
Co-Existence of the ‘Technical Debt’ and
‘Software Legacy’ Concepts

Johannes Holvitie∗, Sherlock A. Licorish†, Antonio Martini‡, and Ville Leppänen∗
∗ Turku Centre for Computer Science,
Software Development Laboratory &

University of Turku,
Dept. of Information Technology,

Turku, Finland
{jjholv, ville.leppanen}@utu.fi

† University of Otago,
Department of Information Science,

Dunedin, Otago, New Zealand
sherlock.licorish@otago.ac.nz

‡ Chalmers University of Technology,
Computer Science and Engineering,

Göteborg, Sweden,
antonio.martini@chalmers.se

Abstract—‘Technical debt’ and ‘software legacy’ are concepts
that both discuss a state of software that is sub-optimal, time
constrained, and explain how this state can decrease an organi-
zation’s development efficiency. However, there is significant con-
fusion in the way the software engineering community perceive
these concepts. In this paper we perform an initial examination
of technical debt and software legacy concepts, and examine their
somewhat challenging co-existence. In motivating our work, we
discuss previous survey results which show that practitioners
believe that technical debt largely emerges from software legacy.
We then identify sources of confusion in comparing popular
definitions of both concepts. Finally, we map the use of the ‘tech-
nical debt’ and ‘software legacy’ concepts in existing research.
We conclude that structured co-existence of these terms can be
pursued with mutually beneficial gains.

I. INTRODUCTION AND BACKGROUND

All software products are static. That is, after they have
been developed, prior to being extended or maintained at a
later stage, they remain in the exact same state (formalized
for technical debt by Schmid in [1]). The environment around
software development, however, is dynamic. Technologies,
people, organizational structures and processes all change
over software development project duration. These variables,
and many others, can be seen to have a link back to the
static software product. For instance, consider the continued
updates to a technology that is used to implement a software
product: here the software product, for which development
has stopped, does not abide by the latest changes made to the
technology, and it becomes detached from the updates. Hence,
when software development is continued for this software
product, we note that it has accumulated technical debt in a
“delayed fashion”, as current assumptions (i.e. strategic and/or
accidental technical debt) do not apply to it.

From a management perspective, there are considerable
differences between immediate and delayed accumulation of
technical debt. Immediate accumulation is affected mainly by
matters that reside within the producing organization and its
project. We may look into altering strategies and implementing
new processes to affect the management of immediate, in-
tended technical debt. Management of immediate, involuntary
(or unintended) debt is often more indirect. For example,
implementation and design quality issues often arise from

practitioners having communication issues or being unaware
of all applicable best practices. In these scenarios, exercises to
enhance social togetherness and focused training, respectively,
can be utilized to reduce technical debt instances.

Different strategies are required when dealing with legacy
software. Legacy software has a variety of definitions, but it
generally captures software artifacts which cannot be subjected
to the same maintenance and management efforts as newly cre-
ated artifacts [10]. In practice, these are often implementation
artifacts which are old, undocumented and/or untested, and for
which the original developer is no longer available. This could
be due to: (1) a new team has taken over in the organization,
or (2) the implementation has been acquired from somewhere
else. If we consider technical debt accumulated in a “delayed
fashion” to capture sub-optimalities that emerge due to the
environment progressing around a static software product, we
could argue that legacy software is quite close conceptually to
technical debt.

In fact, we previously conducted a practitioner survey to
shed light into the accumulation and composition of technical
debt that software organizations face today. This survey was
administered as a web-based questionnaire in Brazil, Finland,
and New Zealand. We collected 184 responses from a diverse
set of respondents using both agile and traditional development
methods in which the practitioners assumed several roles rang-
ing from developers to managers and client representatives.
We have discussed outcomes from the Finnish responses in
more detail before [11], while a forthcoming article reviews
the multi-national results. As part of the results, the multi-
national data-set captured 69 descriptions of concrete technical
debt instances from the respondents.

