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Abstract— A means to construct dense, full-diversity STBCs in L must be invertible. This follows from the fact that the
from maximal orders in central simple algebras is introduced (difference of any two matrices frof is again inL.

for the first time. As an example we construct an efficient ST It is widely known how the so called\lamouti design
lattice code with non-vanishing determinant for four transmit

antenna MISO application. Also a general algorithm for testing represents mU|t'p|'Cat'.on.'n the ring of quatem'_ons' As the
the maximality of a given order is presented. By using a maximal quaternions form a division algebra, such matrices must be
order instead of just the ring of algebraic integers, the size of the invertible, i.e. the resulting STBC meets the rank criterion.
code increases without losses in the minimum determinant. The Matrix representations of other division algebras have been

usage of a proper ideal of a maximal order further improves ;
the code, as the minimum determinant increases. Simulations proposed as STBC codes at least in [1],[2],[3],[4], and (though

in a quasi-static Rayleigh fading channel show that our lattice without explicitly saying so) [5]. The_mOSt re(_:ent Work ([.3]’[‘_1]
outperforms the DAST-lattice due to the properties described and [5]) has concentrated on adding multiplexing gain (i.e.
above. MIMO applications) and/or combining it with a good min-
imum determinant. We do not seek any multiplexing gains,
but want to improve upon e.g. the DAST-lattices introduced
We are interested in the coherent multiple input-singl@ [2] by using not only non-commutative division algebras,
output (MISO) case where the receiver perfectly knows thgit the maximal orders within them. The usage of division
channel coefficients. The received signal is algebras has been of the utmost interest in the recent study, as
they naturally produce families of linear, full-rank codes. By
choosing the elements in the code matrices from a maximal
whereX is the transmitted codeword taken from the Spacerder instead of just picking them from the ring of algebraic
Time Block Code (STBCY, h is the Rayleigh fading channelintegers — albeit in some cases these may collapse — the size
response and the components of the noise vactare i.i.d. of the code can be increased without losses in the minimum
complex Gaussian random variables. determinant. By further requiring the elements to belong to
A lattice is a discrete finitely generated free Abelian sulta proper ideal of a maximal order the minimum determinant
groupL of a real or complex finite dimensional vector spacecreases and hence, after scaling, denser lattices are produced.
V, called the ambient space. In the space-time setting a natural
ambient space is the spagé,, (C) of complexn x n-matrices. Il. LATTICE CONSTRUCTION
The receiver, however, (recall that we work in the MISO The set{a; + a2i + asj + ask| a; € R Vi}, where
setting) sees vector lattices instead of matrix lattices. Whéh = j2 = k? = —1, ij = k, is recalled as the ring of
the channel state iR, the receiver expects to see the latticelamiltonian quaternions. We shall use extension rings of the
hL. Gaussian integer§ = {a + bila,b € Z} inside a given
From the pairwise error probability (PEP) point of view, idivision algebra as they nicely fit with the popular 16-QAM
is well-known that the performance of a space-time code ad QPSK alphabets. L&t = ¢™/* = (1 4 4)/v/2 be a
dependent on two parametediversity gainandcoding gain  primitive 8t" root of unity. Our main example is the division
Diversity gain is the minimum of the rank of the differencelgebraH = Q(¢) @ Q(£)j. As zj = jz* for all complex
matrix X — X’ taken over all distinct code matricds, X’ € C, numbersz, and as the fieldQ(¢) is stable under the usual
also called theank of the codeC. When( is full-rank, the complex conjugatior(*), the setH is a subskewfield of the
coding gain is proportional to the determinant of the matriguaternions.
(X—X')(X-X"), where!! denotes the Hermitian transpose. As always, multiplication from the left by a non-zero
The minimum of this determinant taken over all distinct codelement of the division algebrd is an invertibleQ(i)-linear
matrices is called theninimum determinandf the codeC. mapping withQ(:) acting from the right. Therefore its matrix
When a code is a subset of a lattikan the ambient space with respect to a chose@(i)-basisB of A is also invertible.
M, (C), the rank criterion states that any non-zero matrixThe division algebrad has the sef3y = {1,¢,4,7¢} as a

