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Abstract— We show why the discriminant of a maximal order
within a cyclic division algebra must be minimized in order to
get the densest possible matrix lattices with a prescribed non-
vanishing minimal determinant. Using results from class field
theory we derive a lower bound to the minimum discriminant of
a maximal order with a given center and index (= the number
of Tx/Rx antennas). We also give examples of division algebras
achieving our bound. E.g. we construct a matrix lattice with
QAM coefficients that has (inside ‘large’ subsets of the signal
space) 2.5 times as many codewords as the celebrated Golden
code of the same minimum determinant. We also give another
matrix lattice with coefficients from the hexagonal lattice with
an even higher density.

I. I NTRODUCTION

We are interested in the coherent multiple input-multiple
output (MIMO) case where the receiver perfectly knows the
channel coefficients. For us alattice is a discrete finitely
generated free Abelian subgroupL of a real or complex finite
dimensional vector spaceV, called the ambient space. In the
space-time setting a natural ambient space is the spaceMn(C)
of complexn×n matrices. We only consider full rank lattices
that have a basisx1, x2, . . . , x2n2 consisting of matrices that
are linearly independent over the field of real numbers. We
can form a 2n2 × 2n2 matrix M having rows consisting
of the real and imaginary parts of all the basis elements. It
is well known that the measure, or hypervolume,m(L) of
the fundamental parallelotope of the lattice then equals the
absolute value ofdet(M). Alternatively we may use the Gram
matrix G(L) = MMT =

(

tr(xix
H
j )
)

1≤i,j≤2n2 , where H

indicates the complex conjugate transpose of a matrix. The
Gram matrix then has a positive determinant equal tom(L)2.

From the pairwise error probability (PEP) point of view, it
is well-known that the performance of a space-time code is
dependent on two parameters:diversity gainandcoding gain.
Diversity gain is the minimum of the rank of the difference
matrixX−X′ taken over all distinct code matricesX,X′ ∈ C,
also called therank of the codeC. When C is full-rank,
the coding gain is proportional to the determinant of the
matrix (X−X′)(X−X′)H . The minimum of this determinant
taken over all distinct code matrices is called theminimum
determinantof the codeC.

When a code is a subset of a latticeL in the ambient
spaceMn(C), the rank criterion states that any non-zero
matrix in L must be invertible. It is widely known how the

so called Alamouti designrepresents multiplication in the
ring of quaternions. Matrix representations of other division
algebras have been proposed as STBC codes at least in [1]–
[5], and (though without explicitly saying so) [6]. The most
recent work ([2]–[6]) has concentrated on adding multiplexing
gain (i.e. MIMO applications) and/or combining it with a
good minimum determinant. Furthermore, algebras with an
imaginary quadratic field as a center yield lattices with a
good minimum determinant, as the corresponding rings of
integers have no short non-zero elements. This so called
non-vanishing determinant property has been shown to be a
sufficient condition for the resulting lattices to yield optimal
diversity and multiplexing benefits [3]

In this talk we seek to make two points. The first is that
in order to get the densest possible matrix lattices (with a
fixed minimum determinant) one should use maximal orders
rather than the so called natural orders (see the next section for
precise definitions). E.g the data rates of the 2 (resp. 4 or 8)
antenna codes proposed in [5] can theoretically be increased by
1.5 (resp. 6.5 or 20.5) bits per channel use without any penalty
to neither minimum determinant nor transmission power by the
process of finding a maximal order. The other point we seek
to make is that one should be careful in choosing the cyclic
division algebra. By applying relatively deep results fromclass
field theory we derive an upper bound for the density of the
matrix lattices gotten in this fashion. The bound is given in
terms of the center (i.e. the alphabet) and the index (i.e. the
number of antennas). The proof shows that the bound is also
achieved by some (in most cases unknown) division algebra, so
in this sense we completely solve the problem of determining
the highest possible density of a lattice with fixed parameters.
As an example we construct a code with density 2.5 times that
of the Golden code [4] but same index and alphabet.

