
DebtFlag: Technical Debt Management with a
Development Environment Integrated Tool

Johannes Holvitie, Ville Leppänen
TUCS - Turku Centre for Computer Science

&
Department of Information Technology

University of Turku
Turku, Finland

{jjholv,ville.leppanen}@utu.fi

Abstract—In this paper, we introduce the DebtFlag tool for
capturing, tracking and resolving technical debt in software
projects. DebtFlag integrates into the development environment
and provides developers with lightweight documentation tools to
capture technical debt and link them to corresponding parts in
the implementation. During continued development these links
are used to create propagation paths for the documented debt.
This allows for an up-to-date and accurate presentation of
technical debt to be upheld, which enables developer conducted
implementation-level micromanagement as well as higher level
technical debt management.

Index Terms—Technical debt, technical debt management,
source code assessment, source code analysis, DebtFlag.

I. INTRODUCTION

Ward Cunningham was the first to coin the term technical
debt [1]. In his technical report deviation from the design
incurs the principal of technical debt. Refactorization pays it
back. Development on top of the principal counts as technical
debt’s interest and hindered development constitutes as paying
interest. Like with its financial counterpart: technical debt is
acceptable as long as its payback is managed.

Technical debt management is a rather new research area,
interested in introducing control over technical debt by pro-
viding projects with means to identify, assess and payback
technical debt. Seaman et al. [2] raise the availability and
clarity of technical debt information as one of the key factors
to successful technical debt management.

Highly complex, self-emergent and frequently changing
software products are a challenging ground for technical debt
information production. Automatic approaches are capable
of accommodating the change rates that major development
projects introduce, but their reliance onto statically prede-
finable models make them incapable of modeling the entire
requirement space [3], [4]. Manual approaches capture the
entire space [5], [6] but due to their nature they consume a
large amount of development resources which disallows their
frequent use.

The mechanism we introduce has been designed to exploit
the benefits of both aforementioned assessment approaches.
DebtFlag links structured observations about technical debt
to related parts in the software implementation. The structure

does not limit the declaration but it retains an equivalency
between the entries that makes automatic updates possible.

When used in software projects, DebtFlag captures techni-
cal debt through lightweight documentation tools that integrate
into the development environment. It tracks the propagation
of technical debt by building dependency trees for associated
software implementation parts. DebtFlag allows to resolve
technical debt by supporting its management on two different
levels. Developer conducted micromanagement through main-
taining an implementation level representation of technical
debt and project level management by making DebtFlag cater
for the information needs of higher level approaches.

II. DebtFlag MECHANISM

The DebtFlag mechanism has been designed to be compat-
ible with different software implementation techniques. This
section provides a description for it, explaining the docu-
mentation structure for technical debt, the requirements and
functionality for automation and describes how these pursue
two different technical debt management approaches.

A. Structure of Documented Technical Debt

The structure for documenting technical debt with the
DebtFlag mechanism is based onto the documentation struc-
ture introduced as part of the Technical Debt Management
Framework (TDMF) [7], [8] by Seaman et al.. This structure
is extended in the DebtFlag mechanism in order to decompose
entries into reusable components as well as to properly present
technical debt at the implementation level.

The Technical Debt Management Framework is a three
parted approach on managing technical debt in software
projects. It relies onto a Technical Debt List (TDL) constructed
in the first, technical debt identification, part. The list is
populated with Technical Debt Items (TDI), which correspond
to single atomic occurrences of technical debt in the project.

A Technical Debt Item documents and upholds a set of in-
formation [7]. A description explains the debt’s type, location
and reasoning for its acquirance. An estimate for the debt’s
principal indicates how much resources are required to pay it
back – to make this partition fully adhere to the design. While,

978-1-4673-6443-0/13 c© 2013 IEEE MTD 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

20



an interest estimates the probability and amount of extra work
this principal can cause to future development.

Technical Debt List
> Technical Debt Item #1

> DebtFlag #1
- Time and Date
- Author
- Location
- Description
- Type Declaration

> Technical Debt Type #1
- Name
- Description
- Context
- Propagation rules

> Technical Debt Type 2
...

> DebtFlag #2
...

...
> Technical Debt Item #2

...
...

