
Performance Monitor Based Power Management for
big.LITTLE Platforms

Simon Holmbacka, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

20530 Turku, Finland
firstname.lastname@abo.fi

ABSTRACT
Recently new heterogeneous computing architectures, cou-
pling low-power low-end cores with powerful, power-hungry
cores, appeared on the market. From a power manage-
ment point of view, and compared to traditional homoge-
neous multi-core architectures, such architectures provide
one more variable: the core type to map applications on.
At the same time conventional power managers drives the
DVFS mechanism based on the notion of workload. This
means that as long as the CPU is capable of executing work,
a workload increase will result in a frequency increase. In
practice this results in a Race-to-Idle execution which mostly
uses high clock frequencies. In this work we propose a per-
formance monitor based power manager for cluster switched
ARM big.LITTLE architectures. The proposed power man-
ager allocates resources based on application performance
rather than workload levels, which allows the hardware to
adapt closer to software requirements. The presented power
manager is capable of saving up to 57% of energy with the
addition of one line of c-code in legacy applications.

1. INTRODUCTION
The big.LITTLE architecture [1] using one cluster of high
performance cores and one cluster of energy efficient cores is
becoming popular in mobile devices such as mobile phones
and tablets. The big cores are designed for high performance
calculations using high clock frequencies, deep pipelines, large
caches and out-of-order execution. In case high performance
is not required, the system can shut down the big cores and
activate the energy efficient LITTLE cores. The LITTLE
cores in e.g. the Exynos 5410 SoC utilizes four A7 cores
with short pipelines, small caches and in-order execution,
which reduces the power dissipation significantly. The core
selection – in this SoC which we consider – is based on clus-
ter switching [12], which enables either the cluster of A7
or A15 cores, but not both types simultaneously. The core
types are automatically switched from LITTLE to big as
the clock frequency of the CPU is increased beyond a cer-
tain threshold.

While the hardware shows a great potential in energy sav-
ings, the software is usually unable to utilize such an ar-
chitecture efficiently. Optimally, the system should not allo-
cate more CPU resources than what the application requires.
This aim can be achieved with a power manager monitoring
the system and adjusting the clock frequency accordingly.
Currently, the power managers controlling CPU resources
use only workload as the metric for resource allocation [2].

Workload is defined in Linux as the ratio between CPU ex-
ecution and CPU idle states for a given time window. It
is, however, a poor metric for controlling CPU resources be-
cause it does not describe application performance. When
applying high workload on a CPU, power managers will in-
crease the clock frequency as long as the workload remains
high, and since applications execute as long as work is avail-
able for execution, the workload will remain high for the
whole execution. This leads to Race-to-Idle [11] conditions,
in which the CPU is executing the work as fast as possible
in order to reach the idle state. Consequently, by using high
clock frequencies, it leads to unnecessary execution on the
big cores after which the system idles until more work is
available.

In this work we investigate whether a power manager driven
by performance monitoring in the applications is able to
more efficiently manage big.LITTLE architectures. The CPU
allocation is directly based on application performance mon-
itored by a new kind of power manager. We use a big.LITTLE
power model created from real-world experiments to obtain
the most power efficient execution at run-time. The model
is able to predict the optimal clock frequency to satisfy the
performance requirements of the applications.

We evaluate the system with typical legacy applications, and
up to 57% of energy savings have been obtained with exe-
cutions on real hardware using an unmodified Linux OS.

2. RELATED WORK
Power optimization of DVFS in multi-core systems has been
extensively studied in the past [5, 10, 15]. A critical differ-
ence between traditional multi-cores and big.LITTLE multi-
cores is the significant power reduction potential of execut-
ing tasks on the LITTLE cores. A utilization-aware load
balancer for big.LITTLE system was presented in [9]. The
balancer implemented a processor utilization estimator for
determining the most optimal clock frequency for a given
set of tasks without loosing performance. We argue that a
utilization-based metric alone is not sufficient to efficiently
control big.LITTLE power management. Instead we focus
on performance monitoring in the applications in order to
allocate the resources directly based on software demands.