II. CYCLIC ALGEBRAS, ORDERS, BRAUER GROUPS, AND

DISCRIMINANTS

We refer the interested reader to [7] and [2] for an exposition
of the theory of simple algebras, cyclic algebras, their matrix
representations and their use in ST-coding. We only recall the
basic definitions here. In the following, we consider number
field extensionsE/F , whereF denotes the base field andF ∗

(resp.E∗) denotes the set of the non-zero elements ofF (resp.
E). In the interesting casesF is an imaginary quadratic field,



eitherQ(i) or Q(
√
−3). We assume thatE/F is a cyclic field

extension of degreen with Galois groupGal(E/F ) = 〈σ〉.
Let A = (E/F, σ, γ) be the corresponding cyclic algebra of
degreen (n is also called theindexof A), that is

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

as a (right) vector space overE. Hereu ∈ A is an auxiliary
generating element subject to the relationsxu = uσ(x) for all
x ∈ E andun = γ ∈ F ∗. An elementa = x0 + ux1 + · · · +
un−1xn−1 ∈ A has the following representation as a matrix
A =














x0 σ(xn−1) σ2(xn−2) · · · σn−1(x1)
γx1 σ(x0) σ2(xn−1) σn−1(x2)
γx2 γσ(x1) σ2(x0) σn−1(x3)

...
...

γxn−1 γσ(xn−2) γσ2(xn−3) · · · σn−1(x0)















.

Definition 2.1: The determinant (resp. trace) of the matrix
A above is called thereduced norm(resp.reduced trace) of
the elementa ∈ A and is denoted bynr(a) (resp.tr(a)).

A division algebra may be represented as a cyclic algebra
in many ways as demonstrated by the following example.

Example 2.1:The division algebraGA used in [4] to con-
struct the Golden code is gotten as a cyclic algebra withF =
Q(i), E = Q(i,

√
5), γ = i, when theF -automorphismσ is

determined byσ(
√

5) = −
√

5. We also note that in addition
to this representationGA can be given another construction
as a cyclic algebra. As nowu2 = i we immediately see that
F (u) is a subfield ofGA that is isomorphic to the eighth
cyclotomic field E′ = Q(ζ), where ζ = (1 + i)/

√
2. The

relation u
√

5 = −
√

5u read differently means that we can
view u as the complex numberζ and

√
5 as the auxiliary

generator, call itu′ =
√

5. We thus see that the cyclic algebra

E′ ⊕ u′E′ = (E′/F, σ′, γ′)

is isomorphic to the Golden algebra. Hereσ′ is the F -
automorphism ofE′ determined byζ 7→ −ζ andγ′ = u′2 = 5.

Any cyclic algebra is a central simpleF -algebra, i.e. its
center is equal toF and it has no nontrivial two-sided ideals.
Two central simpleF -algebrasA and B are said to be
similar, if there exist integersm an n such that the matrix
algebrasMn(A) and Mm(B) are isomorphicF -algebras.
Wedderburn’s structure theorem tells us that any central simple
algebra is a matrix algebra over a central simple division
algebra, and it easily follows that within any similarity class
there is a unique division algebra. Similarity classes of central
simple algebras form a group (under tensor product overF ),
the so called Brauer groupBr(F ) of the field F . If F ′ is
an extension field ofF , andA is a central simpleF -algebra,
then the tensor productA′ = A⊗F F ′ is a central simpleF ′-
algebra. We refer to this algebra as the algebra gotten fromA
by extending the scalars toF ′.

The next proposition due to A.A. Albert tells us when a
cyclic algebra is a division algebra.

Proposition 2.1:The algebraA = (E/F, σ, γ) of degreen
is a division algebra if and only if the smallest factort ∈ Z+

of n such thatγt is the norm of some element inE∗ is n.

Let F be an algebraic number field that is finite dimensional
overQ. Denote its ring of integers byOF . If P is a prime ideal
of OF , we denote theP -adic completion ofF by FP . The
division algebras overFP are easy to describe. They are all
gotten as cyclic algebras of the formA(n, r) = (E/FP , σ, πr),
whereE is the unique unramified extension ofFP of degreen,
σ is the Frobenius automorphism, andπ is the prime element
of FP . The quantityr/n is called theHasse invariantof
this algebra. It follows immediately from Proposition 2.1 that
A(n, r) is a division algebra, if and only if(r, n) = 1. For
a description of the theory of Hasse invariants we refer the
reader to [8] or [10].

We next present some basic definitions and results from
the theory of maximal orders. The general theory of maximal
orders can be found in [8].