For the captured technical debt instance descriptions, Figure
1 visualizes the distribution of the perceived origins of tech-
nical debt. While these results are somewhat preliminary, for
over 75% of the instances, the indicated origins of technical
debt are in software legacy. This indicates that practitioners
perceive there to be a strong connection between ‘technical
debt’ and ‘legacy software’. This outcome and the general
confusion around the technical debt and software legacy
concepts motivates us to examine these two domains together,
to identify cross-compatible solutions and enhancements for

both.
Examining these two domains together, technical debt could

be seen to benefit from integration of legacy software man-
agement procedures, as this field has a very established status.
However, several issues should be taken into account when
legacy software is integrated with technical debt management.
Firstly, is legacy software only a component of technical debt
accumulated in “delayed fashion”? Arguably not, as the overall
current state of the software product, to which legacy can
be a part, has an effect on technical debt accumulation and
management [12]. Hence, the domains seem to be distinctively
different, which motivates us to explore these concepts.

Second, legacy software is generally used as a negative term
for “derelict code”, while technical debt implies pursuing asset
management functions for sub-optimalities in varying software
artifacts. Reviewing Figure 1, one identifies a potential danger
in legacy being re-branded under the more favorable technical
debt concept. Here, the asset management possibilities are
left unexplored if legacy is not diligently converted into
technical debt instances enabling full management. Noting the
unobtrusive nature of legacy software, this is not an easy task
to do, and having technical debt instances with varying levels
of accuracy is bound to deteriorate technical debt management
efforts overall.

Revisiting our position above, ‘software legacy’ and ‘tech-
nical debt’ are closely related and as such the software engi-
neering community should pursue narrowing the gap between
these fields. We make the first step towards bridging this gap
in this work. In the following section (Section II) we provide
a short evaluation of the two concepts, examining similarities
in their definitions. We next conduct a short mapping study
of the concepts’ joint use in contemporary research literature
in Section III. Finally, in Section IV we conclude this study

Legacy from an earlier
team/invididual working on
the same project/product
50%

Legacy from an unrelated
project/product within
the organization
17%

Legacy from outside
the organization
(e.g. from an acquisition)
9%

Is not legacy
24%

Fig. 1. Origins of technical debt instances (N=78 as multiple origins were
indicated for some of the 69 instances)

by providing insights into avenues for how the co-existence
of the two concepts could be organized, and outline future
directions.

II. CLOSENESS OF THE TECHNICAL DEBT AND LEGACY
CONCEPTS

To facilitate examining the closeness in definitions of the
‘technical debt’ and ‘legacy’ concepts, commonly accepted
definitions for both are provided in Table I. Due to space
limitations, detailed descriptions and examples have been
excluded from the definitions.

Reviewing Table I, we note that in Cunningham’s definition
[2] technical debt (TD) is created always when new code
releases are made. The definition leaves very little room for
“debt-free code". If the consensus from the legacy definitions
communicates that the “legacy" status is something the code
can only gain over time, being pristine at the time of im-
plementation, then Cunningham’s definition clearly deviates
from this. However, Cunningham describes the effects of TD
as emergent from “not-quite-right code" which again is able

TABLE I. Definitions for the ‘Technical Debt’ and the ‘Software Legacy’ Concepts

Cunningham [2] McConnell [3] Dagstuhl 16162 [4]
Technical
Debt

. . . Shipping first time code is like going into
debt. A little debt speeds development so
long as it is paid back promptly with a
rewrite. Objects make the cost of this trans-
action tolerable. The danger occurs when
the debt is not repaid. Every minute spent
on not-quite-right code counts as interest on
that debt. Entire engineering organizations
can be brought to a stand-still under the debt
load of an unconsolidated implementation,
object-oriented or otherwise.

The first kind of technical debt . . . is incurred
unintentionally. . . . [It] is the non-strategic
result of doing a poor job. . . . this kind of
debt can be incurred unknowingly, for exam-
ple, your company might acquire a company
that has accumulated significant technical
debt that you don’t identify until after the
acquisition. . . .
The second kind . . . is incurred intentionally.
This commonly occurs when an organization
makes a conscious decision to optimize for
the present rather than for the future. . . .

