
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Task Migration for Dynamic Power and Performance Characteristics on Many-Core
Distributed Operating Systems

Simon Holmbacka, Wictor Lund, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
Email: firstname.lastname@abo.fi

Abstract—Spatial locality of task execution will become more
important on future hardware platforms since the number
of cores are steadily increasing. The large amount of cores
requires more intelligent power management due to the notion
of spatial locality, and the high chip density requires an
increased thermal awareness in order to avoid thermal hotspots
on the chip. At the same time, high performance of the CPU is
only achieved by parallelizing tasks over the chip in order to
fully utilize the hardware. This paper presents a task migration
mechanism for distributed operating systems running on many-
core platforms. In this work, we evaluate the performance and
energy efficiency of an implemented task migration mechanism.
This is shown by parallelizing tasks as the performance of
a single core is not sufficient, and by collecting tasks to as
few cores as possible as CPU load is low. The task migration
mechanism is implemented as a library for FreeRTOS using
1300 lines of code, and introduced a total task migration
overhead of 100 ms on a shared memory platform. With the
presented task migration mechanism, we intend to improve
the dynamism of power and performance characteristics in
distributed many-core operating systems.

Keywords-Task Migration, Distributed Operating Systems,
Many-Core Systems, ARM Cortex-A9

I. INTRODUCTION

Spatial locality of resources provides a measurement of
the distance between executing tasks and their resources. The
value is proportional to the communication delay introduced
between the communicating tasks due to spatial separation.
In a many-core Network-on-Chip (NoC) processor, this over-
head is clearly noticed as the messages need to propagate
along the routing network of the chip. In order to get
as small as possible communication overhead when using
inter-core communication, the communicating tasks should
be placed as close as possible to each other. An optimal
mapping of tasks can in a static system be done at compile
time, but in a general purpose computer with dynamic task
creation, execution times, suspension etc. the tasks should
migrate on the chip during runtime to obtain the smallest
communication overhead.

High system performance is usually improved by mapping
tasks in parallel applications on multiple cores in order to
improve the hardware utilization, since multiple processing
elements are then capable of executing separate parts of
the application in parallel. On the other hand, performance

improvements are usually achieved with the sacrifice of
energy. In contrast to parallelizing tasks, collecting them
to only a few cores allows for sleep state based power
management to shut down idle cores and create a more
energy efficient system. In both cases, tasks must be movable
during runtime in order for the system to be able to optimize
for energy vs. performance schemes.

Another important issue caused by the locality of task
execution is the thermal balance inside the chip [1], [2].
By changing the location of task execution on the chip, it is
possible to avoid thermal hotspots which can gradually wear
out the chip. Work has previously been done in terms of task
scheduling and heat distribution on the chip. Figure 1 shows
an example of how the mapping of tasks affects the thermal
gradient of the CPU. The left part of the figure shows a
highly parallelized mapping in which the temperature is
more evenly balanced, while the right part shows a mapping
which concentrates tasks to only a few CPU cores and forms
a red hotspot. From the figure it is clear that task mapping

Figure 1. Thermal gradients of many-core chip (Red means hot). The
labels (g,m) illustrate core group g and core number m [3]

on many-core systems affects the temperature and hotspots
on the chip based on the spatial locations of the tasks. This
effect will show even more clearly in 3D chips [4] since heat
producing elements will spread out in three dimensions.

Task migration is the required technique to re-map tasks
on a CPU, and thus enable the aforementioned dynamism.
In this paper we present the implementation of a task
migration mechanism using checkpoints for homogeneous
many-core systems with shared memory. We show how task
migration can be used to improve performance and create a
more energy efficient system. Furthermore, the overhead of

executing the task migration is measured and presented in
the concluding results.

II. RELATED WORK

Load balancing in conventional Linux [5] kernels on
SMP systems has existed for decades. The Linux CFS
(Completely Fair Scheduler) aims towards balancing the
work as evenly as possible over all processing elements in
the system [6]. The Linux load balancer inserts the task
into the run queue on a selected core while keeping all
references to kernel resources unmodified. We have created a
task migration mechanism for, in contrast to the monolithic
single kernel Linux environment, a distributed OS [7]–[9]
consisting of multiple kernels. The difference between our
notion of task migration and conventional load balancing is
mainly the transfer of task context. Migrating a task between
OS kernels require more context transfer since the kernels
are working independently of each other.