Let R denote a Noetherian integral domain with a quotient
field F , and letA be a finite dimensionalF -algebra.

Definition 2.2: An R-order in theF -algebraA is a subring
Λ of A, having the same identity element asA, and such that
Λ is a finitely generated module overR and generatesA as a
linear space overF . An orderΛ is calledmaximal, if it isn’t
properly contained in anotherR-order.

Example 2.2:If R is the ring of integersOF of the number
field F , then the ring of integersOE of the extension fieldE
is the unique maximal order inE.

Example 2.3:In any cyclic algebra we can always choose
the elementγ ∈ F ∗ to be an algebraic integer. We immediately
see that theOF -module

Λ = OE ⊕ uOE ⊕ · · · ⊕ un−1OE ,

whereOE is the ring of integers, is anOF -order in the cyclic
algebra(E/F, σ, γ). We refer to thisOF -order as thenatural
order. It will serve as a starting point when searching for
maximal orders.

Definition 2.3: Let m = dimFA. The discriminantof the
R-orderΛ is the ideald(Λ/R) in R generated by the set

{det(tr(xixj))
m
i,j=1 | (x1, ..., xm) ∈ Λm}.

In the interesting cases ofF = Q(i) (resp.F = Q(
√
−3))

the ringR = Z[i] (resp.R = Z[ω], ω = (−1 +
√
−3)/2) is a

Euclidean domain, so in these cases (as well as in the caseR =
Z) it makes sense to speak of the discriminant as an element
of R rather than as an ideal. We simply pick a generator of the
discriminant ideal, and call it the discriminant. It is easily seen
that wheneverΛ ⊆ Γ are twoR-orders, thend(Γ) is a factor
of d(Λ). It turns out (cf. [8]) that all the maximal orders of a
division algebra share the same discriminant that we will refer
to as the discriminant of the division algebra. In this sensea
maximal order has the smallest possible discriminant among
all orders within a division algebra.

The definition of the discriminant closely resembles that of
the Gram matrix of a lattice, so the following two results are



unsurprising and probably well-known. We include them for
lack of a suitable reference.

Lemma 2.2:Let F = Q(i), R = Z[i], and assume that
an R-orderΛ ⊂ (E/F, σ, γ) has anR-basisx1, x2, . . . , xn2 .
Then the latticeΛ has as aZ-basis the set of matrices
x1, x2, . . . , xn2 , ix1, ix2, . . . , ixn2 and the determinant of the
corresponding Gram matrix is

det(G(Λ)) = |d(Λ/Z[i])|2.

In particular the measure of the fundamental parallelotope
equals

m(Λ) = |d(Λ/Z[i])|.
Example 2.4:When we scale the Golden code [4] to have

unit minimum determinant, all the 8 elements of itsZ-basis
will have length51/4 and the measure of the fundamental
parallelotope is thus 25. In view of all of the above this is
also a consequence of the fact that theZ[i]-discriminant of
the natural order of the Golden algebra is equal to 25. As was
observed in [1] the natural order happens to be maximal in
this case, so the Golden code cannot be improved upon by
enlarging the order withinGA.

Lemma 2.3:Let ω = (−1 +
√
−3)/2, F = Q(

√
−3), R =

Z[ω], and assume that anR-order Λ ⊂ (E/F, σ, γ) has an
R-basisx1, x2, . . . , xn2 . Then the latticeΛ has as aZ-basis
the set of matricesx1, x2, . . . , xn2 , ωx1, ωx2, . . . , ωxn2 and
the determinant of the corresponding Gram matrix is

det(G(Λ)) = (3/4)n2|d(Λ/Z[ω])|2.

In particular the measure of the fundamental parallelotope
equalsm(Λ) = (

√
3/2)n2 |d(Λ/Z[ω])|.

So in both cases maximizing the density of the code, i.e.
minimizing the fundamental parallelotope is equivalent to
minimizing the discriminant. Thus in order to get the densest
MIMO-codes we need to look for division algebras that have
a maximal order with as small a discriminant as possible.

It is worth mentioning that in [9] the authors have made a
similar approach in the reduced case of commutative number
fields.

