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Abstract—In this paper, the need for the construction of The very first STBC for two transmit antennas was the
asymmetric space-time block codes (ASTBCs) is discussed, mostlyAlamouti code representing multiplication in the ring of
concentrating on the case of four transmitting and two receiving g aternjons. As the quaternions form a division algebra, such
antennas for simplicity. Above the trivial puncturing method, i.e. . . - - .
switching off the extra layers in the symmetric multiple input- matrices mgst_be |nver'F|bIe, i.e. the _resultlng STBC_ r_ngets
mu|t|p|e ou’[pu’[ (M|MO) Set’[ing’ a more sophisticated yet Simpie the rank criterion. Matrix representat|0ns Of Other dIVISIOh
asymmetric construction method is proposed. This method can be algebras have been proposed as STBCs at least in [2]-[7].

converted to produce multi-block space-time codes that achieve The most recent work has concentrated on adding multiplexing
the diversity-multiplexing (D-M) tradeoff. It is also shown that gain, i.e. MIMO applications, and/or combining it with a good

maximizing the density of the newly proposed codes is equivalent ~ . . : .
to minimizing the discriminant of a certain order. The use of the minimum determinant. It has been shown in [5] that CDA-

general method is then demonstrated by building explicit, sphere based square ST codes with the NVD property achieve the
decodable codes using different cyclic division algebras (CDAs). diversity-multiplexing (D-M) tradeoff introduced in [8]. This
We verify by computer simulations that the newly proposed result also extends over multi-block space-time codes [9].
method can compete with the puncturing method, and in some  nq codes proposed in this paper are not fully multiplexing
cases outperforms it. Our conquering construction exploiting o o )
maximal orders improves even upon the punctured perfect code nor full-rate" due to the modified application reqUIrements.
and the DJjABBA code. This follows from the fact that the number of Rx antennas will
be strictly less than the number of Tx antennas. We call this
|. BACKGROUND situationasymmetricas opposed to the symmetric case of #Tx
In this work, we are interested in the coherent MIMO cassntennas = #Rx antennas. The construction method proposed
where the receiver perfectly knows the channel coefficienin. this paper can be converted to produce multi-block ST
A lattice is a discrete finitely generated free abelian subgrowdes that do achieve the diversity-multiplexing tradeoff. We
L of a real or complex finite dimensional vector space, calleghall show that maximizing the density (i.e. finding the most
the ambient space. In the space-time (ST) setting a natuséficient packing in the available signal space) of codes arising
ambient space is the spagd,, (C) of complexn xn matrices. from this method is equivalent to minimizing the discriminant
The Gram matrixis defined ag7(L) = (Rtr(z,2]")), _, <o Of acertain order.
where H indicates the complex conjugate transpose of a
matrix, tr is the matrix trace (=sum of the diagonal elements),
andz;, i = 1,...,t, form aZ-basis ofL. The Gram matrix  In some applications the number of Rx antennas is required
has a positive determinant equal to the squared measure oftth&e strictly less than the number of Tx antennas. A typical
fundamental parallelotope:(L)2. example is a cellular phone downlink with two receivers
From the pairwise error probabihty point of \/ieW7 theEXplOltlng polarization. Due to the limited size of 3+G mobile
performance of a space-time code is dependendiversity Phones and DVB-H (Digital Video Broadcasting-Handhelds)
gain and coding gain Diversity gain is the minimum of user equipment, only a very small number of antennas fits at
the rank of the difference matrixX — X’ taken over all the end user site. For this kind of an application, the minimum
distinct code matrices, X’ € C. When( is full-rank, the delay MIMO constructions arising from the theory of cyclic
coding gain is proportional to the determinant of the matriftivision algebras (see e.g. [3]) have to be modified. For sim-
(X — X')(X — X)2. The minimum of this determinant Plicity, we will mostly concentrate on the 4152Rx antenna
taken over all distinct code matrices is called #ménimum case. If we could afford four Rx antennas, the task would
determinantof the codeC. If it is bounded away from zero be easy — just to use thex 4 minimum delay, rate-optimal
when the spectral efficiency approaches infinity, the ST co§dA based construction transmitting 16 Gaussian numbers in

is said to have th@onvanishing determinarfiNVD) propert
9 m ) property Full-rate, or rate-optimal, means that the code rate equals the decoding

[1_]' For_ no_n-zerc_J square matrices, being full-rank COIr‘C|d"%félay. The code rate is defined as the ratio of the number of transmitted
with being invertible. symbols to the decoding delay.

II. MOTIVATION AND PROBLEM STATEMENT
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four time slots, i.e. four in each time slot. Now, however, the Remark 1: The connection between the usual norm map
reduced number of Rx antennas limits the transmission dow,,»(a) and the reduced normr(a) of an elements € A
to two Gaussian numbers per each time slot. is Ny/p(a) = (nr(a))”, wheren is the degree of?/F.