Fig. 1. The DebtFlag mechanism’s documentation structure for technical debt

This structure is extended with an additional level. In the
DebtFlag mechanism a TDI can consist out of a single or
multiple DebtFlag elements. A DebtFlag element is a link
between a technical debt observation and an implementation
part defined by the technique. For example a package, a class
or a method in object-oriented technologies.

By allowing TDIs to be constructed with DebtFlag elements
we want to preserve a degree of freedom: the description of
a TDI’s location is not limited to a single area predefined
by the implementation technique, but rather it can encompass
an unlimited amount and combination of them. This makes
it possible for a single TDI to have unrestricted propagation
capabilities. At the same time, the possibility to use DebtFlag
elements as equals to TDIs is kept.

The attributes of a DebtFlag element are inherited from
a TDI and consist out of a time and a date, an author, a
type, a location and a description. The time and date indicate
when the observation was made. The author corresponds to
the responsible developer. The location to an element in the
implementation, as described by the previous paragraph. The
type attribute has been extended and made component based.

The DebtFlag element type consists out of a set of technical
debt types. These types can be either predefined or created
during use. A technical debt type documents a name, a
description, a context and a propagation rule set for it. The type
name and the description are self-explanatory. The context
attribute binds this type to a certain implementation context -
for example a programming language. The propagation rule set
is used for declaring the propagation capabilities for this type

of technical debt, its principal and the effect the propagation
has onto the accumulation of interest.

B. Automation of Technical Debt Propagation

Dynamic functionality of the DebtFlag mechanism relies
onto being able to automate two processes. The process of
identifying source points for the propagation of technical debt
and the process of propagating the technical debt according to
rule sets and dependencies in the implementation.

Capturing technical debt with the DebtFlag mechanism cor-
responds to creating TDIs by forming collections of DebtFlag
elements. As stated, a DebtFlag element represents a link
between a technical debt observation and a corresponding
implementation part. Depending onto the used implementa-
tion technique, an implementation part can contain several
points capable of forming dependencies. Dependencies carry
technical debt and increase its interest [9]. Projection of
technical debt onto the implementation is thus dependent onto
being able to identify those source components responsible
for propagating technical debt. This functionality is dependent
onto information about the used implementation technique.

After acquiring the source implementation components for
technical debt, the DebtFlag mechanism completes the pro-
jection by propagating technical debt through dependencies
while following a possible rule set. The process takes a source
component and goes through the DebtFlag elements associ-
ated with it. For each DebtFlag element the technical debt
type declared for it determines the rules for its propagation.
According to these the DebtFlag mechanism associates the
DebtFlag elements with implementation components that are
directly or indirectly dependent onto their source components.

Figure 2 presents a simplified example scenario and how
the aforementioned two processes function. Classes A and B
both contain two methods A.a and A.b as well as B.c and
B.d respectively. Method B.d is dependent onto method B.c
which again is dependent onto method A.a. Two DebtFlag
elements are created. First one for the entire class A and a
second one for just the method B.c. From the aforementioned

DF #1

Class A

Method A.a

Method A.b

Class B

Method B.d

Source component for:
DF #1

DF #2

Method B.c

Source component for:
DF #1

Source component for:
DF #2
Propagation comp. for:
DF #1

Propagation comp. for:
DF #1
DF #2

Fig. 2. Propagation of technical debt in the DebtFlag mechanism

21



processes, the first one now returns methods A.a and A.b as
the source points for the first DebtFlag element and method
B.c for the second element. The second process can now
be called with these three source points. For method A.a it
will return a dependency tree containing methods B.c and
B.d, for method A.b an empty tree and for method B.c
a dependency tree containing method B.d. Based onto this
information and the propagation rules associated with each
DebtFlag element, the DebtFlag mechanism associates each
component in Figure 2 with captured technical debt.

C. Technical Debt Management

The DebtFlag mechanism is designed to support technical
debt management in two different forms. Project and organi-
zation level management through supporting the TDMF and
implementation level micromanagement by decomposing and
projecting technical debt onto the implementation.

The Technical Debt Management Framework allows a vari-
ety of processes to be used for managing technical debt. The
functionality of the TDMF is dependent onto the existence of
the Technical Debt List. The DebtFlag mechanism has been
designed so as to be able to efficiently construct and maintain
the TDL.