Many task migration techniques have been investigated
[2], [10]–[12], and the choice is usually dependent on what
hardware configuration and what kind of OS is in use. Task
migration between physically separate memories require a
transfer of both data and program memory area to the
new memory location [13]. Heterogeneous task migration
techniques has also been considered in previous work, in
which program code is modified to support the destination
architecture [14]. This introduces several other challenges
such as memory alignment, endianness and different instruc-
tions.

In contrast to previous work, our task migration mecha-
nism is intended for a distributed OS with multiple kernels
running on a homogeneous shared memory architecture with
MMU. Because of this architecture, only a pointer to the
task handle needs to be physically moved. This means that
in contrast to [10] and [2], task size does not influence the
migration overhead.

Different notions of task migration and strategies how
to initiate task migration have been previously presented.
[12], [15]–[19]. Notably in [17], a replication mechanism is
used to migrate tasks between cores in a multi-core system.
As a task is created on one core, there is also a replica
of the same task created on the other cores on which the
task is migratable to. The replica tasks are suspended while
the original is put in the running state. When migrating the
task, the replica task receives its starting point and state and
starts running exactly from the point at which the original
task was suspended. A task migration mechanism based on
re-creation was presented in [12]. The re-creation strategy
involves creating a task only on the native core initially.
At the execution of task migration, the task is completely
copied to the other core’s memory and started from the point
at which it suspended. After the migration is completed, the
original task is suspended and deleted on the first core.

The migration of a task, in our work, is based on only
migrating the memory references a task is using. This
migration strategy is possible since our target platform
includes a shared memory between all cores. No replica of
the task is needed, nor any transfer of program memory or
the stack. Furthermore, task migration is often implemented
in simulator environments. The presented mechanism, in this
work, is implemented on a real platform and run on top of
a multi-core real-time OS.

III. PLATFORM

For our work, we are considering a many-core platform
consisting of homogeneous CPU cores, shared memory and
a MMU. These characteristics have been obtained in recent
NoC-based many-core platforms [20]–[22], and is therefore
a relevant choice.

When using these kind of platforms, the monolithic kernel
architecture used in Linux starts to suffer from scalability
problems [23]. The reason is mainly because inter-core
locking of data structures in the kernel is required [24].
These locks are used to protect data structures from being
accessed simultaneously by several cores, but becomes a
bottleneck as the number of CPU cores increase. Linux uses,
for example, a per-process kernel mutex which serializes
calls to mmap and munmap [23].

Instead we focus on using a distributed operating system
as our target platform. This OS structure has been adopted by
several research operating systems such as the multikernel
structure in Barrelfish [7] or the satellite kernels in Helios
[8]. When using a multikernel OS tasks can use core-local
kernel calls instead of sharing one big kernel. No core-to-
core communication or inter-core spinlocks are therefore
required for kernel calls. This OS design scales therefore
better for kernel intense applications [9], [25].

Our task migration mechanism has been created explic-
itly for shared memory distributed operating systems. The
platform is assumed to use shared memory for task stack
allocation, dynamic memory allocation, program code and
for inter-core message passing between tasks. The kernels
can run either in shared memory or in private core memory.
Figure 2 shows the structure of our system using one OS
per core, a certain number of tasks and one task migration
mechanism (TM) per core. The kernel of each OS is located,
in this case, in separate parts of the shared memory.

A multi-core port of FreeRTOS [26] for the ARM Cortex-
A9 MPCore was created as demonstration platform for
the task migration mechanism and is freely available [27].
FreeRTOS is a small real-time kernel ported to many popular
architectures. The kernel supports a real-time scheduler
on top of which applications can be scheduled with hard
real-time requirements. This RTOS was chosen due to its
simplicity, small overhead and portability.

