
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Lightweight Framework for Runtime Updating of C-Based Software in
Embedded Systems

Simon Holmbacka, Wictor Lund, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
Email: firstname.lastname@abo.fi

Abstract

Software updates in embedded systems are typically per-
formed by bringing the system to stop, replacing the
software and restarting the system. This process can in
certain cases be very time consuming and costly, which
leads to less frequent software updates. In order to es-
tablish both long uptime and up-to-date software, the
software must be updated during runtime. This pa-
per presents a runtime updating framework for embed-
ded systems.The framework is based on FreeRTOS and
mechanisms have been added to dynamically link and re-
link FreeRTOS tasks to the system during runtime. Our
framework enables the programmer to easily create up-
datable software with simple annotations to the program.
Experiments demonstrate the benefits of updating soft-
ware during runtime with an acceptable overhead when
transferring the application state.

1 Introduction

Long uptime and up-to-date software are highly valued
properties in many industrial plants, automation devices,
complex machineries etc. The production rate of such
devices is dependent on the uptime, which means that a
long and complex reboot process highly unwanted [14]
or in some cases simply not allowed [6]. Runtime updat-
ing, on the other hand, solves this problem by replacing
parts of the software during runtime. Besides solving the
no-reboot issue, runtime updating would also enable the
possibility of transmitting new software versions on-the-
fly over a communication media such as the Internet. It
would reduce costs and eventual risk of having personnel
physically updating software in inaccessible or remote
locations.

Runtime updating of software has existed for decades
and has been previously presented in many forms [11].
Its behavior and requirements for updating varies based
on functionality, operating system, underlying hardware

platform etc. In this paper we present the implementa-
tion of a lightweight runtime update framework for em-
bedded systems. The advantages of our framework are
a) small footprint for data and program memory, which
makes is suitable for even small scale embedded systems
b) no steady state execution overhead c) easy annota-
tions of application state without including explicit meta
data from the programmer d) the framework is compati-
ble with all FreeRTOS compatible hardware and uses the
standard GCC without any modifications.

By using the framework, the programmer can create
easily updatable applications as plug-in components, and
on-the-fly insert them to the system. The framework is
an extension to the operating system FreeRTOS [3] and
is implemented using 1600 lines of c-code. Early evalu-
ations demonstrate the benefits of updating software dur-
ing runtime with regard to performance and functional-
ity, and a low overhead for state transfer in typical appli-
cations.

2 Related Work

Runtime updating techniques exist in several forms and
on different levels of abstraction. Highlevel mechanisms
such as [2] and [16] update Java systems online by using
component based solutions such as the OSGi. On lev-
els closer to hardware, a component framework THINK
[10] has been used to create updatable components with
well defined interfaces. THINK supports re-linking of
components during runtime and explicit mechanisms for
starting and stopping a component. In contrast to the ex-
tensive THINK framework, we address the importance
of a lightweight framework for embedded devices. Our
framework is created for small to medium range embed-
ded devices with a restricted amount of memory and lim-
ited amount of processing power. To simplify program-
ming, the framework can be compiled directly with the
standard GCC and requires no new language learning.

Wahler et al. present in [15] a component frame-

work for enabling runtime updating in real-time embed-
ded systems. Similar to our approach, the state context
in the applications is stored in a shared memory area, but
instead of tagging the memory area with meta data, we
define a new memory section (.rtu) to store data related
to runtime updating.

An important question for runtime updating is the
level of transparency to the programmer, and what im-
plications the update will have on the application. In [8]
the updating mechanism uses a global function pointer
to dynamically point on the current function version, and
change this pointer value as the software is updated. This
framework requires therefore that a version tag is added
to each version of the functions. The framework in [8]
also requires a special compiler and certain modifications
to the program in order to achieve updatable compilable
applications. We solve several of these issues by intro-
ducing dynamic linking of ELF binaries.In our system,
The updated functions are not referred to by their name,
but their address in the linked binary.