The TDL is populated with Technical Debt Items that
are formed from DebtFlag elements. The DebtFlag elements
inherit their basic attributes from the TDI and thus answer
to them as a set. In order to maintain the TDL during
continued development the DebtFlag elements are designed
not to prompt estimates about technical debt’s principal and
interest. Rather, these estimates are based on the current
number of DebtFlag elements forming a TDI, the technical
debt types they are associated with and the information about
their propagation. Essentially, the used propagation rule set
defines the technical interest for all technical debt items. We
discuss the importance of this in Section IV-C and how we
intend to take this into account in Section V-A.

Micromanagement of technical debt is supported by creating
and maintaining a presentation for it on the implementation
level. As technical debt is decomposed into source propaga-
tion points and propagated onwards according to monitored

dependencies the produced information enables the debt to
have a presentation at these points. By using for example
visualization and restriction (see Section III) the developer can
be made aware of otherwise unnoticeable technical debt and
its properties. We discuss our expectations for technical debt
aware software development in Section IV.

III. DebtFlag TOOL

The first implementation of the DebtFlag mechanism was
designed to support the Java programming language. The
DebtFlag tool is a two parted system consisting out of a plug-
in for the Eclipse Integrated Development Environment (IDE)
[10] and a separate web application. The DebtFlag plug-in
is responsible for capturing technical debt through the devel-
opment environment, tracking its propagation and supporting
the micromanagement approach. The web application provides
a dynamic presentation of the Technical Debt List compiled
from information produced with the DebtFlag plug-ins.

A. DebtFlag Plug-In

Eclipse is a popular IDE used especially for developing
in the Java language. It is built on the concept of plug-
ins and by implementing the first part of the DebtFlag tool
as such, we are capable of integrating the documentation
tools into the development environment, identifying the source
implementation elements for technical debt, propagating the
debt according to dependencies and building a representation
of technical debt on the implementation level.

1) Capturing Technical Debt: Capturing technical debt
using the DebtFlag plug-in is started by interacting with a Java
element. Eclipse provides multiple views to the Java element
hierarchies it is used to modify. Valid Java elements from the
DebtFlag plug-ins perspective range from a package to a class
member, such as a method or a global variable. All of these
can serve as the location for a DebtFlag element and trigger
the documentation process.

Figure 3 depicts the listing dialog triggered by interaction
with a Java element. In this case, the element is method c
from class B and the dialog displays two DebtFlag element
listings for it. The first one contains those instances where the

Fig. 3. The DebtFlag element list triggered through interaction with a Java element

22



Fig. 4. The creation of a new DebtFlag element event

debt’s source location is the current Java element, while the
second one contains those propagated to it via dependencies.
From here the user can choose to either create a new DebtFlag
element - having this Java element as its source - or to modify
any of the displayed DebtFlag elements.

Events forming the life span of a DebtFlag element are
predetermined. It starts with a create event, followed by any
number of modify events and ends with a resolve event. Figure
4 depicts the dialog for producing DebtFlag element events.
In this case, the ”create” event of a new DebtFlag element for
the aforementioned method B.c.

The DebtFlag element event dialog (see Figure 4) captures
the author, the modification event type, the comment, the time
and the type declaration for a DebtFlag element instance. The
location information is not prompted as this corresponds to
the Java element triggering this dialog. The author, the modi-
fication event type and time attribute are prefilled according to
system wide information. The type declaration part shows the
currently selected technical debt types used for defining this
DebtFlag, the accumulated library of available types and the
possibility to add new ones. The comment attribute is a free
text form intended for providing the reasoning for the event.

As mentioned in Section II-A, a DebtFlag element’s type
is a collection of technical debt types. When defining a new
DebtFlag element event, if the provided library does not
contain a suitable type combination, new ones can be created.
Figure 5 depicts the dialog for creating a new technical debt
type. It captures the type’s name, description, propagation
capabilities, context and threshold. Currently, the propagation
capability of a type is a binary option for either declaring that
this type can propagate through dependencies – increasing the
debt’s interest – or that it is confined inside the Java element.
The threshold attribute is used to communicate the severity of
the type by declaring how many dependencies can be formed
to elements carrying it before additional measures are enforced
(see Section III-A2). A lower threshold can indicate a high
principal, rapidly growing interest, probable realization or a
combination of these.