In software-intensive systems, technical debt
is a design or implementation construct that
is expedient in the short term, but sets up
a technical context that can make a future
change more costly or impossible. Technical
debt is a contingent liability whose impact is
limited to internal system qualities, primarily
maintainability and evolvability.

Bennett [5] Dayani-Fard [6] and Liu & al. [7] in [8] Sommerville [9]
Software
Legacy

“large software systems that we don’t know
how to cope with but that are vital to our
organization." . . .
Moreover, many legacy systems are per-
forming crucial work for their organization.
Hence the decision on how to manage them
is crucial: . . . the very future of the business
may be at stake. Legacy systems may rep-
resent years of accumulated experience and
knowledge.

Legacy software systems . . . were developed
decades ago and have been continually mod-
ified to meet changes in business require-
ments and computing platforms. The prolif-
eration of such systems is causing headaches
for large organizations who find them costly
to maintain and risky to evolve. [6]
. . . many legacy systems remain supportive to
core business functions and are indispens-
able to the business. [7]

Legacy systems are socio-technical
computer-based systems that have been
developed in the past, often using older or
obsolete technology. These systems include
not only hardware and software but also
legacy processes and procedures—old ways
of doing things that are difficult to change
because they rely on legacy software.
Legacy systems are often business-critical
systems. they are maintained because it is
too risky to replace them.

to accommodate the effects of code that has transformed into
“less-right code" overtime (i.e. legacy).

McConnell’s definition [3] is more lenient towards “debt-
free code" existing. Technical debt accumulation in both the
unintentional and the intentional scenarios is immediately
related to the software elements creation, and hence, disallows
degradation over time, however other (i.e. initially “debt-free”)
scenarios are not excluded. Also, the unintentional incurrence
includes acquisition-based accumulation of technical debt,
wherein, the acquisition decision can be a “non-strategic result
of doing a poor job”. This can include legacy acquisition.

Finally, the recent Dagstuhl 16162 definition [4] explicitly
states that the software design or implementation construct has
been expedient in the short-term. This implies that software
elements, from the beginning of their development, must have
a state that, interdependent with other factors, can induce
sub-optimalities that contribute as technical debt. This, again,
excludes legacy which is initially “debt-free”. The description
promotes technical debt to be a “contingent liability" with an
impact on “internal system qualities". This can accommodate
effects commonly perceived for legacy software [8].

Moving to the lower half of Table I, we note that Bennett’s
definition of ‘legacy’ [5] focuses on the operation phase of the
software life-cycle [IEEE 12207-2008], and as such does not
explain legacy’s emergence. However, the “how to cope with"
effect description for legacy is very similar to Cunningham’s
“stand-still". The similarity in effect descriptions continues in
Dayani-Fard’s definition [6]. Here, legacy effects encompass
problems that relate to proliferation of a system that has
been continuously developed over decades. With very little
effort, this can be classified under the “contingent liability
affecting evolvability" from the Dagstuhl 16162 definition [4]
for ‘technical debt’.

Finally, Sommerville’s definition [9] expands ‘legacy’ to
include socio-technical matters. That is, legacy systems include
processes and procedures which rely on the legacy software.
We note that a very similar association has also been found
for technical debt in the form of ‘social debt’ [13].

Reviewing the previous comparisons, we note that de-
pending on the interpretation of the definitions, the concepts
partially accommodate one another. The effects described for
both the ‘technical debt’ and ‘software legacy’ concepts are
similar. Arguably, this can be a source of confusion. However,
when it comes to emergence, only McConnell’s definition for
technical debt can accommodate legacy (in a very limited
fashion). The two concept’s differ here.