State transfer [5, 13, 9] is one of the key issues in
runtime updating. The approach for implementing state
transfer is dependent on the abstraction level the mech-
anism is operating on. Java-based systems [9] can swap
complete classes while C-based systems cannot. Hay-
den et al. [5] describe the development of a serialization
mechanism used to trace the content of each data struc-
ture in C-based systems to determine the content of the
application state. To trace the state content in a struc-
tured way, we adopted a tracing mechanism included in
the DWARF library [17].

Lastly we allow the programmer to mark the state con-
text with a special annotation. This approach reduces
the transparency slightly, but in contrast to [4] requires
no static analysis of the application. It neither puts con-
straints on the program structure or introduces any steady
state overhead because no implicit monitoring is needed
during runtime.

3 Implementation

This section describes the most important parts of the
implementation of the runtime updating mechanism.We
have implemented the mechanism as an extension for
FreeRTOS [3].The runtime updating mechanism is cre-
ated using roughly 1600 SLOC. A minimum configura-
tion with OS and runtime updating mechanism requires
in total only 700 KB of program memory. To further op-
timize this size, a hand tailored pointer tracer would need
to be implemented. Nevertheless chose the DWARF li-
brary due to its rich functionality. Sections 3.1 and 3.2
focuses on the two most important aspects of the imple-
mentation: Dynamic binary linking and state transfer.

3.1 Dynamic binary linking
The first main feature of the runtime updating mecha-
nism is to componentize FreeRTOS tasks into separate
Executable and Linkable Format (ELF) binaries. This
componentization enables the possibility of re-linking
software during runtime. The feature is not available
in the default FreeRTOS package, and has been added
to dynamically add and remove software binaries to the
system. Figure 1 illustrates FreeRTOS and the runtime

Figure 1: Structure of the ELF binary-based composition

updating environment using ELF binaries for two parts:
The FreeRTOS base system and the tasks schedulable by
FreeRTOS. At startup, the system binary is linked with
all task binaries. After this, the tasks can use kernel
resources and the kernel is able to schedule FreeRTOS
tasks from the linked ELF binaries. With dynamic link-
ing, tasks can be externally compiled and inserted into
the running system from external sources such as ftp,
flash cards, etc. and linked into the kernel. To replace
parts of the software, we have defined a set of steps to
follow stop, re-link and start components. This algorithm
is further described in [15] Section 3.2 with the exception
of steps 4 and 5.

3.2 State transfer
A task’s state is a task’s obtained properties when execut-
ing to a certain point in the program. The state is usually
represented by a collection of declared variables, point-
ers or data structures with certain values. The value of
the context defining the state must be temporarily stored
in a predefined place in order for the new software ver-
sion to continue with the same state as the old version.

In our framework, the programmer annotates the con-
text with RTU DATA e.g unsigned int RTU DATA

a; This annotation allows the variable to be saved in a
special data segment called .rtu. It gives the program a
structured way of storing selected information in an ap-
plication, and gives the updated version of the program
a predictable way of retrieving the information. As the
context notation has been placed, the programmer de-
clares checkpoints TASK IN SAFE STATE() in the pro-
gram to determine point at which the program is safe for
update. A safe state is a state in which no external events

2

such as inter task communication, open file descriptors,
open sockets, etc., can disturb the state of the task. At
this point the updating mechanism is invoked and all an-
notated variables are stored in the .rtu segment. As the
new version of the program is re-linked with the FreeR-
TOS system, the state context can be transferred from
the temporary .rtu segment to the context used in the
program.

The runtime update is initiated as soon as any actor
sets a rtu requested flag high in the application. This
actor can be a timer, external event or another task in
the system. Fig. 2 shows two versions of a simple pro-
gram. The first version of the program contains a counter

Figure 2: Example of two versions of a program with an
updatable state

which increments by one unit each loop iteration. Af-
ter the rtu requested flag is set, the runtime update
mechanism transfers the counter value to the new ver-
sion. The new version of the program continues with the
stored counter value, but increments this value with two
units. In case the type of the context changes (e.g. from
int to float) the application must perform an explicit
state transform on the context [15].

