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Abstract— We show why the discriminant of a maximal order so called Alamouti designrepresents multiplication in the
within a cyclic division algebra must be minimized in order to  ring of quaternions. Matrix representations of other daris
get the densest possible matrix lattices with a prescribed an- algebras have been proposed as STBC codes at least in [1]-

vanishing minimal determinant. Using results from class fi&l . - .
theory we derive a lower bound to the minimum discriminant of [5], and (though without explicitly saying so) [6]. The most

a maximal order with a given center and index (= the number recent work ([2]-[6]) has concentrated on adding multipigx
of Tx/Rx antennas). We also give examples of division algebs gain (i.e. MIMO applications) and/or combining it with a
achieving our bound. E.g. we construct a matrix lattice with  good minimum determinant. Furthermore, algebras with an

QAM coefficients that has (inside ‘large’ subsets of the sigal i i enter vield lattices with a
space) 2.5 times as many codewords as the celebrated Golderllmagmary quadratic field as a c y

code of the same minimum determinant. We also give another QOOd minimum determinant, as the correspondl_ng rings of
matrix lattice with coefficients from the hexagonal lattice with ~ integers have no short non-zero elements. This so called
an even higher density. non-vanishing determinant property has been shown to be a
sufficient condition for the resulting lattices to yield opéal

|. INTRODUCTION diversity and multiplexing benefits [3]

We are interested in the coherent multiple input-multiple In this talk we seek to make two points. The first is that
output (MIMO) case where the receiver perfectly knows thie order to get the densest possible matrix lattices (with a
channel coefficients. For us lattice is a discrete finitely fixed minimum determinant) one should use maximal orders
generated free Abelian subgrolipof a real or complex finite rather than the so called natural orders (see the next adotio
dimensional vector spac¥, called the ambient space. In theprecise definitions). E.g the data rates of the 2 (resp. 4 or 8)
space-time setting a natural ambient space is the sp&geC)  antenna codes proposed in [5] can theoretically be incddage
of complexn x n matrices. We only consider full rank latticesl.5 (resp. 6.5 or 20.5) bits per channel use without any penal
that have a basis;, zs, ..., 22,2 consisting of matrices that to neither minimum determinant nor transmission power lay th
are linearly independent over the field of real numbers. Wgocess of finding a maximal order. The other point we seek
can form a2n? x 2n? matrix M having rows consisting to make is that one should be careful in choosing the cyclic
of the real and imaginary parts of all the basis elements.division algebra. By applying relatively deep results frolass
is well known that the measure, or hypervolume(L) of field theory we derive an upper bound for the density of the
the fundamental parallelotope of the lattice then equads tmatrix lattices gotten in this fashion. The bound is given in
absolute value oflet(M). Alternatively we may use the Gramterms of the center (i.e. the alphabet) and the index (i®. th
matrix G(L) = MMT = (tr(xixf>)1<ij<2n2’ where H  number of antennas). The proof shows that the bound is also
indicates the complex conjugate transpose of a matrix. Thehieved by some (in most cases unknown) division algebra, s
Gram matrix then has a positive determinant equahtd.)?. in this sense we completely solve the problem of determining

From the pairwise error probability (PEP) point of view, ithe highest possible density of a lattice with fixed paransete
is well-known that the performance of a space-time code A& an example we construct a code with density 2.5 times that
dependent on two parametediversity gainandcoding gain of the Golden code [4] but same index and alphabet.
Diversity gain is the minimum of the rank of the difference
matrix X — X’ taken over all distinct code matricag X’ ¢ ¢,  !I- CYCLIC ALGEBRAS, ORDERS BRAUER GROUPS AND
also called therank of the codeC. When C is full-rank, DISCRIMINANTS
the coding gain is proportional to the determinant of the We refer the interested reader to [7] and [2] for an expasitio
matrix (X — X')(X —X’)#. The minimum of this determinant of the theory of simple algebras, cyclic algebras, theirrinat
taken over all distinct code matrices is called ténimum representations and their use in ST-coding. We only reball t
determinantof the codeC. basic definitions here. In the following, we consider number