Technical debt seems to be associated with a level of
immediateness and clarity that implies the debt to be promptly
manageable. That is, technical debt management requires
information that indicates a particular software element to
be sub-optimal. For legacy, there is information indicating
a software solution (several software elements) to be sub-
optimal in the current context. That is, this context and solution
combination produces a sub-optimal outcome (this may again
induce more technical debt). Hence, the connection between
legacy and technical debt seems to be one of given contexts

TABLE II. Publications Matching Both the ‘Technical Debt’ and ‘Legacy’
Search Terms

Database Matches
ACM 2
dblp 1
EBSCO 3
Elsevier (Science Direct) 33
IEEE (Xplore) 2
Springer (SpringerLink) 55
Thomson Reuters (WoS) 1
Wiley (WOL) 7
total 104

(aged vs. contemporary) and scopes (solution vs. elements).

III. REVIEW OF RESEARCH ON TECHNICAL DEBT AND
LEGACY CONCEPTS

To understand the scale of joint use of the ‘technical debt’
and ‘software legacy’ concepts in research (noted among
industry practitioners), we performed a preliminary mapping
study over popular publication databases. We used the search
phrase "technical debt" AND "legacy". The soft-
ware context was not explicitly interrogated, as both terms can
be seen to already limit the query outcomes. Table II shows the
number of matches received for the range of popular databases.

For the matched publications, we reviewed their contents
and constructed an initial classification scheme based on
how they handled the ‘technical debt’ and ‘legacy’ concepts
together. This classification is provided in Figure 2. Over half
(N=55) of the matched publications discussed the ‘technical
debt’ and ‘legacy’ concepts in separate sections of the pub-
lications, and thus, were deemed Non-related. We could not
access a seventh (N=16) of the publications, which we plan
to further explore in a further systematic review. Two of the
matched publications were also duplicates.

From the 104 matched publications, 31 discussed ‘technical
debt’ and ‘legacy’ concepts together. Our initial classification
for these matches shows that over a third of this amount
(N=12) discussed the concepts as comparable with each other.
For example, in Kennedy et al. [14]: “This could also be
considered as paying off your technical debt. Try to get rid
of any legacy code and consider whether there are other ways
you can format your CSS in order to get the most out of
a minimization algorithm or better rendering. . . ". A similar
portion of the studies (N=9) discussed legacy as an explicit
cause for technical debt emergence. For example, in Knodel
et al. [15]: “. . . in particular for legacy systems, which have
a history of design decisions made in the past . . . inadequate
for today’s requirements, and causing technical debt".

The remainder of the matches conceptualized technical debt
and legacy along two threads. The first half (N=5) described
legacy as a modifier of technical debt. Generally, this meant
that existence of legacy software in the development orga-
nization emphasized the negative effect caused by technical
debt. For example, in Shull et al. [16]: “If an organization
has a history of damaging cost overruns during maintenance
on a large legacy system, then they would be most interested
in controlling design debt by refactoring code that is brittle,

Fig. 2. Matched publications classified based on their relation to the ‘legacy’
concept (N = 104)

overly complex, or hard to maintain". Finally, the second half
(N=5) of publications emphasized an explicit difference be-
tween ‘technical debt’ and ‘legacy’. For example, in Williams
[17]: “Phases 1 and 2 address PCI DSS 3.1 [conversion from
a legacy system], while phases 3 and 4 address the technical
debt associated with neglecting this IT system".

Reviewing the matched studies above we note that there
are a variety of contexts and ways with which technical debt
and legacy are joined in research. While most of these con-
texts demonstrate an awareness of the concepts’ co-existence
(i.e. legacy may be both a modifier and a cause for technical
debt), there are also combinations which seem to exclude
either concept (i.e. if legacy is different from technical debt,
then these concepts should not be compared).

IV. STRUCTURED CO-EXISTENCE OF TECHNICAL DEBT
AND LEGACY, AND FUTURE DIRECTIONS

Reviewing the survey results in Section I, the comparison
highlighting the closeness in definitions for ‘technical debt’
and ‘legacy’ concepts in Section II, and the current state of
compound use of the concepts in research mapped in Section
III, we may conclude that there is considerable interplay
between the technical debt and legacy domains. To this end,
we believe that these concepts may be substituted, which could
be possible source of confusion. The research mapping further
highlighted this, where we found several different—partially
exclusive—considerations of technical debt and legacy.