3.2.1 Pointer tracer

Our framework supports the usage of pointers as part
of data structures in the state context. In order to de-
termine what data to include in the context transfer, we
introduced debug information to the compiler. For this
purpose we use the DWARF debug library [17] for GCC
to mark the content of memory references according to
data type. The DWARF library is able to follow pointer
references down to the leaf node and extract information
along its path. It also marks an already searched refer-
ence in order to avoid infinite search loops. With this
library our framework is able to determine and transfer
data types such as atomic variables, pointers, arrays, ar-
rays of pointers, structs etc. without explicit information
from the programmer.

4 Evaluation

To demonstrate early results, we performed a set of ex-
periments with the runtime updating mechanism on top

of FreeRTOS. All experiments used a timer to trigger the
runtime updating mechanism at a given moment.

4.1 Platforms
The evaluation was run on two embedded platforms with
different architectures.

The first platform was a Versatile Express board
equipped with an ARM Cortex-A9 based CA9 NEC
CoreTile 9x4 quad-core chip running at 400 MHz with 1
GB of DDR2 main memory. This ARM device uses the
ARMv7 architecture and was compiled with the ARM
instruction set. Moreover, we created a port [1] of FreeR-
TOS for the Versatile Express, which was used as the un-
derlying software platform. The second platform used in
the experiments was an ARM926EJ-S Processor based
on the Atmel ARM9 CPU, which was using the ARMv6
architecture. The CPU was running on 200 MHz and had
64MB of external DDR2 main memory. We mapped the
runtime updating mechanism on an existing FreeRTOS
port designed for the ARM926EJ-S device.

4.2 Software update
We evaluated two different outcomes of using the run-
time updating mechanism: Performance and functional-
ity. Later, we also performed overhead measurements
on both platforms to determine at what cost a runtime
update can be achieved. All tests were benchmarked
against a baseline application (v1), which later was up-
dated (v2).

4.2.1 ARM Cortex-A9

In the first case, a simple controller use-case was created
for demonstrating the effects of runtime updating. Our
system shown in Figure 3 consists of a common control
loop in which a PID controller regulates the frame rate
of a video used for entertainment purposes. The plant is
a video player which outputs the frame rate value to the
controller, which in turn strives to keep a framerate of 40
fps.

Figure 3: Structure of the video player and its controller

The system is also influenced by load disturbances
which may alter the frame rate of the video randomly.
The task of the controller is therefore to regulate the sleep
time between the frames depending on what disturbances

3

are present at the moment. Initially the system used a
normal PID controller (v1). This controller proved to be
unable to keep the frame rate stable enough to satisfy
the users. Our runtime updating mechanism was imple-
mented to on-the-fly update the PID controller with soft-
ware modifications (v2). The modifications added fea-
tures such as minimum variance (MV) to the PID con-
troller, which made it more suitable for the environment
in which it is used. The state of the control system con-
taining the I-term and D-term was, as described, stored
before the update and restored after the update.

Figure 4 shows the frame rate output of both con-
trollers, and the runtime updating is taking place at 115
samples. From Figure 4, it is clear that the new controller
(v2) is more suitable to regulate the frame rate.

Figure 4: Improved stability after updating the controller

4.2.2 ARM9

In the second case, we used the ARM9 platform to
demonstrate increased functionality in the application by
updating the software. The application in question is a
display used to output measurement values from the chip.

The first software version (v1) included two measure-
ment values: On-chip temperature and Internal chip volt-
age. The software also included two derived values: Max
chip temperature and average chip temperature. These
values are based on previous sensor values and are there-
fore part of the state context.