I. INTRODUCTION

Yixn = h1xkXkxn + Nixn,



naturalQ()-basis. Thus we immediately arrive (see also [1Bimple and all identical (this is useful in e.g. sphere decoding),
at the following matrix representation of the division algebrhut this shape is very wasteful in terms of transmission power.
H. Geometrically denser sublattices @®, e.g. the diamond
lattice Fs are well known (cf. e.g. [7]). However, we must
be careful when picking the copies of the sublattices, as it is
the minimum determinant we want to keep an eye on.

The units of the rindL, are exactly the non-zero matrices,

Proposition 2.1: Let the variables, ¢o, 3, ¢4 range over
all the elements ofQ(¢). The division algebraH can be
identified via an isomorphisng with the following ring of

matricesH =
) . . whose determinants have the minimal absolute value one. Thus
R I an intuitive way to find a sublattice with a better minimum
M = M(cy, ca,c5,¢4) = Zz ZZ ZZg 722 determinant is to take the latti¢éZ), whereZ C R is a proper
1 2

ideal. This idea has appeared in [1] and [4]. Even earlier, ideals
of rings of algebraic integers were used in [8] to produce dense
In particular the determinants of these matrices are non-zéagices.
whenever at least one of the coefficientscs, c3,cs is non- The diamond latticeFs can be described in terms of the
Zero. B Gaussian integers as follows (cf. [9]):

In order to get STBC-lattices and useful bounds for the 1 A
minimum determinant we need to identify suitable subrings Ly = m{(01702703,042 €gla+I=c+1,
R of the algebraH. We shall do this by placing certain

c4 c3 —ich i

restrictions for the elements, ¢, c3, c4. Later on, in section t=2,34, Z ¢t € 2G}.
lll, we shall show that one of these restrictions produces a =1
maximal order. By our identification of quadruplegc,, cs,c3,c4) € G* and

The G-module spanned by our earlier ba#ilg is a ring £ elements ofH it is readily verified thatA = (1 4 i)Eg has
of the required type. We call this ring the ring of Lipschitz’{2, (1 +4) + (1 +4)§, (1 + )+ (1 +i)j, 1+ &+ +5E} C L
integers ofH. The ring¢ (L) consists of those matrices 8f as ag-basis, whence the st +4, 1 +&,§+4,p+p¢} CH
that have all the coefficients,, c2, c5, ¢4 € G. However,£ is IS a G-basis for Es. By another simple computation we see
not maximal among the rings satisfying our requirements. THaat Es = H(1 +¢), i.e. Eg is the left ideal of the ringH
ring of Hurwitz’ integral quaternions also has an extension @enerated byl + ¢.
the prescribed type insidH. This ring, denoted by, is the Proposition 2.3: The lattice
right G-module generated by the ba#s.., = {p, p¢, j, j¢},
wherep = (1 + i+ j + k)/2. For future use we express the Lz = {M(c1,¢2,¢3,¢0) €L | ecv +T = + 7,
ring H in terms of the basi$y of Proposition 2.1. It is not 1
difficult to show that the quaternion= c; + &co + jez + ey t=2,3,4, Z ¢ € 26}
is an element ofH, if and only if the coefficientsc;,t = . _ =t o
1,2,3,4 satisfy the requirement§l + i)c; € G for all ¢ and 1S @n index 16 sublattice dk .. Furthermore, the minimum
¢1 + c3,00 + s € G. As the ideal generated by + i is of determinant ofLg, is 64.
index two inG, we see that’ is an additive subgroup of index ~ Proof: Let M; = M(1,1,0,0) be the matrix¢(1 +
four in H. We summarize these findings in Proposition 2.£) under the isomorphism of Proposition 2.1. We see that
The bound on the minimum determinant is a consequencedst(MMj) = 4. By the preceding discussion any matrix

the fact that all the elements 6f have norm at least 1. A of the lattice L, is of the form A = MM;(1 +
i), where M is a matrix from Ly. Thus, det AA* =