The work in [3] presents the partition of real-time tasks onto
heterogeneous cores such that energy is minimized by an op-
timal load distribution. The scheduling decisions were based
on an analytical power model and an energy model based on



the load distribution of tasks. Minimum energy consump-
tion was calculated by modeling tasks executing on cores
with given clock frequencies. Our work is focused on non
real-time or soft real-time tasks without a given deadlines
but with performance requirements in the applications. The
power model we rely on is, in contrast to [3], derived from
real-world experiments and not from analytical bottom-up
models.

C-3PO [13] is a power manager used to maximize perfor-
mance under power constraints and minimize peak power to
reduce energy consumption. Applications are given a power
budget, which is used for resource allocation in form of clock
frequency and the number of cores. Orthogonally, we aim to
minimize power under performance constraints. This means
that our notion of constraints relate to the execution of ap-
plications rather than the power dissipation of the hardware.
We further aim to implement this practice on big.LITTLE
CPUs on which power is significantly reduced as long as the
execution can take place on the LITTLE cores.

3. EXECUTION MODEL
The consequence of using workload-based power manage-
ment is in often an execution model called “Race-to-Idle”
[11]. Its behavior is to execute a job as fast as possible
in order for the CPU to minimize the execution time and
to maximize the idle time. The popularity of this execu-
tion model relates to simple programming; the programmer
specifies only the program functionality, and the OS scales
the clock frequency indirectly according to the workload.

Ondemand power management. Clock frequency in Linux
based systems is driven by a kernel module called frequency
governor. A frequency governor is monitoring the workload
of the system and adjusts the clock frequency according to
the policy for the governor in question. A number of dif-
ferent governors can be installed on a system, but usually
the default governor is called Ondemand [14]. The Onde-
mand governor monitors an upthreshold value after which
the workload is considered “too high”. As the threshold
value is reached, the governor switches the clock frequency
automatically to the highest value (as illustrated in Figure
1). After the maximum value is reached, the governor de-
creases the clock frequency step-wise in order to find the
most suitable frequency.

Figure 1: Illustration of the clock frequency scaling
strategy of the Ondemand governor

The strategy of the governor was designed to rapidly respond
to changes in workload without performance penalty, and to
save power by step-wise scaling down. However, this strat-
egy a) forces the CPU to always execute some part of the

workload on the maximum clock frequency if the thresh-
old is reached and b) for Race-to-Idle conditions, most of
the workload will execute on the maximum (or a high) fre-
quency since the workload will remain high as long as jobs
are available for execution. For big.LITTLE systems, this
strategy is contradictory to the intentions of the hardware
since much time is spent on executing on high frequencies
(with big cores) even if the system has significant idle time.

QoS driven power management. We argue that work-
load alone is not a sufficient metric to efficiently control
big.LITTLE systems, instead the system should measure ap-
plication performance for driving the power management.

As example illustrated in Figure 2, a video decoder decodes
a number of frames and puts them in a display buffer. When
the buffer is full, the decoder waits until the buffer is emp-
tied. Since the output is usually determined by a fixed fram-
erate, e.g. 25 frames per seconds (fps), the decoder is only
required to decode frames at the same rate as the output dis-
play is using. Part (A) illustrates the Race-to-Idle strategy
in which the CPU executes on maximum clock frequency for
half a time window, after which it idles on the lowest clock
frequency. The decoding process is hence producing 50 fps
while the required rate would be 25 fps. Even though the
power dissipation of the CPU is low on the idle part, the
decoding part uses only the big cores even if the LITTLE
cores would be sufficient when stretching the execution.

Figure 2: Illustration of (A) Race-to-Idle strategy
and (B) QoS-Aware strategy

To create a system controlled by software requirements, we
implemented a framework [6] to inject application specific
performance directly into a new type of power manager (fur-
ther explained in [7]). The power manager monitors the per-
formance of the applications to determine the magnitude of
the CPU resource allocation.

The power manager supports an execution strategy called
QoS-Aware. The strategy is illustrated in Figure 2 (B), in
which the execution time is stretched out over the whole time
window. By executing only at the required clock frequency,
the LITTLE cores are utilized as long as the performance
is sufficient. The power manager is re-evaluating the per-
formance measurements periodically, and the effort of the
programmer is to suitably assist the power manager with
the performance parameter. Practically, one line of c-code
must be added to the applications:
fmonitor(<performance>);. This function calls the power
management library and provides the run-time information,
for example the current decoding framerate (fps).