Figure 5 shows the result of the runtime update: v2 in-
cludes more sensor values such as external temperature,
and auxiliary voltage levels. It also displays all tempera-
tures in both Centigrade and Fahrenheit degrees – a fea-
ture added by the new software. Furthermore, v2 of the
software uses floats instead of integers for representing
certain temperatures. This property is achieved by trans-
ferring the state to the newer version and performing ex-
plicit state conversion.

4.3 Overhead
Updating software requires a certain time to store/load
data and for the linking of ELF binaries. Since the user
experience is degraded if this overhead is too large [7],

Figure 5: Runtime update of display software. Version 1
to the left and Version 2 to the right

we set up experiments to determine the overhead based
on different program configurations. Furthermore, we
run the experiments on both the Cortex-A9 platform and
the ARM9 platform in order to compare the results from
different performance domains.

The overhead was measured as timing values. Timing
measurements in FreeRTOS is derived by measuring the
OS ticks (time stamp) at two points in the program and
afterwards calculate the difference. We defined the over-
head as the time difference between: entering the safe
state in the old version and start of task execution in the
new version. In order to compare time differences in two
different task versions, we stored the time stamp from
the old version as part of the context and transferred it
to the new task version. The time stamp in FreeRTOS is
defined as an unsigned long integer. The base line
for measuring the overhead was a zero size transfer in-
cluding only the time stamp from the old version. After
this reference measurement, we conducted experiments
with two settings: 1) one array with different sizes and
2) Different amount of single variables. All data types in
the arrays and variables in the experiments were double
precession floats.

The first experiment with one array of different sizes
is presented in Table 1. As seen in the table, the over-
head from increasing the array size does not influence
much since the pointer tracer does not trace every single
element, but only the array itself.

ARM9
Array size 3 100 1k 10k 20k 50k 100k
Time [ms] 56 57 57 61 65 79 99

ARM Cortex-A9
Array size 3 100 1k 10k 20k 50k 100k
Time [ms] 11 11 11 12 13 15 18

Table 1: Overhead of updating software with 1 array of
context of different sizes

The second experiment used different numbers of sin-
gle variables as context and is presented in Table 2. By
introducing small but many variables (such as in Table
2), the overhead increases more and reaches 5 seconds

4

ARM9
Nr. Var. 10 100 1k 2500 5k 10k
Time [ms] 61 104 537 1311 2579 5162

ARM Cortex-A9
Nr. Var. 10 100 1k 2500 5k 10k
Time [ms] 12 15 51 112 215 426

Table 2: Overhead of updating software with different
numbers of single variables

for the ARM9 in the case of 10000 variables. While this
overhead is significant, the usual defined context in a task
seldom includes this huge amount of variables. Table 2
also shows that a task including up to 100 variables for
defining the context introduces an overhead of only 104
ms for the ARM9, which is hardly noticed by the user.

5 Conclusions

We have presented a lightweight runtime updating
framework for FreeRTOS based systems. In contrast to
related frameworks, we have focused on small size, easy
annotation and no steady state overhead – this makes our
framework suitable for systems with limited resources
and predictability as key feature. The mechanism is able
to transfer annotated context between application ver-
sions, which makes the update bump-less to the user.
We have evaluated the mechanism on two different plat-
forms and according to two of the major aspects: per-
formance and functionality. The overhead for updating
a given context has also been measured, and results in-
dicate an acceptable overhead for the typical use case.
Lastly, the increase in overhead showed similar trends on
both platforms even if the Cortex-A9 run with the Data
cache enabled and the ARM9 did not.

6 Future Work

We intend to further improve the componentization of
software by integrating an already created component
framework [12] into our system. With a proper compo-
nent framework [10], [15], the safe state can be more
clearly defined and e.g. for explicit communication be-
tween tasks. A more rigorous component framework can
also more formally define safe states since the control
of communication between components are more precise
handled. A proper component framework rises the level
of abstraction to the programmer and is especially useful
in a multi-programmer environment.