16 det(MM;) det(MM*) and the claim on the minimum

determinant follows from Proposition 2.2. We see that the co-

Ly = {M(c1,c2,¢3,c4)|c1,¢2,¢3,¢4 € G}, efficientc, can be chosen arbitrarily withi@. The coefficients
144 co and c3 then must belong to the coset + Z, andcy must

9 g, be chosen such that + ¢ + ¢35 + ¢4 € 2G = Z2. As T is of

c14c3€G,cotey €G) m index two ingG, we see that the index dig, in L. is 16 as

Remark 2.1:The latticeL is a more developed case fromda'med' u

the so-calledquasi-orthogonalSTBC suggested e.g. in [6]. I1l. CYCLIC ALGEBRAS AND ORDERS

The matrix ofL. can be found as an example also in [3], but e theory of cyclic algebras and their representations as
no optimization has been done there by using, for examp|Gairices are thoroughly considered in [3]. We are only going
maximal orders as we shall do here. to recapitulate the essential facts here.

A drawback of the latticdL. is that in the ambient space In the following, we consider number field extensidrigF,
of the transmitter it is isometric to the rectangular latté®e where F denotes the base fiel&f* (resp.E*) denotes the set
The rectangular shape does carry the advantage that the sétson-zero elements of' (resp. E). Let E/F be a cyclic
of information carrying coefficients of the basic matrices arfield extension of degree n with Galois groGful(E/F) =

Proposition 2.2: The following rings of matrices form
STBC-lattices of minimum determinant 1.

Ly = {M(c1,c2,c3,¢4)|c1,¢2,¢3,¢4 €



(o), whereo is the generator of the cyclic group. Let =

Let us illustrate the above definition by the following

(E/F,o,7) be the corresponding cyclic algebra of degree example.

that is

A=EduEouw’E® --ou"'E,
with u € A such thatru = uo(x) for all x € E andu™ =
~ € F*. An elementa = 2o +uz1 + - +u lz,_ 1 € A
has the following representation as a matdx=

ro  Yo(Tno1) Y02 (Tp—2) -+ o (z1)
T o(zo) 0 (Tn-1) o (@)
o o(z1) o?(xo o (x3)
Tpo1  0(Tp_2) 0'2(%‘”_3) T Un_l(xO)

Let us compute the third column as an example:

2 2 2

u? = au? = zou +uru 4+ u" e, _qu

= wo(zo)u+v?o(x)u+ - +y0(xn_1)u

= W’0*(xo) + uP0®(x1) + -+ + U0 (zn1),

and hence for the third column we get the vector

(702(3:71—2)’ 702($n—1)a 0'2(1‘0), R 0-2(-rn—3))T'

Definition 3.1: An algebra .4 is called simple if it has

Example 3.1:(a) Orders always exist: I/ is a full R-
lattice in A, i.e. FM = A, then theleft order of M defined
asO;(M) = {x € AlaM C M} is an R-order in A. The
right order is defined in an analogous way.

(b) If A= M, (F), the algebra of alh x n matrices over
F, thenA = M,,(R) is an R-order in A.

Hereafter, I’ will be an algebraic number field an a
Dedekind ring withF" as a field of fractions.

Proposition 3.2: Let A be a finite dimensional semisimple
algebra ovelr" andA be aZ-order in A. Let O stand for the
ring of algebraic integers af'. Thenl’ = O A is aOg-order
containingA. As a consequence, a maxinialorder in A is
a maximalOQOg-order as well. [ |

In Section IV some facts from the local theory of orders
are required. Let us first define the rig,.