2) Implementation Level Representation of Technical Debt:
The DebtFlag plug-in builds an implementation level represen-
tation of technical debt in order to support its micromanage-
ment. The representation uses visualization and restriction in
the Eclipse IDE for indicating the presence of technical debt.
The information, the representation is based on, is produced
with the decomposition and propagation processes described
in Section II-B and implemented using the Eclipse Java
Development Tools (JDT). The JDT is a core Eclipse plug-
in which generates information about Java implementation
structures.

The DebtFlag plug-in modifies the visual appearance of
each Java element that has either source or propagated debt.
The effect technical debt has on the visual representation of
a Java element is dependent onto two matters. The number
of direct and indirect dependencies coming to an element and
the technical debt types associated to this element. The end
results lead to four representation categories for technical debt.
Each category excludes the others and has priority over those
mentioned before it.

The source category indicates that a Java element is the
source point for technical debt propagation (default illustration
with light red color). The propagated category indicates that
a Java element is on the propagation path of technical debt
– that it is directly or indirectly dependent to a source Java
element (default illustration with light green color). The source
and propagated category combines the former groups (default
illustration with orange color). Finally, the debt over threshold
category is used to indicate that the number of dependencies to
this Java element exceeds a threshold defined for its technical
debt (default illustration with dark red color).

Figure 6 shows the structure from Figure 2 implemented in
Java using the Eclipse IDE while employing the DebtFlag
plug-in to make two technical debt declarations. The first
one is made for class A with a technical debt type having a
threshold value of one (1). This has resolved into two source
points for propagation: methods A.a and A.b. The second
declaration has been made directly for method B.c with a
technical debt type having a threshold value of two (2).

In Figure 6 method B.d is dependent onto method B.c
which again is dependent onto method A.a. As this exceeds
the threshold value of A.a the DebtFlag plug-in uses the debt

Fig. 5. The creation of a new DebtFlag element type

23



Fig. 6. The main view of the Eclipse IDE, while using the DebtFlag plug-in to manage technical debt instances

over threshold category in its visualization. From the same
dependency chain, method B.c also had its own technical debt
declared for it leading to having the source and propagated
visualization, while method B.d only carries propagated debt
and hence has the propagated visualization. Finally, method
A.b as the other source point for propagating technical debt
in class A has the visual appearance of the source category.

The other component in forming the representation is re-
striction. Figure 7 shows the Eclipse content-assist. It provides
developers with dynamic content assistance depending onto
the cursor’s position in the editor. The figure in question shows
the content assistant opened when the cursor is inside class A
(see Figure 6). The restriction is applied here in the form of
a strike through over the method A.a. This optional feature
of the DebtFlag plug-in ensures that no new dependencies are
introduced for elements that have their threshold crossed by
disallowing their use.

Fig. 7. The Eclipse content-assist, affected by the DebtFlag plug-in

Each DebtFlag plug-in works on its own set of DebtFlag
elements. This set corresponds to elements associated with the

latest version checked out to the Eclipse IDE and the additions
and modifications made to them afterwards. When changes
to the implementation are committed through the version
control system, the DebtFlag plug-in communicates with the
Eclipse Team plug-in. This allows the DebtFlag plug-in to gain
information about possible conflicts between implementation
versions and their resolutions. According to this information
an individual DebtFlag plug-in builds a DebtFlag element set
that corresponds to the new version and inserts it to a database.

B. DebtFlag Web Application

The DebtFlag web application has been created using the
Vaadin [11] web application framework. The Vaadin data bind-
ing mechanism has allowed us to create a simple and dynamic
representation of the DebtFlag database. This representation
corresponds to the Technical Debt List.

Figure 8 depicts the DebtFlag web application. The header
bar contains the main controls. From here it is possible to se-
lect the project and a version for which the TDL is constructed.
The main content changes according to these choices and is
two parted. The left hand side part contains the actual TDL.
The TDL representation follows the documentation structure
presented in Section II-A and it is colored according to the
representation categories described in Section III-A2.