When a code is a subset of a lattite in the ambient field extensiondz/F', whereF' denotes the base field arid
space M, (C), the rank criterion states that any non-zero(resp.E*) denotes the set of the non-zero elements'¢fesp.
matrix in L must be invertible. It is widely known how the FE). In the interesting casek is an imaginary quadratic field,



eitherQ(i) or Q(v/—3). We assume that/ F is a cyclic field Proposition 2.1: The algebrad = (E/F, o,v) of degreen
extension of degree with Galois groupGal(E/F) = (o). is a division algebra if and only if the smallest factoe Z
Let A = (E/F,0,v) be the corresponding cyclic algebra obf n such thaty! is the norm of some element ifi* is n. B

degreen (n is also called thendexof A), that is Let F be an algebraic number field that is finite dimensional
A=E®uEDWE® - - ®u"LE, overQ. Denote its ring of integers b@r. If P is a prime ideal
of Op, we denote theP-adic completion ofF’ by Fp. The
as a (right) vector space ovéf. Hereu € A is an auxiliary division algebras oveFp are easy to describe. They are all
generating element subject to the relations= uo(x) forall  gotten as cyclic algebras of the fothin,r) = (E/Fp,o,7"),
r € E andu™ =y € F*. An elementa = zo + uz1 +---+  whereF is the unique unramified extensionBf of degreen,
u""'x,_1 € A has the following representation as a matrix is the Frobenius automorphism, ands the prime element

= of Fp. The quantityr/n is called theHasse invariantof

o (1) 02(wn_a) - 0" L(x1) this alggbra. It. fp!lows immedigtely from P.roposition 2ttat
NT1 o(z0) o2 (1) o™ (2s) A(n,r) is a division algebra, if and or_lly |(?«, n) = 1. For
yo yo(z1) o2(z0) 0" (z3) a description of the theory of Hasse invariants we refer the
reader to [8] or [10].
: : We next present some basic definitions and results from
Yp—1 Y0 (Tn—2) Y0 (¥n-z) - 0" (xo) the theory of maximal orders. The general theory of maximal

orders can be found in [8].

Definition 2.1: The determinant (resp. trace) of the matrix . L .
A above is called theeduced norm(resp.reduced track of Let R denote a Noetherian integral domain with a quotient
. field F', and let A be a finite dimensional’-algebra.

the element: € A and is denoted by.r(a) (resp.tr(a)).
A division algebra may be represented as a cyclic algebraDefinition 2.2: An R-orderin the F-algebraA is a subring

in many ways as demonstrated by the following example. A 0f A, having the same identity element.ds and such that
Example 2.1:The division algebra.A used in [4] to con- A is a finitely generated module ov& and generatesl as a

struct the Golden code is gotten as a cyclic algebra with  linear space ovef’. An orderA is calledmaximal if it isn't

Q(i), E = Q(i,V/5), v = i, when theF-automorphismy is Properly contained in anothet-order.

determined byr(v/5) = —/5. We also note that in addition Example 2.2:If R is the ring of integer®)r» of the number

to this representatiog.4 can be given another constructiorfield £, then the ring of integer®, of the extension field”

as a cyclic algebra. As now? = i we immediately see that IS the unique maximal order if.

F(u) is a subfield ofG.4 that is isomorphic to the eighth Example 2.3:In any cyclic algebra we can always choose

cyclotomic field B/ = Q(¢), where¢ = (1 +i)/v/2. The the elementy € F™* to be an algebraic integer. We immediately

relation uv/5 = —/5u read differently means that we carSe€ that thedr-module

view u as the complex numbef and /5 as the auxiliary A=OpduOp®- - du""'0g,

generator, call it/ = /5. We thus see that the cyclic algebra
whereOp is the ring of integers, is a@g-order in the cyclic

E' ou'E = (E'/F,0'.5) algebra(E/F, o, ~). We refer to thisOp-order as thenatural
order. It will serve as a starting point when searching for

is isomorphic to the Golden algebra. Heeé is the F- maximal orders.

automorphism of2’ determined by, — —¢ andy’ = u/? = 5. o . , o
Any CyCIiC algebra is a central SimplE-algebra, i.e. its Definition 2.3: Let m = dsz.A The discriminantof the

center is equal td and it has no nontrivial two-sided ideals [i-0rderA is the ideald(A/R) in R generated by the set