Definition 3.4: For a rational prime let Z,, denote the ring

Zp:{g €Q|rseZ, gadlp,s) =1}

Z, is a discrete valuation ring with the unique maximal ideal

no nontrivial ideals. AnF-algebra.A is central if its centre PZp- If A is aZ-order we use the notatioh, = Z,A.

Z(A)={a € Alad' =d'aVd' € A} =F.

Definition 3.5: Let S denote an arbitrary ring with identity.

Definition 3.2: The determinant (resp. trace) of the matrix N Jacobson radicabf .5 is the setRad(S) =

A is called thereduced norm(resp.reduced tracg of an

elements € A and is denoted byr(a) (resp.tr(a)).

{z € S|lzM = (0) for all simple left S-modules\/}.
Definition 3.6: Let m = dimr.A. The discriminant of the

Remark 3.1:The connection with the usual norm mapr-order A is the ideald(A) in R generated by the set

Na/p(a) (resp. trace mag’y,r(a)) and the reduced norm
nr(a) (resp. reduced tracer(a)) of an elementa € A is
Nyyp(a) = (nr(a))™ (resp.Ta,p(a) = ntr(a)), wheren is

the degree ofE/F.

{det(tr(xixj))?j:l\(xl, oy Tim) € A}

It is clear that if A C T" thend(I")|d(A). Moreover, we have
an equality if and only ifd(I") = d(A).

In the preceding section we have attested that the algdbra proposition 3.3:Let A be anR-order and{as, ..., a } € A
is a division algebra. The next proposition provides us Withe an F-basis of.A. Then the principal ideal generated by

a sufficient condition when an algebra is indeed a divisiqle nonzero determinamt — det(tr(a;a;))i_, is contained
algebra. in the discriminant. Lef” be any order containing.. Then
Proposition 3.1: The algebrad = (E/F, 0,~) of degreen.  dl' C R{ai1,...,am} C A, U

is a division algebra if the smallest factoe Z of n such that

~t is the norm of some element iA* is n.

The following proposition gives us a useful tool to find the

B maximal orders within a given algebra.

We are now ready to present some of the basic definitionsproposition 3.4:Let A be anR-order in.A. For eachu € A
and results from the theory of maximal orders. The genefgk havenr(a) € R, tr(a) € R. m

theory of maximal orders can be found in [10].

Let R denote a Noetherian integral domain with a quotie%

field F', and letA be a finite dimensional’-algebra.

Proposition 3.5: LetT" be a subring of4 containingR such
at FT' = A, and suppose that eache T' is integral over
R. ThenT is an R-order in A. Conversely, evengR-order in

Definition 3.3: An R-orderin the F-algebraA is a subring .4 has these properties. [ |

A of A, having the same identity element.ds and such that
A is a finitely generated module ové& and generatesl as a

linear space oveF'.

As usual, aA-order in A is said to bemaximal if it is not
properly contained in any othet-order in A. If the integral
closureR of R in A happens to be aR-order in 4, thenR

is automatically the unique maximai-order in A.

Corollary 3.6: Every R-order in A is contained in a maxi-
mal R-order in A. There exists at least one maximiiorder
in A. ]

Proposition 3.7:Let A be a simple algebra ovdr and M
a finitely generated?r-module such that'M = A. Then
there exists an elemente Op \ {0} such thats -1 € M.
Moreover,O;(M) ={be s M| bM <M} <s M. =



Proposition 3.8: The prime ideals? of a maximal ordetA 0,1, 2, 3. BecauseZ[¢] C H, replacingg with any quaternion
and the prime ideal® of R are in one-to-one correspondencegf the formg—w, wherew € Z[¢] will not change the resulting
given byP = RNP, P D PA. order R. Thus we may assume that the coefficiemts,, ¢ =

(i) The ideals ofA are exactly the products of prime ideals0, 1, 2, 3 all belong to the sef0,1/2}. Similarly, if need be,