The right hand side of the main content of the DebtFlag web
application (see Figure 8) contains detailed information for a
selected DebtFlag element. Here the upper partition contains
the attributes described in Section II-A and the lower partition
contains the dependency tree. The dependency tree has the
implementation elements decomposed from the DebtFlag ele-
ment’s location as its source nodes and it branches according
to the rules defined by the DebtFlag element’s types. From
here, it is easy to see the reasoning for why a threshold value
of a particular DebtFlag element was crossed.

IV. DISCUSSION

This section covers applying the DebtFlag mechanism into
software development. The discussion is started by establish-
ing the mechanism’s role in a software development environ-

24



Fig. 8. The DebtFlag tool’s web interface

ment followed by sections discussing the expectations set for
the first implementation of the mechanism. The expectations
are made from a software project’s perspective and cover
foreseeable benefits and challenges.

A. Application in Software Development
The DebtFlag mechanism builds the documentation for a

software product’s technical debt by capturing and processing
relevant observations. Capturing observations requires that the
mechanism is made available in software development com-
ponents where observations about the software product’s state
are made. These observations are processed into a TDL and
automatically maintained by the mechanism. The produced
technical debt documentation serves as the integration point for
further technical debt management approaches and provides
information to existing software development components.

In iterative and incremental software development, the im-
plementation process relies onto previous iterations having
completed their requirements as further additions and modi-
fications are directly based onto them [12]. This makes the
implementation process very sensitive to deviations in the
assumed implementation state. As we have predicted this to
constitute for the majority of technical debt related observa-
tions, the DebtFlag mechanism has been designed to integrate
into the development environment; as close as possible to the
developer and the process emergent to these observations.

Other software development components, emergent to tech-
nical debt related observations, are dependent onto the used
software development method. The Scrum method’s Sprint re-
view [13] is an example of a software development practice the
DebtFlag mechanism is expected to support. Here developers,

who are familiar with the DebtFlag mechanism, take part in a
process where a software product or a sub-product is assessed
against currently active requirements. As deviations are found
and documented, the developers give them an implementation
level representation in the form of DebtFlag elements.

The DebtFlag mechanism produces and maintains a TDL
according to the captured observations. The TDL can be used
to integrate further evaluation and decision approaches from
the TDMF. Concurrently the produced TDL provides valuable
information to existing software development components. For
example the Sprint planning practice of the Scrum method
[13] may apply the TDL in defining new backlog items: large
TDI entries may require their own backlog items, while the
decomposition of new requirements into backlog entries is
further defined by reviewing the amount of technical debt
indicated by the TDL for this implementation area.

B. Benefits
DebtFlag captures human-made observations. In addition

to relevant project stakeholders being fully aware of all active
requirements and development conventions, they can provide
additional reasoning for their observations. This ensures that
information regarding the captured technical debt of a project
is both accurate and well defined. Improvements based onto
this information should be very effective.

DebtFlag documents the structure of technical debt. Soft-
ware implementations are complex, hierarchical and inter-
connected structures. Technical debt that resides in them
has similar characteristics. The DebtFlag mechanism captures
technical debt as Technical Debt Items. TDIs are formed as a
set of DebtFlag elements for which the DebtFlag mechanism

25



automatically resolves the propagation paths. This structured
form allows to track technical debt during continued develop-
ment but also to apply various assessment approaches to the
different levels of the acquired hierarchy.

DebtFlag presents technical debt at the implementation
level. By projecting all technical debt observations onto the
implementation level, the DebtFlag mechanism ensures that
development is conducted while aware of technical debt’s
presence. This allows developers to avoid unintentionally
increasing the value of technical debt through dependencies
to affected areas or to efficiently decrease its value by resolv-
ing technical debt in areas where development is currently
conducted.

DebtFlag makes continued use of higher level technical
debt management approaches possible. The documentation
structure is designed to be able to produce the Technical Debt
List for the Technical Debt Management Framework. The
extensions, that the DebtFlag mechanism introduces, allows to
maintain this list automatically during continued development.
This makes TDMF reliant management approaches applicable
to the development at any given time.

C. Challenges and Limitations

DebtFlag may endorse technical debt accumulation. The
documentation tools of the DebtFlag mechanism are designed
to be as fast and intuitive to use as possible, in order to make
capturing technical debt efficient enough to be justifiable.
At the same time, the barrier for taking on technical debt
is lowered as documenting it consumes less resources than
making the optimal implementation. This is an unwanted side
effect which is currently remediated by making sure the author
of each DebtFlag element is documented. Additional measures
are devised as case studies provide more information on this
possible problem.