The platform used was the Versatile Express [28] board
equipped with an ARM Cortex-A9 based CA9 NEC [29]

Figure 2. Structure of the platform with shared memory for both OS
kernels and core-to-core communication

CoreTile 9x4 quad-core chip running at 400 MHz with 1
GB of DDR2 main memory. One instance of FreeRTOS
was mapped on each core as seen in Figure 2, and each
instance schedules tasks only on the local core. This is
an Asymmetric Multi-Processing (AMP) OS view, which
means that each OS instance (with scheduler) is running
independent of the others and tasks on different cores do
not share the same OS view as in the SMP case.

IV. TASK MIGRATION METHODOLOGY

The procedure for performing task migration on
distributed-kernel operating systems is to safely suspend a
selected task and transfer its state and references to another
kernel on another CPU core. After the transfer, the task
should be able to continue executing from the same point
and with the same state it had before it was suspended.
Moreover, the task should be attached to the task list of
the target kernel and detached from the task list of source
kernel. The task should also keep the same priority, name,
stack pointer and stack size as it is transferred to the target
kernel.

A. Notion of task migration

Because our notion of task migration covers migration
between completely independent OS kernels, the task must
be ensured a safe state in order to keep the notion of
consistency [30] in case I/O or kernel functionality is
used. A safe state is a defined state in which the task
is guaranteed to not be influenced by any external actors
disturbing the transfer of the task state. Arbitrary transfer of
a task might issue abrupt terminations of core dependent
resources such as I/O communication, which could lead
to lost data or unwanted timeout errors. Any usage of
resources, kernel functionality, intra-core communication or
other non-preemptive functionality must therefore complete
or safely be aborted before a migration can occur. Because
of this uncertainty in computer programs, a checkpointing
mechanism is used to depict points in the program at which
is it safe to migrate the task. Checkpointing also decreases
the complexity of the task migration mechanism since all
migrations are done at completely predictable points.

To make a program migratable, the programmer sets
the checkpoints as the program is created. In our
model, a checkpoint is set by a simple function call
TASK_IN_SAFE_STATE(). This point is the dedicated
place at which a task can migrate to another core.

The initiation of task migration is up to the system or
another task e.g. a power manager. Our task migration
mechanism uses an observer task which recognizes scenarios
for task migration. The observer can investigate the setup of
other cores and make decisions where to move a task from
which source core. Optimization algorithms and optimal
decision for task migration is, however, not part of this work.

Migration requests are signaled by a request hook in
each migratable task, which sets a migration request flag
initiated by the observer. This flag is regularly checked by
the task in order to reach the safe state if a request is issued.
This procedure should be followed in order to achieved task
migration in our model:

1) An observer actor in the system requests the migration
of Task 1 to Core n

2) The request hook is called in Task 1 and the
migration_request flag is set

3) Task 1 checks the migration_request flag in the
application, which now is set, and enters the safe state
though the function TASK_IN_SAFE_STATE()

4) The task migrator is called and Task 1 is migrated to
Core n

B. Use-case

Since the checkpoints are placed by the programmer, the
system should be analyzed beforehand in order to determine
an eventual request lag. The request lag is the time between a
migration request has been issued by the observer task until
the task reaches the safe state. This time is minimized by
placing checkpoints more frequently in the program. Polling
the request flag uses only three instructions with the -O3 flag
on the Cortex-A9 CPU, but since a more frequent occurrence
of checkpoints slightly increases the overhead, the frequency
of the checkpoint placement should be taken into account.

void looptask()
{

while (1) {
for(i=0 ; i<MAX ; i++){

foo(); /∗Call to function∗/
if (migration requested)
/∗ Go into safe state and suspend∗/

TASK IN SAFE STATE();
}

}
}

Listing 1. Checkpoint example

Listing 1 shows a simple loop incrementing numbers and
calling a function foo(). A checkpoint is set after each
loop iteration, meaning that the task containing the loop can

be migrated after each loop iteration. The task checks the
migration_request flag at each loop iteration, which
means that in worst case the migration lag is the time of
one loop iteration. The responsibility of the programmer is
ultimately to set the checkpoints wisely to achieve the least
request lag while keeping the checkpoint overhead low.