Acknowledgment

This work has been supported by the Artemis JU
project RECOMP: Reduced Certification Costs Using

Trusted Multi-core Platforms (Grant Agreement number
100202).

References
[1] ÅGREN, D. Freertos cortex-a9 mpcore port. https:

//github.com/ESLab/FreeRTOS---ARM-Cortex-A9-

VersatileExpress-Quad-Core-port.

[2] BANNO, F., MARLETTA, D., PAPPALARDO, G., AND TRA-
MONTANA, E. Tackling consistency issues for runtime updating
distributed systems. In IPDPSW (april 2010), pp. 1 –8.

[3] BARRY, R. FreeRTOS Reference Manual: API functions and
Configuration Options. Real Time Engineers Ltd, 2009.

[4] CHEN, H., YU, J., CHEN, R., ZANG, B., AND CHUNG YEW, P.
Polus: A powerful live updating system. In in Proc. of the 29th
Intl Conf. on Software Engineering (2007), pp. 271–281.

[5] CHRISTOPHER HAYDEN, EDWARD SMITH, M. H. J. F. State
transfer for clear and efficient runtime updates. In 3:rd Workshop
on Hot Topics in Software Upgrades (HotSWUp11) (2011).

[6] KLEINER, P. Satellite provider fixes business-critical error in
orbiting satellite. Boards and Solutions, ECE (September 2012),
20–23.

[7] MAKRIS, K., AND BAZZI, R. A. Immediate multi-threaded dy-
namic software updates using stack reconstruction. Tech. rep.,
2008.

[8] NEAMTIU, I., HICKS, M., STOYLE, G., AND ORIOL, M. Prac-
tical dynamic software updating for c. SIGPLAN Not. 41, 6 (June
2006), 72–83.

[9] NOUBISSI, A., IGUCHI-CARTIGNY, J., AND LANET, J. Hot
updates for java based smart cards. In Data Engineering Work-
shops (ICDEW), 2011 IEEE 27th International Conference on
(april 2011), pp. 168 –173.

[10] POLAKOVIC, J., MAZARE, S., STEFANI, J.-B., AND DAVID,
P.-C. Experience with safe dynamic reconfigurations in
component-based embedded systems. In Proceedings of the
10th international conference on Component-based software en-
gineering (Berlin, Heidelberg, 2007), CBSE’07, Springer-Verlag,
pp. 242–257.

[11] SEGAL, M., AND FRIEDER, O. On-the-fly program modifica-
tion: systems for dynamic updating. Software, IEEE 10, 2 (march
1993), 53 –65.

[12] SLOTTE, R. A lightweigth rich-component framework for real-
time embedded systems. Master’s thesis, Åbo Akademi Univer-
sity, Finland, 2012.

[13] SSU, K.-F., AND JIAU, H. C. Online non-stop software update
using replicated execution blocks. In 24th International Com-
puter Software and Applications Conference (Washington, DC,
USA, 2000), COMPSAC ’00, IEEE Computer Society.

[14] TOIVONEN, H. T., AND TAMMINEN, J. Minimax robust lq con-
trol of a thermomechanical pulping plant. Automatica 26, 2 (Apr.
1990), 347–351.

[15] WAHLER, M., RICHTER, S., AND ORIOL, M. Dynamic soft-
ware updates for real-time systems. In Proceedings of the 2nd In-
ternational Workshop on Hot Topics in Software Upgrades (New
York, NY, USA, 2009), HotSWUp ’09, ACM, pp. 2:1–2:6.

[16] WANG, T., ZHOU, X., WEI, J., AND ZHANG, W. Towards
runtime plug-and-play software. Quality Software, International
Conference on 0 (2010), 365–368.

[17] WORKGROUP, D. D. I. F. Dwarf debugging information format
version 3. http://dwarfstd.org/doc/Dwarf3.pdf, 2005.

5