DebtFlag places the burden of technical debt management
onto the end user. The DebtFlag mechanism relies onto the
end user for identifying source points for technical debt and for
resolving them at a later point in time. This indicates that the
burden of technical debt management for the software product
is placed onto the end users. This indicates a dependency:
the state of technical debt management diminishes directly
as a consequence of the end users’ inability to identify or to
input technical debt information into the DebtFlag mechanism
as well as the DebtFlag mechanism’s inability to enforce
technical debt governance. In order to overcome the afore-
mentioned problems, we intend to commit case studies to
identify problems in user experience and training as well as
to further develop the DebtFlag mechanism’s ability to be
cross-compatible with other technical debt identification and
assessment tools.

DebtFlag does not protect the information from propagation
rule set bias. Both the implementation level representation of
technical debt as well as the propagation information generated
for the web-interface are dependent onto the used propagation
rule set (see Section II-B). While the propagation rule set does
not affect the source points for technical debt, they have a

large effect onto its modeled propagation and thus onto the
management aspects endorsed by the DebtFlag mechanism.
For this reason, it is important that the propagation rule set
used by the DebtFlag mechanism is capable of reflecting the
actual propagation and technical debt accumulation in the
implementation. Acknowledging this, we have started a sepa-
rate research on more sophisticated technical debt propagation
models (see Section V-A).

DebtFlag is heavily dependent onto outside services. Unlike
Automatic Static Analysis (ASA) approaches, the DebtFlag
mechanism requires constant information about the implemen-
tation in order to function to its full capacity. While it is
possible to recreate the implementation level presentation of
technical debt from the database, addition and modification
of DebtFlag elements is dependent onto having access to
the development environment and implementation specific
information. As the DebtFlag currently supports only the
Eclipse IDE and the Java language, this is restrictive.

V. FUTURE WORK

We have presented the DebtFlag mechanism concept and
the tool under development in various discussions. Attendees
from both academic and industrial sectors have provided us
with valuable initial feedback. Accommodating this, the Debt-
Flag tool is expected to reach its first major version during
the first quarter of 2013. This will enable us to commit case
studies to improve, validate and extend both the mechanism
and the tool.

A. Mechanism Improvement and Validation

The current schedule will allow us to start conducting case
studies with the DebtFlag tool during the second quarter
of 2013. Here, we will first concentrate on improving the
mechanism by finding solutions to the challenges and limita-
tions presented in Section IV-C. As our department currently
plays host to a variety of research where large scale software
development is carried out using iterative and incremental
development approaches, the first case study will be conducted
in-house in order to retain the controlled environment.

This case study will be started with a thorough mapping
of current product state as well as used implementation tech-
niques and practices. This is followed by introducing the Debt-
Flag tool to the project combined with appropriate training and
instruction. During continued development, we will respond to
developer feedback in order to discover deficiencies in training
and to enhance the user experience of the DebtFlag tool.
Simultaneously, we will be upholding a manual identification
and assessment process to gather information on technical
debt and its propagation. During control periods we will be
examining the differences in upholding the product’s TDL with
the DebtFlag tool and the manual process in order to discover
differences between the two approaches. According to these
results we will improve the DebtFlag mechanism.

We do not expect the aforementioned case study to solve
the discussed problem of propagation modeling (see Section
IV-C. Anticipating this, we have started a separate research

26



to overcome this matter. Albeit in early-stages, our research
on applying link structure algorithms, especially the PageR-
ank algorithm [14], has provided us with promising results
when used to value and indicate most crucial implementation
elements for the accumulation of technical debt.

As we have intended this tool as a productivity enhance-
ment for industrial settings, we intend to further improve
and validate the DebtFlag mechanism in such environments.
For this, we have planned and discussed a rather extensive
series of case-studies to be committed with a department of
a large telecommunication company. To be launched later
this year, these case studies will have access to a multitude
of data spanning over finished and ongoing iterative and
incremental software projects. For finished products we use
proven technical debt identification and assessment tools in
order to simulate the life-span of technical debt. The results of
various propagation models are compared against this in order
to provide the DebtFlag mechanism with a more sophisticated
propagation rule library.