V. IMPLEMENTATION

A. Overview

The task migration mechanism has been implemented in
the C-language specifically for FreeRTOS on 1300 lines
of code in total. It consists of a migrator task mapped on
each core, which handles the physical transfer and inter-
core communication. The FreeRTOS kernel was modified
to support the dynamic attachment and detachment of tasks
from the task list while keeping the tasks’ state consistent.
The complete modification to FreeRTOS was implemented
using 110 lines of C-code. This section describes the most
important part of the implementation, namely how the mem-
ory is used between the kernels and how the task state is
transferred across cores.

B. Virtual memory mapping

Virtual memory is used to replace the physical memory
layout from the system, and replace it with a virtual repre-
sentation which is easier to operate against.

In our model, each core C contains one kernel K. Each
kernel uses the same virtual memory space, which means
that each kernel has the same memory view; this is seen in
the left part of Figure 3. This mirrored view abstracts away
the fact that the kernels actually execute in separate memory
locations in the physical memory (right part of Figure 3).
With this setup, all tasks can issue kernel calls with the same
address of reference. This increases the OS scalability since
no inter-core kernel locks are required, but tasks always call
the local kernel. An example is later shown in Section V-C.

Figure 3 shows the memory layout for the quad-core CPU
earlier mentioned. The tasks running on a kernel are dealt a
specific memory location GVM (Globally Visible Memory).
This location depends on at what core (in which kernel)
the task is created. For example a task created on core C1
will allocate its stack space in GVM1. The GVMs do
not, on the other hand, provide the same virtual memory
view. This is because tasks should be able to switch kernel
to be scheduled on. The state of the task must always
refer to the absolute memory address space to be kept
consistent independent on what core the task is running
on. For example consider a task T1 with stack memory
GVM1 migrating from C1 to C2. In order for the state to be
kept consistent, T1 must still keep the references to GVM1
even though it is moved to C2. If the stack pointer of T1
should now point to GVM2 instead, the content of the stack
would not be kept consistent without physically moving the
whole stack to GVM2. Since we assume a shared memory

C0 C1 C2 C3 C0 C1 C2 C3

K0 K1 K2 K3 K0

K1

K2

K3

GVM0

GVM1

GVM2

GVM3

GVM0

GVM1

GVM2

GVM3

ICC ICC

A
ddress

Virtual memory layout Physical memory layout

Quad-core distributed taskswitching memory layout

Figure 3. Memory layout for a Quad-Core CPU

architecture, it is possible to only pass references to the
corresponding GVM instead of a complete transfer. The
migration overhead will also be much smaller since less
information is moved.

After T1 has migrated from C1 to C2 the pointer to
GVM1 is passed to K2, which updates the local task list.
If T1 is deleted on K2, K2 sends a message to K1 in
order to free the allocated memory T1 was using in GVM1.
Generally if a core issues a delete command on a task created
on a non-local core, the delete request propagates back to
the origin of the task in order to free the memory allocated
by the task.

The memory reserved for core-to-core communication
(ICC) is a statically allocated area in the highest part of
the memory and is used to pass messages between cores.
Communication with shared variables will not be affected
by the task migration since the address of the shared variable
is located in the globally visible memory part and can thus
be accessed by any task independently of what core the task
is scheduled on.

C. Context transfer

The state transfer in a task migration is more complex
than on Linux SMP systems since the task is moved to a
new OS instance while keeping its state constant. The state
of a task is any entity stored in the task that determines the
execution of the task, which during runtime is modifiable.
Besides the name and function pointer to the task itself, the
following context is transferred during a task migration:

1) Stack state: The stack is initially created in a certain
GVM depending on which core a task is created on. Upon
task migration the location pointer to the stack is transferred
to the target core. The stack itself is not physically moved
since we assume that task stacks are located in Globally
Visible Memory.

2) Heap state: All dynamically allocated variables are
stored in the heap. Similarly to the stack, the heap vari-
ables are stored in the GVM on the core the task using
the variables was created on. As the task is migrated, all
dynamically allocated variables pass their reference pointers
to the new core, which means that no data is physically
moved other than the pointers similarly to the stack state.