III. M AXIMAL ORDERS WITH MINIMAL DISCRIMINANTS

Again let F be an algebraic number field that is finite
dimensional overQ, OF its ring of integers,P a prime ideal
of OF andFP the completion. In what follows we discuss the
size of ideals ofOF . By this we mean that ideals are ordered
by the absolute values of their norms toQ, so e.g. in the case
OF = Z[i] we say that the prime ideal generated by2 + i
is smaller than the prime ideal generated by3 as they have
norms 5 and 9 respectively.

Let us now suppose that we have a given number fieldF
and we would like to produce a division algebraA of a given
index n, having F as its center, and the smallest possible
discriminant. In this section we are going to show that while
we cannot give an explicit description of the algebraA, we
can derive an explicit formula for its discriminant.

Theorem 3.1:Assume that the fieldF is totally complex
and thatP1, . . . , Pn are some prime ideals ofOF . Assume fur-
ther that a sequence of rational numbersa1/mP1 , . . . , an/mPn

satisfies
n
∑

i=1

ai

mPi

≡ 0 (mod 1),

1 ≤ ai ≤ mPi
and (ai, mPi

) = 1.
Then there exists a central divisionF -algebraA that has

local indicesmPi
and index L.C.M{mPi

}.
If Λ is a maximalOF order inA, then the discriminant of

Λ is

d(Λ/OF ) =

n
∏

i=1

P
(mPi

−1)
[A:F ]
mPi

i .

Proof: We have the following exact sequence of Brauer
groups

0 −→ B(F ) −→ ⊕B(FP ) −→ Q/Z (1)

which is well known from class field theory (cf e.g. [8] or the
lecture notes [10]). Here the first map is gotten by mapping
the similarity class of a central divisionF -algebraD to a sum
of all the simple algebrasDP gotten fromD by extending
the scalars fromF to FP , whereP ranges over all the prime
ideals ofOF . This exact sequence tacitly contains the piece
of information that for all but finitely many primesP the
resulting algebraDP is actually in the trivial similarity class
of FP -algebras, in other wordsDP is simply a matrix algebra
over FP .

It is known that every element of the Brauer groupB(FP )
is presented by a central divisionFP -algebraDP with Hasse
invariant a/mP , wheremP =

√

[DP : FP ], (a, mP ) = 1,
and 0 ≤ a ≤ mP . Also all such fractions appear as Hasse
invariants of some division algebras. The last mapping in the
exact sequence (1) is then gotten by adding together the Hasse
invariants of the division algebras over the various completions
FP .

By exactness of the sequence (1) we know that there exists
a central division algebraA over F that has local indices
mPi

. From [8, Theorem 32.19] we know that
√

[A : F ] =
L.C.M{mPi

}. By [8, Theorem 32.1] the discriminant then
equals

d(Λ/R) =

(

n
∏

i=1

Pi
(mPi

−1)κPi

)

√
[A:F ]

, (2)

whereκPi
is an integer called the local capacity.

A simple calculation of dimensions shows that

κP =

√

[A : F ]

mP
. (3)

Substituting this into the equation 2 we get the claimed
formula

d(Λ/OF ) =

n
∏

i=1

P
(mPi

−1)
[A:F ]
mPi

i . (4)

At this point it is clear that the discriminantd(Λ) of a
division algebra only depends on its local indices.



Now we have an optimization problem to solve. Given the
centerF and an integern we should decide how to choose
the local indices and the Hasse invariants so that the L.C.M
of the local indices isn, the sum of the Hasse invariants is
an integer and that the resulting discriminant is as small as
possible.

Observe that the exponentd(P ) of the prime idealP in the
discriminant formula

d(P ) = (mP − 1)
[A : F ]

mP
= n2

(

1 − 1

mP

)

.

As for the non-trivial Hasse invariantsn ≥ mP ≥ 2, we
see thatn2/2 ≤ d(P ) ≤ n(n − 1). Therefore the non-trivial
exponents are roughly of the same size. E.g. whenn = 6,
d(P ) will be either 18, 24 or 30 according to whethermP is
2, 3 or 6. Not surprisingly it turns out that the optimal choice
is to have only two non-zero Hasse invariants and to associate
these with the two smallest prime ideals ofOF .

Theorem 3.2:Assume thatF is a totally complex number
field, and thatP1 and P2 are the two smallest prime ideals
in OF . Then the smallest possible discriminant of all central
division algebras overF of index n is

(P1P2)
n(n−1).