Figure 3: Creation of big.LITTLE power model. Separate reference measurements on the LITTLE and the
big cores are used to generate a mathematical model which overlaps in the [600 800] MHz range.

4. BIG.LITTLE POWER MODEL
The power manager uses a power model to determine the in-
crease in power by increasing/decreasing the clock frequency
one step. The performance values given by the fmonitor li-
brary call are compared against a power model in order for
the power manager to determine the power output caused
by the CPU allocation.

As an application demands more resources, the aim is to
chose a frequency which results in minimum power increase
and sufficient performance increase. In contrast to our previ-
ous work on homogeneous systems [7], we require a dynamic
model for describing the big.LITTLE architecture in which
two types of cores can be used. As the model is constructed
by mathematical expressions including architecture based
parameters, the power manager must be able to adjust the
dynamic parameters based on the core type currently in use.
Since we use a big.LITTLE system with cluster switching
[12], we consider only one type of core active at one time.

Similarly to [7], we stressed the physical system to max-
imum CPU load with the stress benchmark under Linux.
Under full load we increased the number of cores and the
clock frequency step-wise until all configurations were ob-
tained. The power was physically measured after each step
by reading internal power measurement registers in the chip.

By using the real-world measurements, we transformed the
results into two mathematical functions using plane fitting
methods [8] into a third degree polynomial1: P (q, c) = p00 +
p10q + p01c + p20q

2 + p11qc + p30q
3 + p21q

2c where P is the
power, q is the clock frequency and c is the number of cores.
With traditional non-linear optimization methods [4], we
can minimize the cost (power) by selecting the optimal clock

1Further details in [7]

frequency for a given application based on performance re-
quirements and the number of cores in use.

The studied architecture is a big.LITTLE configuration with
two different types of cores, and the types are selected based
on the clock frequency transition between 600 MHz and 800
MHz. We therefore created two separate power models for
each core type based on the stress measurements. Figure 3
(1) shows the LITTLE measurements from 250 MHz to 600
MHz and (2) the big measurements from 800 MHz to 1800
MHz.

Because the aim is to keep the system executing on the LIT-
TLE cores as much as possible, we overlapped the LITTLE
and the big power models by including the lowest frequency
of big cores in the LITTLE measurements (seen in Figure
3 (1)). This generates a steep cost increase when transi-
tioning from the LITTLE to the big model (Figure 3 (3)),
and pushes the optimizer to avoid the big cores if possible.
Similarly, the highest clock frequency setting (600 MHz) of
the LITTLE cores was included in the big-core measurement
profile (seen in Figure 3 (2)), which drives the optimizer to
descend to this setting if performance is sufficient. The re-
sult is a surface defined by the previously described third
degree polynomial with one step overlapping (seen in Figure
3 (3)). The selected model (and pxy parameters defined in
the polynomial) is chosen based on the current core type in
use, which can be monitored with Linux sysfs.

5. PRIORITY WEIGHT INTERFACE
As long as only one application has exclusive control over
the power manager, no control conflicts can occur. How-
ever, as soon as several applications compete over the same
resources, two applications could output conflicting execu-
tion conditions to the power manager. Conflicting infor-
mation can result in wrong control settings for both appli-



cations, instability in the resource allocation or diverging
control output favoring one of the applications.

In order to increase the predictability of the control output
which allocates CPU resources to the applications, the no-
tion of priority weights in the applications was included in
case several applications input conflicting information. The
basic notation behind CPU allocation is the measured per-
formance Pn of application n. Pn is compared to a user
defined setpoint Sn, which marks the desired performance
of application n. In case Pn < Sn, the application is given a
positive error value En by the power manager, which signals
for increased resource allocation. Similarly, in case Pn > Sn

the application is given a negative error value, which corre-
sponds to resource waste and resource deallocation.