Two central simple F-algebras. A and B are said to be {det(tr(w;x;))"_q | (T1,.0y ) € A
similar, if there exist integersn an n such that the matrix In the interesti - @ — Ofi F=Q(W=3
algebrasM,,(A) and M,,(B) are isomorphicF-algebras. n the interesting cases df = Q(i) (resp.F" = Q(v—3))

Wedderburn’s structure theorem tells us that any centrgblsi the r.|ngR - Zm. (resp_.R = Zlw),w = (—1+ *.3)/2) IS a
uclidean domain, so in these cases (as well as in theltase

algebra is a matrix algebra over a central simple divisian, . S
9 g b it makes sense to speak of the discriminant as an element

algebra, and it easily follows that within any similarityask i ; .
there is a unique division algebra. Similarity classes itz OT “ _rat_her than asan |deal_. We S|_mpl_y p'Ck a ggneratpr of the
discriminant ideal, and call it the discriminant. It is dgsieen

simple algebras form a group (under tensor product r .
P J group ( P e that wheneve\ C T" are two R-orders, theni(T") is a factor

the so called Brauer groupr(F) of the field F. If F' is )

an extension field of” andg i(s 52 central simpleF-algebra of d(A). It turns out (cf. [8]) that all the maximal orders of a

then the tensor produ,czt’ — A®pF'is a central simpIeF’-, division algebra share the same discriminant that we widrre

algebra. We refer to this algebra as the algebra gotten momto as the discriminant of the division algebra. In this sease

by extending the scalars t6” maximal order has the smallest possible discriminant among

The next proposition due to A.A. Albert tells us when éi" orders .W.'t.hm a d'V'S'qn qlggbra.

cyclic algebra is a division algebra The definition of the discriminant closely resembles that of

' the Gram matrix of a lattice, so the following two results are



unsurprising and probably well-known. We include them for Theorem 3.1:Assume that the field is totally complex

lack of a suitable reference. and thatPy, . .., P, are some prime ideals 6. Assume fur-
Lemma 2.2:Let F = Q(i), R = Z[i], and assume thatther that a sequence of rational numbergmp,, ...,a,/mp,

an R-orderA C (E/F,o0,v) has anR-basiszy,x2,...,z,2. satisfies .

Then the IattlgeA 'has as'aZ-baS|s the set pf matrices Z @i —0 (mod 1),

T1,T2,...,Tp2,121,1%9,...,1x,2 and the determinant of the mp,

. .. i=1
corresponding Gram matrix is | < a; < mp, and (i, mp,) = 1.
det(G(A)) = |d(A/Z]i])[%. Then there exists a central divisidi-algebra.A that has
local indicesm p, and index L.C.M{mp, }.

In particular the measure of the fundamental parallelotopelf A is a maximalOr order in A, then the discriminant of

equals Ais N Lr)
TTL(A) = |d(A/Z[Z])| d(A/OF) _ HPi(mPi Vs
Example 2.4:When we scale the Golden code [4] to have iy
unit minimum determinant, all the 8 elements of #sbasis Proof: We have the following exact sequence of Brauer
will have length5'/* and the measure of the fundamentelroups
parallelotope is thus 25. In view of all of the above this is 0 — B(F) — @B(Fp) — Q/Z 1)

also a consequence of the fact that @g]-discriminant of -\ hich is well known from class field theory (cf e.g. [8] or the
the natura! order of the Golden algebra is equal to 25. As WRture notes [10]). Here the first map is gotten by mapping
observed in [1] the natural order happens to be maximal iR similarity class of a central divisiaRi-algebraD to a sum
this case, so the Gol_de_n code cannot be improved upon . the simple algebra®p gotten fromD by extending
enlarging the order withig/ A. _ the scalars fronF to Fp, whereP ranges over all the prime
Lemma 2.3:Letw = (-1+v=3)/2.F = Q(vV=3),R = igeals ofOy. This exact sequence tacitly contains the piece
Z[w], and assume that aR-order A C (E/F,0,7) has an o information that for all but finitely many prime#® the
R-basiszy, ..., ,2. Then the latticeA has as d-basis rggying algebraDp is actually in the trivial similarity class
the set of matricesty, za, ..., Tp2, WT1,WTa, ... ,wrn2 ANA o [, _algebras, in other wordBp is simply a matrix algebra
the determinant of the corresponding Gram matrix is over Fp.
It is known that every element of the Brauer groBpFp)
is presented by a central divisidr-algebraDp with Hasse
In particular the measure of the fundamental parallelotopvarianta/mp, wheremp = /[Dp : Fp, (a,mp) = 1,
equalsm(A) = (\/§/2>n2|d(A/Z[w])|' _andq < a < mp. A_Is_o_all such fractions appear as H_asse
So in both cases maximizing the density of the code, i.Evariants of some division algebras. The last mapping & th
minimizing the fundamental parallelotope is equivalent t§*act sequence (1) is then gotten by adding together theeHass
minimizing the discriminant. Thus in order to get the densel§variants of the division algebras over the various coriiptes