The current state of obfuscation between the concepts is a
potential challenge. Notably, technical debt research is trying
to come up with ways to identify, track, and manage concise
technical debt instances, which would allow for technical debt
to be managed in a systematic manner. We discussed in Section
I that there is a danger of legacy being re-branded as technical
debt, which may be seen to have less negative connotations.
As legacy implies a severely reduced level of clarity around a
particular set of software elements, re-branding such elements
as technical debt without a systematic procedure can severely
undermine technical debt management efforts.

Moving forward, we argue that the co-existence of the two
concepts requires structuring in order to alleviate the possible
confusion between their use, to allow for their concurrent use,
and to facilitate mutually beneficial research for these fields.
According to our short review, the similarity in the effects

of technical debt and legacy seem to be the main challenge
and strength for research conceptualization. This could be
an excellent starting point for facilitating the structured co-
existence of these concepts. The challenges presented by the
given similarity in the conceptualization of these concepts may
be reduced by providing clear definitions for each. We thus
look to pursue this opportunity, first by extending the mapping
work that is started here. Ideally, explicit definitions could lead
to a process whereby legacy could be transferred into technical
debt through a systematic approach.

In fact, the conceptual similarity could be exploited imme-
diately. If the effects caused by legacy are comparable to those
induced by technical debt, then this is a clear opportunity for
technical debt management to adapt suitable procedures from
the legacy domain. Software legacy has been an active research
field for much longer than technical debt, and could thus yield
mature solutions for this issue. This would allow technical debt
researchers to direct more resources to the challenges that are
unique to this field.

REFERENCES

[1] K. Schmid, “A formal approach to technical debt decision making,” in
Proceedings of the 9th International ACM Sigsoft Conference on Quality
of Software Architectures. ACM, 2013, pp. 153–162.

[2] W. Cunningham, “The wycash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.

[3] S. McConnell, “Technical debt,” 2007, 10x Software
Development Blog. Construx Conversations. URL=
http://www.construx.com/10x_Software_Development/Technical_Debt/.

[4] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering (Dagstuhl Seminar 16162),”
Dagstuhl Reports, vol. 6, no. 4, pp. 110–138, 2016. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2016/6693

[5] K. Bennett, “Legacy systems: Coping with success,” IEEE software,
vol. 12, no. 1, pp. 19–23, 1995.

[6] H. Dayani-Fard and e. al, Legacy Software Systems: Issues, Progress
and Challenges. IBM: Technical Report TR-74.165-k, 1999.

[7] K. Liu and e. al, “Report on the first sebpc workshop on legacy systems.”
Durham University, 1998.

[8] R. S. Pressman, Software engineering: a practitioner’s approach. Pal-
grave Macmillan, 2005.

[9] I. Sommerville, Software Engineering. International computer science
series. Addison Wesley, 2008.

[10] M. Feathers, Working effectively with legacy code. Prentice Hall
Professional, 2004.

[11] J. Holvitie, V. Leppänen, and S. Hyrynsalmi, “Technical debt and
the effect of agile software development practices on it-an industry
practitioner survey,” in Managing Technical Debt (MTD), 2014 Sixth
International Workshop on. IEEE, 2014, pp. 35–42.

[12] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical
debt and interest,” in Proceedings of the 2nd Workshop on Managing
Technical Debt. ACM, 2011, pp. 1–8.

[13] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “What is social
debt in software engineering?” in Cooperative and Human Aspects of
Software Engineering (CHASE), 2013 6th International Workshop on.
IEEE, 2013, pp. 93–96.

[14] A. Kennedy, I. De Leon, and D. Storey, Pro CSS for High Traffic
Websites. Springer, 2011.

[15] J. Knodel and M. Naab, “What is the background of architecture?” in
Pragmatic Evaluation of Software Architectures. Springer, 2016, pp.
11–20.

[16] F. Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman, “Technical
debt: Showing the way for better transfer of empirical results,” in
Perspectives on the Future of Software Engineering. Springer, 2013,
pp. 179–190.

[17] B. R. Williams, PCI DSS 3.1: The Standard That Killed SSL. Syngress,
2015.

