehow proportional 
to effects magnitude

Size is not proportional to 
effects

Fig. 10. Proportionality of technical debt instance size to its effects magnitude



cases out of four the components were legacy, their size altered
as development was continued and the effects were propor-
tional to their size. All these matters speak for integrating new
and enhancing existing technical debt management approaches
in addition to emphasizing knowledge management for the
implementation.

Similarly as with other studies, also this research is limited
by certain issues. First, the data was gathered from software
development companies based in Finland and, thus, the results
might be biased by the county’s culture. Second, it is possible
that only those developers and companies, who were highly
interested about the technical debt concept and agile software
development, answered to the questionnaire. This might bias
the results towards a more positive view of technical debt
knowledge. However, over 20% of the respondents were not
familiar with the concept and thus we assume that this positive
bias is not significant. Third, the questionnaire was completely
anonymous and it is possible that a major part of the respon-
dents represent the same company. However, even in this case,
the results would represent the real figures as the majority of
development is done in larger companies.

Nevertheless, further work is needed to replicate the results
in other countries and development cultures. Based on to the
findings presented in this and upcoming studies, we intend to
conduct studies to investigate if similar results can be attained
through more quantitative measures of software development.

VIII. CONCLUSIONS

This paper studied the perceptions of Finnish professional
software engineers to the concept of technical debt. The results
show that there are variations to individuals’ technical debt
knowledge, but a majority perceives them to be close to
the definitions discussed by research. While the concept is
applied in practice, it is still under utilized in many possible
occasions. Regarding agile software development practices,
techniques that retain the implementation state are considered
to have the most positive effect on technical debt and its
maintenance. Structured and limited customer involvement
carries a similar effect, while perceptions regarding the on-
site customer practice were more dispersed. Additionally, we
noted that most instances of technical debt affect the project’s
implementation and they were caused by inadequacies in the
architecture and implementation structure. Finally, many of
the instances were organization’s internal legacy, their size
was effected by continued development and the effects caused
by these instances were often proportional to the size of the
instance. Further studies on alternate software development
cultures are expected to provide further reasoning for the
results presented herein.

REFERENCES

[1] W. W. Royce, “Managing the development of large software systems,”
in proceedings of IEEE WESCON, vol. 26, no. 8. Los Angeles, 1970.

[2] D. Leffingwell, Scaling software agility: best practices for large enter-
prises. Pearson Education, 2007.

[3] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” 2001.

[4] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[5] S. McConnell, “Technical debt,” 10x Software Development Blog,(Nov
2007). Construx Conversations. URL= http://blogs. construx.
com/blogs/stevemcc/archive/2007/11/01/technical-debt-2.aspx, 2007.

[6] W. Cunningham, “The WyCash portfolio management system,” in
Addendum to the proceedings on Object-oriented programming systems,
languages, and applications (OOPSLA), vol. 18, no. 22, 1992, pp. 29–
30.

[7] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya et al., “Managing technical debt
in software-reliant systems,” in Proceedings of the FSE/SDP workshop
on Future of software engineering research. ACM, 2010, pp. 47–52.

[8] I. Ozkaya, P. Kruchten, R. L. Nord, and N. Brown, “Managing technical
debt in software development: report on the 2nd international workshop
on managing technical debt, held at icse 2011,” SIGSOFT Softw. Eng.
Notes, vol. 36, no. 5, pp. 33–35, Sep. 2011.

[9] P. Kruchten, R. L. Nord, I. Ozkaya, and J. Visser, “Technical debt
in software development: from metaphor to theory report on the third
international workshop on managing technical debt,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 5, pp. 36–38, 2012.

[10] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull, and
A. Vetrò, “Using technical debt data in decision making: Potential
decision approaches,” in Managing Technical Debt (MTD), 2012 Third
International Workshop on. IEEE, 2012, pp. 45–48.

[11] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice.” IEEE Software, vol. 29, no. 6, 2012.

[12] ——, “4th international workshop on managing technical debt (mtd
2013),” in Software Engineering (ICSE), 2013 35th International Con-
ference on. IEEE, 2013, pp. 1535–1536.

[13] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise
perspective on technical debt,” in Proceedings of the 2nd Workshop
on Managing Technical Debt. ACM, 2011, pp. 35–38.

[14] W. Snipes, B. Robinson, Y. Guo, and C. Seaman, “Defining the decision
factors for managing defects: a technical debt perspective,” in Managing
Technical Debt (MTD), 2012 Third International Workshop on. IEEE,
2012, pp. 54–60.

[15] R. O. Spinola, A. Vetro, N. Zazworka, C. Seaman, and F. Shull, “Inves-
tigating technical debt folklore: Shedding some light on technical debt
opinion,” in Managing Technical Debt (MTD), 2013 4th International
Workshop on. IEEE, 2013, pp. 1–7.

[16] Z. Codabux and B. Williams, “Managing technical debt: An industrial
case study,” in Managing Technical Debt (MTD), 2013 4th International
Workshop on. IEEE, 2013, pp. 8–15.

[17] E. Lim, N. Taksande, and C. Seaman, “A balancing act: what software
practitioners have to say about technical debt,” Software, IEEE, vol. 29,
no. 6, pp. 22–27, 2012.

[18] O. Salo and P. Abrahamsson, “Agile methods in european embedded
software development organisations: a survey on the actual use and
usefulness of extreme programming and scrum,” Software, IET, vol. 2,
no. 1, pp. 58–64, 2008.

[19] B. Bruegge and A. A. Dutoit, Object-oriented software engineering;
conquering complex and changing systems. Prentice Hall PTR, 1999.

[20] K. Beck and C. Andres, Extreme programming explained: embrace
change. Addison-Wesley Professional, 2004.

[21] L. Vijayasarathy and D. Turk, “Agile software development: A survey
of early adopters,” Journal of Information Technology Management,
vol. 19, no. 2, pp. 1–8, 2008.

[22] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software
development methods: Review and analysis,” 2002.

[23] K. Schwaber and M. Beedle, Agile software development with Scrum.
Prentice Hall PTR Upper Saddle Riverˆ eNJ NJ, 2002, vol. 18.

[24] P. L. Alreck and R. B. Settle, The survey research handbook. Irwin
Homewood, IL, 1985, vol. 2.

[25] P. M. Nardi, “Doing survey research: A guide to quantitative methods,”
2006.

[26] A. Bryman and E. Bell, Business Research Methods 3e. Oxford
university press, 2011.

[27] Statistics Finland, “Standard industrial classification TOL 2008,” Based
on NACE 2008, the European Union Classification of Economic Activ-
ities, 2008.