MIMO-codes we need to look for division algebras that havip- ]
a maximal order with as small a discriminant as possible. ~ BY €xactness of the sequence (1) we know that there exists

It is worth mentioning that in [9] the authors have made & central division algebrad over F' that has local indices

similar approach in the reduced case of commutative numtgp.:- From [8, Theorem 32.19] we know thaf'[A: F| =
fields. L.C.M{mp,}. By [8, Theorem 32.1] the discriminant then

equals

det(G(A)) = (3/4)"" |d(A/Z[w])]*

I1l. M AXIMAL ORDERS WITH MINIMAL DISCRIMINANTS

n V[A:F]

Again let F' be an algebraic number field that is finite d(A/R) = <H Pi(mpil)”’i> : (2
dimensional oveQ, Or its ring of integers,P a prime ideal i=1
of Or and Fp the completion. In what follows we discuss thevherexp, is an integer called the local capacity.
size of ideals 0f0. By this we mean that ideals are ordered A simple calculation of dimensions shows that
by the absolute values of their norms@) so e.g. in the case

. . VIA:F

Or = ZJ[i] we say that the prime ideal generated by i kp = L 3)
is smaller than the prime ideal generated s they have mp
norms 5 and 9 respectively. Substituting this into the equation 2 we get the claimed

Let us now suppose that we have a given number feld formula 1) A
and we would like to produce a division algebfaof a given d(A/OF) = sz_ e 4)
index n, having F' as its center, and the smallest possible i1
discriminant. In this section we are going to show that while m

we cannot give an explicit description of the algebtawe At this point it is clear that the discriminani(A) of a
can derive an eXpIICIt formula for its discriminant. division a|gebra 0n|y depends on its local indices.



Now we have an optimization problem to solve. Given the The Golden algebra reviewed in Example 2.1 has its non-
center F' and an integen we should decide how to choosetrivial Hasse invariants corresponding to the prirges: and
the local indices and the Hasse invariants so that the L.CM- 4, so it cannot be the algebra achieving the bound of
of the local indices is», the sum of the Hasse invariants isTheorem 3.2. A clue for finding the optimal division algebra
an integer and that the resulting discriminant is as small sshidden in the alternative description of the Golden atgeb

possible. given in Example 2.1. It turns out that in the caBe= Q(i),
Observe that the exponeditP) of the prime idealP in the E = Q(() instead of using/’ = 5 as in the case of the Golden
discriminant formula algebra we can use its prime factpr= 2 + 7.
[A: F] ) 1 Theorem 3.3:The maximal orders of the cyclic division
d(P) = (mp —1) el (1 - m_p) algebragA+ = (Q(¢)/Q(i),0,2 + i) achieve the bound

o ] ] of Theorem 3.2. Here is the automorphism determined by
As for the non-trivial Hasse invariants > mp > 2, we o(¢) = —C.
see thatn?/2 < d(P) < n(n — 1). Therefore the non-trivial Proof: Our algebrag A+ is generated as €(i)-algebra
exponents are roughly of the same size. E.g. whes 6, by the elementg andw subject to the relationg? = 4, u2 =
d(P) will be either 18, 24 or 30 according to whetherp is 97, ; andu¢ = —Cu. The natural ordeZ[¢] @ uZ[¢] is not
2, 3 or 6. Not surprisingly it turns out that the optimal cheicymaximal. Let us use the matrix representatioGgf+ as2 x 2
is to hav_e only two non-zero Hasse invariants and to asE0Cigdatrices with entries iQ(¢), so elements of)(i) are mapped
these with the two smallest prime ideals OF. to scalar matrices an¢lis mapped to a diagonal matrix with