3) Function references: The motivation behind using the
distributed kernel is to create a scalable OS for many-core
architectures. An important functionality in this architecture
is to enable core-local kernel calls. All tasks should therefore
only use the local kernel for kernel calls (provided that the
kernel in question can provide the requested functionality).

Consider the system shown in Figure 4: a task T1 is
created on core C1 and uses kernel K1 for kernel calls.
After the task migration to C2, T1 should update its kernel
reference to K2 in order to use the core-local kernel calls.

Figure 4. Update of kernel reference after task migration

To obtain this functionality, we have implemented re-
linkable elf binaries for FreeRTOS. All tasks are compiled to
distinct elf binaries and are linked together with the kernel
on a core. During the task migration, the link between the
task and the kernel is broken and re-linked with the kernel on
the target core. The memory references to the kernel do not
change, since the virtual memory ensures the same memory
outlook of all kernels (as has been shown in Figure 3). In
this way, the tasks do not need to keep track on what core
they are mapped on – making the programming completely
location transparent for the programmer.

4) Inter-task communication: Tasks communicating with
shared memory will retain the memory location used for the
communication without any modifications. This is possible
because all tasks can access any GVM at any time. The
migrated task will, after the migration, keep the address to
the shared memory at which the communication was taking
place.

Communication with message passing between tasks is
a part of future work. This functionality is non trivial

since the message passing mechanism is dependent on lo-
cal or non-local communication. Non-local communication
requires explicit core-to-core communication because the
communicating tasks are located on different cores, while
local communication should only use the message queue
mechanism in order to not introduce unnecessary overhead.

VI. EVALUATION

The evaluation setup consists of four identical video
playing tasks mapped on the ARM quad-core platform
described in Section III. Each task plays a video with a
certain resolution. The frame rate (fps) is measured with
a regular interval in order to evaluate the performance of
the video. We evaluated the system for both performance
and energy efficiency in order to demonstrate the improved
dynamism of the system. The overhead introduced by the
task migration mechanism, was also measured to give the
final conclusions.

Since the evaluated platform (described in Section III)
is designed as a low power platform and does not per se
suffer from thermal hotspots, and because it does not pro-
vide per-core temperature measurement, we do not include
temperature measurements in our experiments.

A. Performance evaluation

The first test was run to show how the performance of
the video tasks is boosted by parallelization; namely by
migrating tasks to all available cores. Our goal for this test
is to obtain a stable video playback (25 fps) for all four
videos. Initially, four large resolution videos were mapped
on Core0 on the ARM platform. After measuring a low
frame rate, three of the video tasks were migrated to other
cores, resulting in a system with one video task per core.
The video task included one safe state point per frame,
which resulted in 11 additional lines of source code in the
application.

Figure 5 shows the execution of the test. At the beginning
of the test (time=[1 to 3]), all videos play with a frame rate
between 6 and 14 fps, which is too low for user satisfaction.
At time=3, the first video task (Video1) migrated to another
core, which results in increased frame rate for Video1 at
time=5, and also higher frame rate for the remaining video
tasks on Core0. Similarly at time=6, Video2 is migrated
and thus achieves satisfactory frame rate at time=9. Finally
Video3 migrates at time=13 and is fully stable at time=14.
The high peak of the non-migrated task (Video4) is due to
the frame dropping mechanism used to compensate for low
frame rate in the beginning of the test.

All videos are mapped on their own dedicated core
at time=14, and all videos tasks are executed completely
in parallel. By parallelizing tasks and better utilizing the
hardware, all videos increase the frame rates to roughly 25
fps and keep a stable playback after time=18.

Figure 5. Frame rates for large resolution videos migrated to four cores.
Task migration initiated at time=3. Points 1,2 and 3 shows migration points
in time

B. Power evaluation

The second test was used to show the energy efficient
potentials task migration can give rise to. In this setup, we
started by having four small resolution videos mapped one
on each core on the same quad-core ARM platform. The
power output was measured directly from an internal register
in the Cortex-A9 MPCore chip. Our goal with this test is to
minimize the power dissipation as much as possible while
keeping the frame rate stable. From the starting point of
having four parallel videos, all video tasks were migrated to
one core (Core0). The remaining idle cores (Core1, Core2,
Core3) were shut down since no tasks were mapped on them
after the migration.