Proof: By Theorem 3.1 the division algebra with Hasse
invariants1/n and(n−1)/n at the primesP1 andP2 has the
prescribed discriminant, so we only need to show that this is
the smallest possible value.

By the above discussion it is clear that in order to mini-
mize the discriminant one cannot have more than three non-
trivial Hasse invariants. This is because for prime ideals
P1, P2, P3, P4 (listed from the smallest to the largest) we
always have

P
d(P1)
1 P

d(P2)
2 P

d(P3)
3 P

d(P4)
4 > (P1P2)

n(n−1),

as the exponentsd(Pi) ≥ n2/2 irrespective of the values of
the Hasse invariants. The remaining possibility is that some
combination of three Hasse invariants might yield a smaller
discriminant. However, in this case either we can replace two
of the Hasse invariants with the fractional part of their sum,
and thus reduce the discriminant, asd(P3)+d(P2) > n(n−1),
or all the three Hasse invariants have numerators≥ 6 in which
cased(P1)+d(P2)+d(P3) > 2n(n−1), and the claim follows
in this case, too.

We remark that the division algebra achieving our bound
is by no means unique. E.g. any pair of Hasse invariants
a/n, (n − a)/n, where0 < a < n, anda andn are coprime
leads to a division algebra with the same discriminant.

Example 3.1:Let us consider proposition 3.2 in a situation
wheren = 2 andF = Q(i). The two smallest prime ideals are
(1+i)OF and(2+i)OF , so the smallest possible discriminant
in this case is

((1 + i)(2 + i))2OF .

Here the Hasse invariants that correspond to the primes1 + i
and 2 + i are { 1

2 , 1
2}. We remark that2 + i here could be

replaced with the other prime2 − i of norm five.

The Golden algebra reviewed in Example 2.1 has its non-
trivial Hasse invariants corresponding to the primes2 + i and
2 − i, so it cannot be the algebra achieving the bound of
Theorem 3.2. A clue for finding the optimal division algebra
is hidden in the alternative description of the Golden algebra
given in Example 2.1. It turns out that in the caseF = Q(i),
E = Q(ζ) instead of usingγ′ = 5 as in the case of the Golden
algebra we can use its prime factorγ = 2 + i.

Theorem 3.3:The maximal orders of the cyclic division
algebraGA+ = (Q(ζ)/Q(i), σ, 2 + i) achieve the bound
of Theorem 3.2. Hereσ is the automorphism determined by
σ(ζ) = −ζ.

Proof: Our algebraGA+ is generated as aQ(i)-algebra
by the elementsζ andu subject to the relationsζ2 = i, u2 =
2 + i, anduζ = −ζu. The natural orderZ[ζ] ⊕ uZ[ζ] is not
maximal. Let us use the matrix representation ofGA+ as2×2
matrices with entries inQ(ζ), so elements ofQ(i) are mapped
to scalar matrices andζ is mapped to a diagonal matrix with
diagonal elementsζ and−ζ. We easily see that the matrix

w =

(

2i − (1 − i)
√

2 2i − (1 + i)
√

2

(1 + 3i)(1 +
√

2 + i) 2i + (1 − i)
√

2

)

is an element ofGA+. Straightforward calculations show that
w satisfies the equations

w2 = −i + iw and wζ = −1 + ζ3 − ζw.

From these relations it is obvious that the freeZ[ζ]-module
with basis elements1 andw is an orderΛ. Another straight-
forward computation shows thatd(Λ/Z[i]) = −8 + 6i =
(1 + i)2(2 + i)2. As this is the bound of Theorem 3.2 we
may conclude thatΛ is a maximal order.

By Lemma 2.2 we see that the fundamental parallelotope of
the maximal order in Theorem 3.3 has measure 10. Thus this
code has 2.5 times the density of the Golden code. Because of
this and the close relation of the algebraGA+ to the Golden
algebra, we refer to our algebra as the “Golden+ algebra”. For
the benefit of anyone interested in toying with this code we
give the following description for it. LetB the diagonal2×2-
matrix with entriesζ andσ(ζ) = −ζ. This code then consists
of the matrices of the form

c1I2 + c2B + c3w + c4Bw,

where the coefficientsc1, . . . , c4 are gaussian integers (i.e.∈
Z[i]). As in the case of the Golden algebra, an ideal of this
maximal order may have a better shape. We also list some
mostly untried optimization tricks in the concluding section.