~ Theorem 3.2:Assume thati” is a totally complex number giggonal elementg and —¢. We easily see that the matrix
field, and thatP, and P, are the two smallest prime ideals

in Or. Then the smallest possible discriminant of all central ~ ,, ( 2i - (1~ V2 2=+ Z:)\/é )
division algebras oveF of indexn is (1+3)1+V2+1i) 2i+(1—1i)V2

(P1P2)n(n—1). is an element off A+. Straightforward calculations show that

Proof: By Theorem 3.1 the division algebra with Hass&’' Satisfies the equations

invariantsl /n and(n — 1)/n at the primesP; and P, has the w?=—i4+iw and wl= -1+ ¢ - Cw.

prescribed discriminant, so we only need to show that this is ) o )

the smallest possible value. From these relations it is obvious that the fifd&]-module
By the above discussion it is clear that in order to minj¥ith basis elements andw is an orderA. Another straight-

mize the discriminant one cannot have more than three néﬂfwarg computation shows thai(A/Z[i]) = -8 + 6i =

trivial Hasse invariants. This is because for prime ideald +%)°(2 +)°. As this is the bound of Theorem 3.2 we

P,, Py, P3, P, (listed from the smallest to the largest) wen@y conclude thad is a maximal order. o

By Lemma 2.2 we see that the fundamental parallelotope of
S a(Pey (P (P the maximal order in Theorem 3.3 has measure 10. Thus this
P p(F2) pd(Fs) pi(Pa) o (py pyyn(n=1), code has 2.5 times the density of the Golden code. Because of
. . this and the close relation of the algel§fal+ to the Golden
) > 2
as the exponentd(F’;) > n/2 imespective of the values of algebra, we refer to our algebra as the “Golden+ algebra”. Fo

the H_ass_e invariants. The remaining pos_S|b|I|t¥ IS that SOMhe benefit of anyone interested in toying with this code we
combination of three Hasse invariants might yield a smallet

o oo . Ive the following description for it. LeB the diagonal x 2-
discriminant. However, in this case either we can replage t o . : :

. . . : . matrix with entries¢ ando(¢) = —¢. This code then consists
of the Hasse invariants with the fractional part of their SUM o matrices of the form
and thus reduce the discriminant,d$s)+d(P;) > n(n—1),
or all the three Hasse invariants have numeratofsin which c1ls + coB + c3w + ¢4 Bw,
cased(Py)+d(P;)+d(Ps) > 2n(n—1), and the claim follows
in this case, too.

always have

where the coefficients,, ..., c, are gaussian integers (i.e.

We remark that the division algebra achieving our boun%[i])' As in the case of the Golden algebra, an ideal of this

is by no means unique. E.g. any pair of Hasse invariar{&axltr'al ?r_dzr m?y _ha:{e at pitte_r stEape. V\fedf_:llso Ilztt_some
a/n, (n — a)/n, where0 < a < n, anda andn are coprime mostly untried optimization tricks in the concluding seati

leads to a division algebra with the same discriminant. We remark that the algebrgA+ of Theorem 3.3 has

Example 3.1:Let us consider proposition 3.2 in a situatior?ppeared earlier in [5]. However, the authors did not carsid

) . . ts maximal orders.
wheren = 2 andF = . The two smallest prime ideals are .
" Q) b Example 3.2:Let F = Q(v/—3), s0 Or = Z[w]. In this

1+4)OF and(2+14)Op, so the smallest possible discriminant : .
i(n thh?s CI;.SG is( +9)Or P case the two smallest prime ideals are generate@ laynd