For ongoing projects, we will work closely with the afore-
mentioned party and local software development companies,
in order to discover the current state of technical debt and
its management for each studied software project. We will
then use a refined version of our academic case-study to
introduce the DebtFlag tool and the manual technical debt
management process for these projects. During continued
development, we expect to discover ways to further support the
projects’ technical debt management through enhancements to
the DebtFlag mechanism. As the studied software projects
will form an extensive representation of possible software
development approaches, we expect that the results of these
case studies will provide the DebtFlag mechanism and tool
with adequate validation.

In committing the later case studies, we will be covering
projects working on legacy software. As the DebtFlag mecha-
nism is designed to capture the deviation between the current
product state and its requirements, we foresee it being used to
produce a mapping between legacy software components and
a new requirement set. In such settings the TDL can serve as
input for the modernization plan. We expect these case studies
to yield additional validation for the mechanism in the form
of increased legacy software development efficiency.

B. Extending the Range of Supported Techniques

After accommodating the improvements discovered by our
first case study, we will extend the range of supported tech-
niques in order to prepare the mechanism for industrial use.

The plans currently encompass extending the current Eclipse
plug-in to support Javadoc through the Eclipse JDT and the
Python language through Eclipse pyDev, while replicating the
plug-in to the Visual Studio environment in order to support
the C# language.

In addition to covering a range of implementation and
documentation techniques, we will be working on making the
DebtFlag mechanism cross-compatible with other technical
debt identification and assessment tools. By working together
with mature technical debt identification and assessment tools
(e.g. SQALE [15]) we expect to increase the accuracy and
range of produced information, thus making technical debt
management more robust with the DebtFlag mechanism (see
Section IV-C).

REFERENCES

[1] W. Cunningham, “The WyCash portfolio management system,” in
Addendum to the proceedings on Object-oriented programming systems,
languages, and applications (OOPSLA), vol. 18, no. 22, 1992, pp. 29–
30.

[2] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull, and
A. Vetrò, “Using technical debt data in decision making: Potential
decision approaches,” in Managing Technical Debt (MTD), 2012 Third
International Workshop on. IEEE, 2012, pp. 45–48.

[3] E. Dustin, J. Rashka, and J. Paul, Automated software testing: introduc-
tion, management, and performance. Addison-Wesley Professional,
1999.

[4] C. Izurieta, A. Vetrò, N. Zazworka, Y. Cai, C. Seaman, and F. Shull,
“Organizing the technical debt landscape,” in Managing Technical Debt
(MTD), 2012 Third International Workshop on. IEEE, 2012, pp. 23–26.

[5] M. Friedman and J. Voas, Software assessment: reliability, safety,
testability. John Wiley & Sons, Inc., 1995.

[6] J. Kupsch and B. Miller, “Manual vs. automated vulnerability assess-
ment: A case study,” in First International Workshop on Managing
Insider Security Threats (MIST), 2009, pp. 83–97.

[7] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,”
Advances in Computers, vol. 82, pp. 25–46, 2011.

[8] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Da Silva,
A. Santos, and C. Siebra, “Tracking technical debtan exploratory case
study,” in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on. IEEE, 2011, pp. 528–531.

[9] J. McGregor, J. Monteith, and J. Zhang, “Technical debt aggregation in
ecosystems,” in Managing Technical Debt (MTD), 2012 Third Interna-
tional Workshop on. IEEE, 2012, pp. 27–30.

[10] Eclipse Foundation, “Eclipse integrated development environment,”
URL: http://www.eclipse.org/.

[11] M. Grönroos et al., Book of Vaadin. Vaadin Limited, 2011.
[12] T. Gilb and G. Weinberg, Software metrics. Winthrop Publishers, 1977,

vol. 51.
[13] K. Schwaber and M. Beedle, Agile software development with Scrum.

Prentice Hall PTR Upper Saddle Riverˆ eNJ NJ, 2002, vol. 18.
[14] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation

ranking: bringing order to the web.” 1999.
[15] J. Letouzey, “The SQALE method for evaluating technical debt,” in

Managing Technical Debt (MTD), 2012 Third International Workshop
on. IEEE, 2012, pp. 31–36.

27