Figure 6 shows the frame rate and related power output
for the test. The curves related to videos are plotted against
the frame rate axis and the power dissipation curve against
the power axis. The test starts with having video playbacks
with frame rates of 25.0 fps which is sufficient to the user,
however the small resolution of the video format would
allow collecting all videos to a single core. At time=7 in
Figure 6, the migration mechanism starts to collect one video
task at the time to Core0, and completes this operation at
time=12.

The figure shows how the power dissipation initially starts
at about 900 mW and decreases to roughly 550 mW after
the tasks have migrated to Core0. This clearly affects the
energy consumption of the platform since the power output
is reduced with 40 %. Figure 6 also shows that Core0 alone
is able to keep a sufficient frame rate of 25 fps for all four
videos during normal playback. At the time of migration,
the migrated video tasks occasionally measure a slight frame
rate drop, but the overall quality is still kept sufficient.

Figure 6. Frame rates for small resolution videos migrated to one core
and Cortex-A9 power output. Task migration initiated at time=7. Points 1,2
and 3 shows migration points in time

C. Migration overhead

The migration of tasks introduces a slight overhead due
to the moving of data and detachment and attachment of
tasks to the OS scheduler. A simple evaluation to measure
the total overhead was run in order to demonstrate the
feasibility of migrating a streaming task such as a video
player without noticeable interruption. Our defined overhead
of a task migration is measured as the time between the
suspension of the task on the sender core and the resume of
the task on the target core. This overhead was measured in
three parts:

1) Time of task detachment and the activation of inter-
core communication

2) Time for moving data over the inter-core channel
3) Time between the arrival of inter-core data and the

attachment of the task
Part 1 and 3 was measured with a simple tic-toc timer
which counts the elapsed time between tic and toc in OS
ticks, which is easily converted into Milli seconds. Part
2 (inter-core communication delay) was measured with a
provided inter-core communications library for FreeRTOS.
This library uses inter-core interrupts to synchronize the time
between two communicating inter-core channels, since the
clocks of different cores are not identical. Measurements
were run several times and the deviation of the results were
zero for all three parts. The total overhead is presented in
Table I. The table shows that Part 3, which consisted of

Table I
OVERHEAD MEASUREMENTS

Part 1) Part 2) Part 3) Total
Time 17 ms 38 ms 45 ms 100 ms

attaching the task to the new OS scheduler, introduced the

largest overhead when migrating one of our video tasks.
A reason for this is due to increased L1 cache misses as
the task is moved to a new core with a cold L1 cache. To
reduce this overhead, the system could be set to warm up
the cache lines before the task continues the execution. An
other approach to decrease the overhead would be to enable
the L2 cache (which in the experiments was off). Detaching
the task (Part 1) had the least overhead with only 17 ms, and
the physical data transfer 38 ms. The data transfer included a
provided inter-core communications protocol binary, which
enabled us to analyze clock synchronization but overhead
analysis of the internal mechanism was not possible due to
closed source.

A fair comparison with related mechanisms is not di-
rectly straight forward since methodologies, platforms and
the notion of task migration usually differ. For example
a NUMA architecture – with non-uniform access time to
memory – would show a larger delay when migrating the
task to a destination located further away. Moreover, with the
introduced overhead, the video playback was – to the user –
very smooth and the slight freeze during the task migration
of a 25 fps video was hardly noticed. The task migration
mechanism introduced in total 160 additional bytes to the
application, which corresponded to 40 additional instructions
to run (with gcc -O3 flag).

VII. CONCLUSIONS

This paper has demonstrated the dynamic performance
and power properties of task migration for distributed many-
core operating systems. A task migration mechanism has
been presented and evaluated for maximum system perfor-
mance due to parallelization of tasks, and power conserva-
tion as a result of utilizing enabled hardware as much as
possible while keeping idle hardware shut down. We have
evaluated the task migration mechanism with a set of video
tasks representing a use-case in which the notion of quality
of service is of importance. In the experiments, we have
shown a typical example in which insignificant performance
sacrifice is traded for substantial energy savings.