The magnitude of the error values determines the amount of
resources to allocate/deallocate. With no notion of priority,
the difference between setpoint and measured performance
alone determines the error. By manipulating the magnitude
of the error values, it is hence possible to alter the priority
weight of an application error En, and increase the influence
of important applications.

Application priorities in the Linux kernel are set by manipu-
lating the run-time information of the tasks. The execution
time of a task is simply replaced by a virtual time, which is
manipulated according to priority weights. In other words,
a high priority task will receive a slowly incrementing vir-
tual time, which means that the scheduler will keep the task
under execution for a longer “real” time.

We applied the same concept by replacing the error values
with virtual errors vEn to increase the influence of impor-
tant tasks. The virtual errors of the applications were deter-
mined by sending all errors En and their respective priorities
Rn to an error transformation function. Listing 1 outlines
this procedure: (2) The system is monitoring all applica-
tions and calculate their respective error values based on
the performance, (3) error values are replaced with virtual
errors based on priorities, (4) the virtual errors are sent to
the power manager which allocates the resources. Listing
2 shows the algorithm: (1–4) All applications are iterated
over and a sum of all weights (priorities) for the current
applications is calculated, (5–6) for each application, the
virtual error is determined as the error multiplied with a
weight determined by the priority in relation to all other
applications (weightsum).

1 LoopForever{
2 <Apps><Errors><Priorities> = getMeasurements()
3 <vErrors> = veTrans(<Apps><Errors><Priorities>)
4 PowerManagement(<vErrors>)
5 }

Listing 1: Pseudo code for measurement procedure

The weight values were extracted from the Linux kernel
source and are shown in Table 1. There are currently forty
different priority levels defined by the weights where a higher
weight means higher priority.

1 for(j=0; j<num_apps; j++){
2 weightsum = 0.0;
3 for(i=0; i<num_apps; i++){
4 weightsum += weights[priorities[i]];
5 }
6 verrors[j] = 2∗errors[j]∗weights[priorities[j]]/

weightsum; }

Listing 2: c-code for generating virtual errors

Table 1: Weight values
15 18 23 29 36 45 56
70 87 110 137 172 215 272
335 423 526 655 820 1024 1277
1586 1991 2501 3121 3906 4904 6100
7620 9548 11916 14949 18705 23254 29154
36291 46273 56483 71755 88761

6. EXPERIMENTAL RESULTS
For evaluation we required a benchmark with variable load,
yet repeatable and multi threaded.

We chose video decoding using Mplayer2 as basis for the
evaluation. Further, we added a Facedetection application
sharing the resources with Mplayer to create a mixed-priority
scenario. Both applications were run with the Ondemand
governor and with our optimized power manager under Linux
3.7.0. Our test platform was the 28 nm octa-core Exynos
5410 SoC based on the big.LITTLE configuration with four
ARM Cortex-A15 cores and four ARM Cortex-A7 cores.

Mplayer. The first experiment was set up to use only the
Mplayer application. Mplayer was set to decode and play a
720p video for 5 minutes using the h.264 video codec. Since
the playback is executed with a steady framerate of 25 fps,
we added a QoS requirement of 30 fps on the decoder by
using our power management library. This means that the
decoding process is slightly faster than the playback in order
to keep up with occasional buffer underruns.

Figure 4 (A) shows the power dissipation for using Onde-
mand with a power sample rate of 250 ms. The dark gray
curve is the A15 power, the black curve is the A7 power
and the light gray curve is the memory power. With the
resource requirement for decoding the 720p video, the work-
load exceeds the threshold used by the governor. Because of
the Race-to-Idle strategy, the system is forced to stress the
CPU to decode the frames as fast as possible and the core
type in use is mostly the big A15 even though the perfor-
mance of using a lower clock frequency would be sufficient.

By regulating the system according to the application spe-
cific performance (fps) instead of the workload, the CPU
is allowed to stretch the decoding window while the out-
put framerate is still met. Instead of racing to idle, a clock
frequency below the core transition limit (800 MHz) is used
which allows the system to execute on the LITTLE A7 cores.
With this strategy there is almost no idle time in the sys-
tem, but the execution is performed more energy efficiently
and the performance requirements are met. Figure 4 (B)

2http://www.mplayerhq.hu/



Figure 4: Power dissipation for Mplayer using
(A) Ondemand (B) Optimizer

shows the optimized execution in which the A7 cores are
mostly used for processing the same video as in Figure 4 (A).
The Ondemand governor consumed in total 103.96 Joules of
energy while the optimized power manager consumed only
43.88 Joules, which is a reduction of 57% for executing the
same amount of work with 0% performance degradation.