(i) For a prime idealP of R there exists a unique naturalreplacingq with ¢ — w’j for somew’ € Z[¢] allows us to
numbermp such thatPA = P™F. The numbersnp are assume that the coefficients, o, ¢ = 0, 1,2, 3 also all belong
divisors ofn and, except for finitely many prime ideal3 of to the sef{0, 1/2}. Further replacements gfby ¢—p or g—p¢

R, mp = 1. then permit us to restrict ourselves to the casg, = 0, for
(iii) d(A) is independent of the choice of the maximal ordeall ¢ = 0,1,2,3. If we are to get a proper extension f,
A. Moreover,mp > 1 implies thatP|d(A). B we are left with the caseg = (1 +14)/2, ¢ = £(1 +14)/2

Proposition 3.9: Let P be a prime ideal o andT" be an anda = (1 +&)(1 +4)/2. We immediately see that none of
R-order such thaf'p is not a maximalRk p-order. Then there these have reduced norms #1/2], so we have arrived at a

exists an ideaf > PT of T for which O;(Z) > T. m contradiction. u
Remark 3.2:The algebraH can also be viewed as a cyclic IV. GENERAL ALGORITHM FOR TESTING THE

division algebra. As it is a subring of the Hamiltonian quater- MAXIMALITY

nions, its center consists of the intersectdM R = Q(/2). The possibilities of the ad hoc methods in the proof of
Also Q(¢) is an example of a splitting field oH. In the Proposition 3.10 are somewhat limited. It is clearly desirable
notation above we have an obvious isomorphism to have algorithms for constructing and identifying maximal

orders.
H ~ (Q(f)/Q(\/ﬁ)’J’ -1, In the following we shortly describe how the maximality

whereo is the usual complex conjugation. of a given order can be proved in general. A more detailed

version of the algorithm can be found in [11]. An algorithm
for constructing a maximal order is presented in [12]. Some of
the methods therein are implemented in the Magma software
[13].

Proposition 3.10:The ring Suppose we are given a central simple algefiraver F
I L . and a finitely generate@g-orderA < A. Let k be a multiple
H={a=ctietjeatjtenen . e QM) of d(A) (c.f. Definition 3.6). The following algorithm depicts

(14 d)er € Z[i) Vi, c1 + c3,¢0 + ¢4 € Zi]} how the maximality ofA can be tested (in polynomial time
[11] if the discriminant is small).
As the input the algorithm requires two lists. The first list
consists of the prime ideal® of O which divide k. The
idealsP of A which containPA together constitute the second

o o list. Now A p is @ maximal(Op) p-order if P is not contained
Z[‘/i]’ as the elemeny/2 is in the center o (cf. Proposition in the first list (c.f. Propositions 3.3 and 3.8). We are left with

3.2). Therefore it suffices to show tiitis a maximalZ 2]- the task of verifying the local maximality at the prime ideals

order. In what follows, we will call rational numbers in the . . " . )
coset(1/2) + Z half-integers. Assume for contradiction tha{D of the first list. By Propositions 3.8 and 3.9 it then suffices

we could extend the ordét into a larger ordeR = H|[q| by 0 repeat the algorithm below at ea@ _ _
adjoining the quaternion = a; + asj, where the coefficients STEP 1 Is there exactly one prime ided of A in the

second list such thaPA < P?
ar = myo+me1€ +my € +my 3E°, my, € Q forall ¢, ¢ -

are elements of the fiel@(¢). As ¢ —¢3 = /2, andé = —¢3, NO™ QUIT, A is not maximal.
we see that STEP 2 Is there an integet, 1 < ¢ < n such thatPA =

Pt?

Next we prove that the lattick g, = H(1 + &) is optimal
within the cyclic division algebraH in the sense that it
corresponds to a proper ideal of a maximal ordeHin

is a maximalZ-order of the division algebral.