. N 1 —w and they have norms 4 and 3 respectively. By Theorem
(A+0)2+9) Ok 3.2 the minimal discriminant i$(1 —w)?Z[w] in this case. As
Here the Hasse invariants that correspond to the primes the absolute value df—w is v/3 an application of the formula
and2 + i are {3,3}. We remark that2 + i here could be in Lemma 2.3 shows that the lattide of the code achieving
replaced with the other prim2— ¢ of norm five. this bound hasn(L) = 27/4. We can show that a maximal



order of the cyclic algebrdE/F,o : i — —i,v = /=3) In a non-hypercubical lattice the problem of finding a coset
where E = Q(i, v/—3) achieves this bound. of the code lattice that has a desired number of low energy
Again we remark that the algebra of Example 3.2 hamatrices is somewhat difficult. It may well happen that the
appeared implicitly in [6], but the authors only used theunat winning code depends on the chosen data rate - particularly
order rather than a maximal order. at a low or mid-range SNR. The very preliminary simulations
In general the problem of finding a maximal order within at low data rate (from 3.5 to 4.5 bpcu) that we have done so
division algebra is relatively difficult. An algorithm ddeped far seem to bear this out.
by Ivanyos and Rényai (cf. [11]) can be used in some On the other hand we have not yet exhausted the box of
cases, but at least its MAGMA implementation runs out aptimization tools on our code. E.g. our code can be pre-
memory very quickly as: increases. We have developed aand postmultiplied by any complex matrix of determinant one
enhancement to their algorithm that utilizes some elenmgntavithout affecting neither its density nor its good minimum
propertis of rings cyclotomic integers. This has the sevepeoduct distance. In particular, if we use non-unitary imatr
drawback that its utility is limited to certain rather spaci multipliers, the geometry of our lattice will change. While
cases, e.g. the family of algebras of ind¥xfrom [5]. we cannot turn the lattice into a rectangular one in this
We have carried out some very preliminary simulations witthanner, some improvements can easily be obtained. E.g. we
the code of Theorem 3.3. For the chosen low data rates @an distribute the transmission power more evenly between t
maximal order does offer energy vs. minimum determinaattennas and the time slices. Overall energy savings ave als
savings over the Golden code, but the block error rates areailable, but we have not solved the resulting optimizatio
more or less the same, and unless we choose the versioprablem yet. Hopefully a suitably reformed version of our
the code carefully the Golden code prevails by a fraction tfttice will also allow a relatively easy description of tloav
a dB. This is partly because we are using a less than optinealergy matrices. This in turn would make the use of the sphere
version of the code. Further optimization is necessary, bigcoding algorithm on our lattice simpler.
for higher data rates and signal-to-noise ratios we expect t
higher density vs. minimum determinant advantage to kick
in. Another possible explanation is that the singular value C. Hollanti is partially supported by the Nokia Foundation.
of the matrices in the rectangular Golden code behave beffer Ranto is supported by the Academy of Finland, grant
than those of our code. E.g. the basic matrices of the Gold&h08238.
code have singular valu@s518 and1.618 whereas some basic
matrices of our code have singular val@e$73 and2.112. As _ i ,
low singular values account for many error events, this théH ﬁ'a;ﬂzngrﬁgfsjih 'é"::t’r’;fns’imApI2‘%gggf;:s,?‘;giz;tcéggﬂ?;g’iomn
offsets the small energy savings provided by our code at low at IEEE ITW 2006, March 2006.
data rates and low SNR. [2] B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, "FuNeBsity,

. . . High-Rate Space-Time Block Codes From Division Algebra€€FE

_We have not yet had the time t_O _Carry out "fmy simulations Transactions on Information Theqgryol. 49, pp. 2596-2616, October
with the code of Example 3.2. Similar behavior at low data 2003.
rates and SNR is to be expected, as the lowest singular vdﬁ]e';- E”a,TK- R-C Klémaf,h P. X- rl]ﬁumafhs-D_A- Pawa,\;l T‘ldl H|(;g ,Lt%rFﬁgit

: Y pace-Time Codes that Achieve the Diversity-MultiplexiBgin Trade-
of a basic matrix ig).435. off, submitted tolEEE Transactions on Information Theqrg004.
[4] J.-C. Belfiore, G. Rekaya, and E. Viterbo: "The Golden €od 2x2
IV. CONCLUDING REMARKS AND SUGGESTIONS FOR Full-Rate Space-Time Code With Nonvanishing DetermirfantEEE

FURTHER WORK Transactions on Information Theqryol. 51, n. 4, pp. 1432-1436, Apr.
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