Mplayer + Facedetection. In the second evaluation we
extended the use case to a mixed-priority scenario with sev-
eral applications. Similarly to the previous evaluation we ex-
ecuted a 720p video with a required decoding rate of 30 fps.
Furthermore, we added a Facedetection application used for
video surveillance. The Facedetection application reads the
input of a video stream, scans the current frame for the
occurrence of one or more faces and draws a rectangle of
the found face on the video stream. The QoS requirements
added to this application was to scan 10 video frames per
second for faces i.e. “10 Scans per Second (SPS)”.

Since this application was used for surveillance, its perfor-
mance was more critical than the video player. The priority
for Facedetection was therefore set to 30 while Mplayer used
a priority of 9. With a higher priority on Facedetection, it
was expected for framedrops to occasionally occur in the
video playback. We therefore executed Mplayer with pa-
rameters -framedrop and -benchmark in order to measure
the number of dropped frames as well as the power.

Figure 5 (A) shows the power dissipation for using Onde-
mand and Figure 5 (B) for using the optimizer. Similarly
to the Mplayer-only use case, the Race-to-Idle conditions
of Ondemand forces a mostly high clock frequency and the
workload is executed exclusively on the big A15 cores. The
optimizer (in part (B) of Figure 5) shows a rather spiky

Figure 5: Power dissipation for Mplayer and Facede-
tection using (A) Ondemand (B) Optimized

output since the added Facedetection application occasion-
ally requires more resources than what can be achieved on
the LITTLE A7 cores. The system rushes to meet the per-
formance requirements by temporarily using the A15 cores
after which is it able to scale down to the A7 cores.

The mixed-application scenario occasionally imposes con-
flicting control signals based on the performance require-
ments. For example, while Mplayer is decoding very light
frames and measures a “too high” framerate, Facedetection
is under utilized and requires more resources. In order to
verify the priority interface, we also plotted the scanrate for
Facedetection during the whole experiment. Figure 6 (A)
shows the scanrate for using Ondemand and (B) for using
the optimizer. With a setpoint of 10 SPS we marked our ac-
ceptable lower and upper QoS limits for the application at
9 SPS and 11 SPS respectively. Since Ondemand is able to
use the full power of the CPU all the time, it is expected to
reach a more stable scanrate than the optimizer which can
be seen in the figure. In case a better QoS is required using
the optimizer, the user can either increase the performance
setpoint to e.g. 12 SPS or increase the application priority
with the cost of increased power dissipation.

Table 2 finally summarizes the mixed-scenario experiments.
The optimized power manager was able to save roughly 40%
of energy while imposing only a 1% QoS degradation on
Mplayer and 6% QoS degradation on Facedetection com-
pared to Ondemand.

Table 2: Energy (in Joules) and QoS (in %)

Energy QoS Mplayer QoS Facedetection
Ondemand 334.3 100 (1 drop) 92 (52 late frames)
Optimized 201.5 99 (97 drops) 86 (108 late frames)



Figure 6: Scanrate and QoS for Facedetection using
(A) Ondemand (B) Optimized

7. CONCLUSION
Workload alone is not a sufficient metric for driving power
management in modern big.LITTLE systems. Since work-
load only expresses CPU utilization and not application per-
formance, the execution is forced to Race-to-Idle as long as
the workload remains high. By measuring the application
performance and regulating the CPU allocation based on
application requirements, the system is able to keep the ex-
ecution of jobs on the energy efficient LITTLE cores for a
longer time. We have presented a power manager utilizing a
dynamic big.LITTLE power model for maximizing the LIT-
TLE core usage. The usage is maximized by minimizing the
idle time; allowing the system to execute on the lowest pos-
sible clock frequency without performance penalties. With
an implemented library, applications can set performance
requirements and input run-time information to influence
the control decisions. Applications are further able to ex-
press their importance and the relation to CPU allocation
in resource sharing scenarios involving several applications.