Proof: Clearly theQ-span ofH is the whole algebr#,
and we have seen th&f is a ring, so it is an order oH.
Furthermore, ifA is any order ofH, then so isA[v/2] = A -

tr(q) = a1 +a1 = 2m10 + V2(mi —mag). "NO": QUIT, A is not maximal.
By Proposition 3.4 this must be an elementZi/2], so we STEP 3 Does the equalitf.7| 7 D PA ideal of A} —
may conclude thatn; o must be an integer or a half-integer,{Pi‘ 0< i<t} hold? =
and thatm, ; — m; 3 must be an integer. Similarly - N;) QUIT. N I
"NO": , A is not maximal.
tr(g€) = —2mi3 + V2(mi o — mi2)

STEP 4 Is the left orderQ;(P?) = A for every ideal
must be an element dZ[/2]. We may thus conclude thatpi !(PY) y

© : L 0<i<t?
all the coefficientsm; ,, ¢ = 0,1,2,3 are integers or half- . . ] ]
integers, and that the pairs; o, m; o (resp.m 1, m; 3) must "YE§_ : QUIT, A is maximal atP.
be of the same type, i.e. either both are integers or both are NO™ QUIT, A is not maximal.

half-integers. A similar study afr(¢j) andtr(gj€) shows that  If, in the end,A turns out to be maximal at eadh on the
the same conclusions also hold for the coefficients,, ¢ = list, thenA is a maximalOg-order.



Let us now exemplify the above algorithm. factor p is used the minimum determinant is multiplied by
Example 4.1:In any cyclic algebra where the element p?. As all the lattices have rank 8, the fundamental volume

determining the 2-cocycle iff%(E/F) happens to be an is then multiplied byp8. Let us choose the units so that

algebraic integer, we have the following "natural” order ~ the fundamental volume ok is m(Lc) = 1. Then after
scalingm(Lg,) = 1/4. As the density of a lattice is inversely

A=00u0®-ou"'0, proportional to the fundamental volume, we thus expect the
where O is the ring of integers of the fiel& (= the unique codes constructed within the lattides, to outperform the
maximal order inE). In the so called Golden Division Algebracodes of the same size within,.

(GDA) [4], i.e. the cyclic algebrd £/ F, o, ) gotten from the ~ Simulations at the rate 2 bits/s/Hz show that the latfigg
dataF = Q(i,v5), F = Q(i), y =i, n = 2, 0(v/5) = —/5, Wins approximately byl dB over the latticel.;, and by2 dB

the natural orderA is already maximal. As &l[i]-order A over the DAST-lattice.

has discriminan®5 = 52. Hence the first list consists of the VI. CONCLUSIONS

Gaussian prime8+i:. We only consider the prim& = 2+,
the prime2 — i can be treated similarly. Let = (1 +1/5)/2.
The set{1,u, r,ur} is aZ[i]-basis forA. Let F, denote the
finite field of ¢ elements. Asu? = —2 in A/PA, u defines a
field K = Fy5 and hence, any nontrivial idedl of A/PA is
a vector space oveK and the intersectiod N K is trivial.
The idealR = K (7 + 2) is easily seen to be nilpotent an
asdimg,(A/PA) = 4, R is the only nontrivial and the only
maximal ideal inA/PA and thus

In this paper, we present new constructions of rate one,
full diversity, and energy efficientt x 4 space-time codes
arising from the theory of cyclic algebras and maximal orders.
By using a maximal order instead of the ring of algebraic
integers one can increase the size of the code without losses
din the minimum determinant. By choosing a proper ideal of
a maximal order, one can further improve the code as the
minimum determinant increases. Comparisons with the DAST-
code show that our codes provide lower energy and block error
R = Rad(A/PA) = F5(1 +2) ® Fsu(r + 2). rates due to their good minimum determinant and high density.

From these facts we can conclude that the second list is VIl. A CKNOWLEDGEMENTS
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