A key point of distributed operating systems is to utilize
the spatial location for executing different parts of the OS
efficiently. In our case study, we have shown how the
location of a CPU intense video task directly influences
the performance and the power dissipation. In larger and
more diverse NoC many-core systems, different parts of
the distributed OS can be mapped and migrated close to
its related hardware depending on its functionality. Network
intense parts should for example be mapped closest to the
physical network interface and memory intense parts should
be mapped close to the memory controllers.

With more and more diverse and complex hardware, more
intelligent software solutions are required in order to fully
utilize the potential of the hardware. The distributed OS

design together with task migration provides better location
dependent task mapping, and is a step towards this goal.

VIII. FUTURE WORK

Tasks using inter-task communication need to update the
references for passing messages if one of the communicating
task changes its spatial location. Core-to-core communica-
tion must be explicitly pointed to tasks located on different
cores, while tasks on the same core can use simple message
queues. In order to hide these details from the programmer,
we have developed a lightweight component framework
for for real-time systems [31]. With the framework, the
developer is able to set-up specific communication interfaces
used for inter-task communication and could be used to rise
the level of abstraction for the inter-task communication. We
intend to integrate the possibility of task migration into the
framework, which simplifies the updating of communication
references.

Also, currently the task migration mechanism does not
support load balancing. Load balancing requires a decision
making mechanism capable of deciding what task should
move to what target core, and at what time. The task
migration mechanism should also be evaluated on a larger
many-core platform in order to show the real benefits of
spatial re-location of tasks.

ACKNOWLEDGMENT

This work has been supported by the Artemis JU project
RECOMP: Reduced Certification Costs Using Trusted
Multi-core Platforms (Grant Agreement number 100202).

REFERENCES

[1] D. Cuesta, J. Ayala, J. Hidalgo, D. Atienza, A. Acquaviva,
and E. Macii, “Adaptive task migration policies for thermal
control in mpsocs,” in Proceedings of the IEEE 2010 Annual
Symposium on VLSI, vol. 1. Ecole Polytechnique Fédérale
de Lausanne and Politecnico di Torino, July 2010.

[2] F. Mulas and D. Atienza, “Thermal balancing policy for
multiprocessor stream computing platforms,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, pp. 1870–1882, December 2009.

[3] E. Musoll, “Hardware-based load balancing for massive mul-
ticore architectures implementing power gating,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 29, no. 3, pp. 493 –497, march 2010.

[4] K. Matsumoto, S. Ibaraki, M. Sato, K. Sakuma, Y. Orii, and
F. Yamada, “Investigations of cooling solutions for three-
dimensional (3d) chip stacks,” in Semiconductor Thermal
Measurement and Management Symposium, 2010. SEMI-
THERM 2010. 26th Annual IEEE, feb. 2010, pp. 25 –32.

[5] M. T. Jones, “Inside the linux scheduler,” Jun 2006. [Online].
Available: http://www.ibm.com/developerworks/linux/library/
l-scheduler/

[6] ——, “Inside the linux 2.6 completely fair scheduler,” De-
cember 2009.

[7] A. Baumann and P. Barham, “The multikernel: a new os
architecture for scalable multicore systems,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems
principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009,
pp. 29–44.

[8] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt, “Helios: heterogeneous multiprocessing with
satellite kernels,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, ser. SOSP ’09.
New York, NY, USA: ACM, 2009, pp. 221–234.

[9] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang, “Corey: an operating system for many cores,”
in Proceedings of the 8th USENIX conference on Operating
systems design and implementation, ser. OSDI’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 43–57.

[10] T. J. E. Engin, “Bag distributed real-time operating system
and task migration,” Turkish Journal of Electrical Engineer-
ing and Computer Sciences, vol. 9, no. 2, 2001.

[11] P. K. Saraswat, P. Pop, and J. Madsen, “Task migration
for fault-tolerance in mixed-criticality embedded systems,”
SIGBED Rev., vol. 6, no. 3, pp. 6:1–6:5, Oct. 2009.