With real-world measurements using Linux running on big.
LITTLE hardware we have obtained up to 57% of energy
reduction for decoding typical HD videos with no perfor-
mance degradation. Further on a mixed-priority scenario
using one critical and one best effort application, we obtain
energy savings up to 40% with minor QoS degradation com-
pared to the default power management system. We plan
to integrate the system into embedded devices such as mo-
bile phones to increase the battery time when using typical
every-day applications. We are also targeting global task
scheduling systems in which both the big and the LITTLE
cores are available at the same time.

8. REFERENCES
[1] ARM Corp. big.little processing witharm cortex-a15 &

cortex-a7. http://www.arm.com/files/downloads/
big_LITTLE_Final_Final.pdf, 2011.

[2] D. Brodowski. Cpu frequency and voltage scaling code
in the linux(tm) kernel. https://www.kernel.org/
doc/Documentation/cpu-freq/governors.txt, 2013.

[3] A. Colin, A. Kandhalu, and R. Rajkumar.
Energy-efficient allocation of real-time applications
onto heterogeneous processors. In RTCSA, 2014 IEEE
20th International Conference on, pages 1–10, Aug
2014.

[4] P. E. Gill, W. Murray, Michael, and M. A. Saunders.
Snopt: An sqp algorithm for large-scale constrained
optimization. SIAM Journal on Optimization,
12:979–1006, 1997.

[5] M. Haque, H. Aydin, and D. Zhu. Energy-aware task
replication to manage reliability for periodic real-time
applications on multicore platforms. In Green
Computing Conference (IGCC), 2013 International,
pages 1–11, 2013.

[6] S. Holmbacka, D. Ågren, S. Lafond, and J. Lilius. Qos
manager for energy efficient many-core operating
systems. In Parallel, Distributed and Network-Based
Processing (PDP), 2013 21st Euromicro International
Conference on, pages 318–322, 2013.

[7] S. Holmbacka, E. Nogues, M. Pelcat, S. Lafond, and
J. Lilius. Energy efficiency and performance
management of parallel dataflow applications. In
A. Pinzari and A. Morawiec, editors, The 2014
Conference on Design & Architectures for Signal &
Image Processing, pages 1 – 8, 2014.

[8] K. Iondry. Iterative Methods for Optimization. Society
for Industrial and Applied Mathematics, 1999.

[9] M. Kim, K. Kim, J. Geraci, and S. Hong.
Utilization-aware load balancing for the energy
efficient operation of the big.little processor. In
Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pages 1–4, March 2014.

[10] T. Rauber and G. Runger. Energy-aware execution of
fork-join-based task parallelism. In Modeling, Analysis
Simulation of Computer and Telecommunication
Systems (MASCOTS), 2012 IEEE 20th International
Symposium on, pages 231–240, 2012.

[11] B. Rountree, D. K. Lownenthal, B. R. de Supinski,
M. Schulz, V. W. Freeh, and T. Bletsch. Adagio:
Making dvs practical for complex hpc applications. In
Proceedings of the 23rd International Conference on
Supercomputing, ICS ’09, pages 460–469, New York,
NY, USA, 2009. ACM.

[12] Samsung Corp. Heterogeneous multi-processing
solution of exynos 5 octa with arm big.little
technology. https://events.linuxfoundation.org/
images/stories/slides/elc2013_poirier.pdf, 2013.

[13] H. Sasaki, S. Imamura, and K. Inoue. Coordinated
power-performance optimization in manycores. In
Parallel Architectures and Compilation Techniques
(PACT), 2013 22nd International Conference on,
pages 51–61, 2013.

[14] V. P. A. Starikovskiy. The ondemand governor. In
Proceedings of theLinux Symposium, 2006.

[15] I. Takouna, W. Dawoud, and C. Meinel. Accurate
mutlicore processor power models for power-aware
resource management. In Dependable, Autonomic and
Secure Computing (DASC), 2011 IEEE Ninth
International Conference on, pages 419–426, 2011.