We remark that the algebraGA+ of Theorem 3.3 has
appeared earlier in [5]. However, the authors did not consider
its maximal orders.

Example 3.2:Let F = Q(
√
−3), so OF = Z[ω]. In this

case the two smallest prime ideals are generated by2 and
1−ω and they have norms 4 and 3 respectively. By Theorem
3.2 the minimal discriminant is4(1−ω)2Z[ω] in this case. As
the absolute value of1−ω is

√
3 an application of the formula

in Lemma 2.3 shows that the latticeL of the code achieving
this bound hasm(L) = 27/4. We can show that a maximal



order of the cyclic algebra(E/F, σ : i 7→ −i, γ =
√
−3)

whereE = Q(i,
√
−3) achieves this bound.

Again we remark that the algebra of Example 3.2 has
appeared implicitly in [6], but the authors only used the natural
order rather than a maximal order.

In general the problem of finding a maximal order within a
division algebra is relatively difficult. An algorithm developed
by Ivanyos and Rónyai (cf. [11]) can be used in some
cases, but at least its MAGMA implementation runs out of
memory very quickly asn increases. We have developed an
enhancement to their algorithm that utilizes some elementary
propertis of rings cyclotomic integers. This has the severe
drawback that its utility is limited to certain rather special
cases, e.g. the family of algebras of index2ℓ from [5].

We have carried out some very preliminary simulations with
the code of Theorem 3.3. For the chosen low data rates our
maximal order does offer energy vs. minimum determinant
savings over the Golden code, but the block error rates are
more or less the same, and unless we choose the version of
the code carefully the Golden code prevails by a fraction of
a dB. This is partly because we are using a less than optimal
version of the code. Further optimization is necessary, but
for higher data rates and signal-to-noise ratios we expect the
higher density vs. minimum determinant advantage to kick
in. Another possible explanation is that the singular values
of the matrices in the rectangular Golden code behave better
than those of our code. E.g. the basic matrices of the Golden
code have singular values0.618 and1.618 whereas some basic
matrices of our code have singular values0.473 and2.112. As
low singular values account for many error events, this then
offsets the small energy savings provided by our code at low
data rates and low SNR.

We have not yet had the time to carry out any simulations
with the code of Example 3.2. Similar behavior at low data
rates and SNR is to be expected, as the lowest singular value
of a basic matrix is0.435.

IV. CONCLUDING REMARKS AND SUGGESTIONS FOR

FURTHER WORK

In the small example case above it was relatively easy to find
a candidate for a cyclic division algebra that might have the
optimal discriminant. The choices of the extension field and
the elementγ were readily suggested by the list of ramified
primes. The algorithm from [11] was then used to verify that
a maximal order achieving the bound exists and could also
be constructed. In the near future we hope to make this step
constructive in the sense that (at least in the practical cases
of a low number of antennas) we would have a recipe for
constructing division algebras attaining the lower bound rather
than the ad hoc methods used here. It is also clearly desirable
to get a better description of the maximal orders (bearing in
mind that unlike in the commutative case the maximal orders
within a non-commutative division algebra are not necessarily
unique).

Also at this point the 2.5 to 1 density advantage our
construction enjoys over the Golden code is mostly theoretical.

In a non-hypercubical lattice the problem of finding a coset
of the code lattice that has a desired number of low energy
matrices is somewhat difficult. It may well happen that the
winning code depends on the chosen data rate - particularly
at a low or mid-range SNR. The very preliminary simulations
at low data rate (from 3.5 to 4.5 bpcu) that we have done so
far seem to bear this out.

On the other hand we have not yet exhausted the box of
optimization tools on our code. E.g. our code can be pre-
and postmultiplied by any complex matrix of determinant one
without affecting neither its density nor its good minimum
product distance. In particular, if we use non-unitary matrix
multipliers, the geometry of our lattice will change. While
we cannot turn the lattice into a rectangular one in this
manner, some improvements can easily be obtained. E.g. we
can distribute the transmission power more evenly between the
antennas and the time slices. Overall energy savings are also
available, but we have not solved the resulting optimization
problem yet. Hopefully a suitably reformed version of our
lattice will also allow a relatively easy description of thelow
energy matrices. This in turn would make the use of the sphere
decoding algorithm on our lattice simpler.
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