[12] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali,
“Supporting task migration in multi-processor systems-on-
chip: a feasibility study,” in Proceedings of the conference on
Design, automation and test in Europe: Proceedings, 3001
Leuven, Belgium, Belgium, 2006, pp. 15–20.

[13] J. B. Armstrong, “Dynamic task migration from simd to spmd
virtual machines,” in Proceedings of the 1st International
Conference on Engineering of Complex Computer Systems,
ser. ICECCS ’95. Washington, DC, USA: IEEE Computer
Society, 1995, pp. 326–.

[14] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution
migration in a heterogeneous-isa chip multiprocessor,” in
17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2012). IEEE Computer Society, 2012.

[15] A. Aguiar, S. J. Filho, T. G. dos Santos, C. Marcon, and
F. Hessel, “Architectural support for task migration consern-
ing mpsoc,” in SBC, 2008.

[16] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau, “As-
sessing task migration impact on embedded soft real-time
streaming multimedia applications,” EURASIP Journal on
Embedded Systems, no. 9, January 2008.

[17] L. G. adn S. Layouni, M. Benkhelifa, F. Verdier, and
S. Chauvet, “Multiprocessor task migration implementation
in a reconfigurable platform,” in International Conference on
Reconfigurable Computing and FPGAs, 2009.

[18] E. Brio, D. Barcelos, and F. Wagner, “Dynamic task allocation
strategies in mpsoc for soft real-time applications,” in Pro-
ceedings of the conference on Design, automation and test in
Europe, IEEE Council on Electronic Design Automation and
EDAA : European Design Automation Association. ACM,
2008, pp. 1386–1389.

[19] P. Smith and N. C. Hutchinson, “Heterogeneous process mi-
gration: The tui system,” Software — practice and experience,
vol. 28, no. 6, pp. 611–639, March 1998.

[20] S. Potluri, K. Tomko, D. Bureddy, and D. K. Panda, “Intra-
mic mpi communication using mvapich2: Early experience,”
Texas Advanced Computing Center (TACC)-Intel Highly Par-
allel Computing Symposium, April 2012.

[21] J. Howard, S. Dighe, Y. Hoskote, and Vangal, “A 48-core ia-
32 message-passing processor with dvfs in 45nm cmos,” in
Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), feb. 2010, pp. 108 –109.

[22] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-
wards, C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and
A. Agarwal, “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, pp. 15–31, 2007.

[23] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich, “An analysis of linux
scalability to many cores,” in Proceedings of the 9th USENIX
conference on Operating systems design and implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 1–8.

[24] A. Kleen, “Linux multi-core scaleability,” in Linux Kongress
2009, Dresden, 2009.

[25] D. Wentzlaff and A. Agarwal, “Factored operating systems
(fos): the case for a scalable operating system for multicores,”
SIGOPS Oper. Syst. Rev., vol. 43, pp. 76–85, April 2009.

[26] R. Barry, FreeRTOS Reference Manual: API functions and
Configuration Options, Real Time Engineers Ltd, 2009.
[Online]. Available: http://http://www.freertos.org/

[27] D. Ågren. Freertos cortex-a9 mpcore port. Åbo Akademi
University. [Online]. Available: https://github.com/ESLab/
FreeRTOS---ARM-Cortex-A9-VersatileExpress-Quad-Core-port

[28] ARM. (2011) Coretile express a9x4 technical refer-
ence manual. http://infocenter.arm.com/help/topic/com.arm.
doc.dui0448e/DUI0448E coretile express a9x4 trm.pdf.

[29] ——. (2009) Cortex a9 technical reference manual.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388e/
DDI0388E cortex a9 r2p0 trm.pdf.

[30] F. Banno, D. Marletta, G. Pappalardo, and E. Tramontana,
“Tackling consistency issues for runtime updating distributed
systems,” in Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium
on, april 2010, pp. 1 –8.

[31] R. Slotte, “A lightweight rich-component framework for real-
time embedded systems,” Master’s thesis, Åbo Akademi
University, January 2012.