We have come up with two different types of solutions to In the following we give a condition when an algebra is
this problem. Both solutions take advantage of cyclic divisioa division algebra, i.e. each of its non-zero elements has a
algebras and yield rate codes with a nonvanishing determi-multiplicative inverse. For the proof, see [10, Theorem 11.12,
nant. Let us denote by = rm the number of transmitters in p. 184].
the usual symmetric CDA based MIMO system and supposeProposition 3.1:An algebraA = (E/F,o,v) of index n
we want to construct a code faiTx+rRx antennas. One ideais a division algebra if and only if the smallest factoe Z
is to first pick an index- division algebra with a center thatof n such thaty’ is the norm of some element ifi* is n.
is 2m-dimensional oveQ, form isomorphic copies of it and Let R denote a Noetherian integral domain with a quotient
then use them as x r diagonal blocks in am x n code field F, and let.A be a finite dimensionak-algebra.
matrix. Another possibility is to take the symmetnicx n Definition 3.3: An R-orderin the F-algebraA is a subring
MIMO code, but choose the elements in the matrix from af of A, having the same identity element. ds and such that
intermediate field of degre®- over Q instead of the maximal A is a finitely generated module ovér and generates! as a
subfield. In this paper we will cover the first method. The othdinear space overF'.
method will be treated in more detail in a forthcoming paper. As usual, ank-order in.A is said to bemaxima] if it is not

properly contained in any othe®-order in A.
I11. CYCLIC DIVISION ALGEBRAS AND ORDERS The next proposition describes an order from where the

) ) . elements are drawn in a typical CDA based MIMO space-
The theory of cyclic algebras and their representations @$,e piock code. For the proof, see [11, Theorem 10.1, p.

matrices are thoroughly considered in [2] and [10]. We af5) Some optimization to this can be done e.g. with the aid
only going to recapitulate the essential facts here. For a MYEideals as in 13].

detailed introduction on orders, see [11].
In the following, we consider number field extensidnigF, )
where F' denotes the base field and* (resp. E*) denotes Aa={zo+ - +u" "zy1 | 2; € Op}

the set of the non-zero elements Bf(resp.E). The rings of ~ 4 _ (E/F,0,~). Later on this order will be referred to
algebraic integers are denoted®y: andOp, respectively. Let 54 thenatural order For any non-zero element € A 4 its
E/F be a cyclic field exte.nsion of degreewith Galoi; group reduced normnr(z) is a non-zero element of the ring of
Gal(E/F) = (o), whereo is the generator of the cyclic group.integers?;- of the center. In particular, if ' is an imaginary
Let A = (E/F,0,7) be the corresponding cyclic algebra ot adratic number field or a cyclotomic field, then the minimum
degreen (n is also called thendex of A and in practice it geterminant of the lattice\ 4 is nonvanishing and equal to
determines the number of transmitters), that is one. More generally, if: is an element of afk-order A, then

Proposition 3.2: Let us define the)» order

A:E@UE@UQE@-”@un_lE, nr(m)ER. - - o
. Remark 2:Note that ify € F'* is not an algebraic integer,
with u € A such thateu = uo(e) for all e € £ andu™ = then an ordet\ fails to be closed under multiplication. This
v € F*. An elgmentx =Totuxy + -+ 1{”_1%—1 € A may adversely affect the minimum determinant of the resulting
has the following representation as a matfix= matrix lattice as elements not belonging to an order may
. o(zn 1) 40 @ns) - 0" (z1) have non-integral and hence small norms. One of the motifs
0 YOEIn—1) 7O En—2 e\ underlying the perfect codes [3] is the requirement that the
1 ofzo) 70" (Tn1) yor (@) variabley should have a unit modulus. Relaxing this restriction
x o(x1) o?(z0) yo 1 (x3) g . ' gt .
2 on the size ofy will lead to an antenna power imbalance in
: both space and time domains. The measure of the fundamental
Tno1 0(Tn_2) o*wp_3) - " xo) parallelotope varies with different algebras. Hence, one has to

(1) keep in mind that on the other hand, an algebra with a unit
Definition 3.1: An algebraA is calledsimpleif it has no may still admit larger average energy than an algebra with a
nontrivial ideals. A cyclic algebral = (E/F,0,+) is central non-unity so the size ofy is not the only parameter to stare
if its centerZ(A) ={z € A | za’ =2’z forall 2’ € A} = at.
F. Definition 3.4: Let m = dimg A. The discriminantof the
All algebras considered here are finite dimensional assocfa-order A is the ideald(A/R) in R generated by the set
tive central simple algebras over a field. From now on, we {dettr(mz)" | (& o) € A
identify the element: of an algebra with its standard matrix vrIng=1 Ly im '
representation defined above in (1). In the interesting cases of = Q(i), i = /—1 (resp.
Definition 3.2: The determinant of the matrid is called F = Q(v/-3)) the ring R = Z[i] (resp. R = Zw],
the reduced normof the elementr € A and is denoted by w = (—1 + +/=3)/2) is a Euclidean domain, so in these
nr(zx). cases as well as in the cage= Z it makes sense to speak



of the discriminant as an element @ rather than as an Let us consider an extension tower with the degrges

ideal. We simply compute the discriminant d@A/R) = L] =r,[L: F] = m and with the Galois groupGal(E/F) =

dettr(z;z;)i%_,, where{zy,...,x,} is any R-basis ofA. (1), Gal(E/L) = (¢ = ™). Let B = (E/L,0,7) = E +
Remark 3:1t is readily seen that wheneveér C T are two ---+u"~'E be an index- division algebra, where the center

R-orders, therd(T'/R) is a factor ofd(A/R). It also turns L is fixed by = 7. We denote by #Tx= n = rm.

out (cf. [11, Theorem 25.3]) that all the maximal orders of a Note that if one has a symmetric, index = rm CDA

division algebra share the same discriminant. In this senséased STBC, the algebfican be constructed by just picking

maximal order has the smallest possible discriminant amoagsuitable intermediate field C E of a right degree as the

all orders within a given division algebra, as all the orders arew center.

contained in the maximal one. Anelement = zg+---+u" "z, 2, €L, i=0,..,7r—
Let us now define some specific indexcyclic division 1 of the algebra3 has a representation as anx r matrix

algebras that will be later on used in the explicit cod® = (b;;)i<i j<r as given in (1). However, we can afford

constructions. We denote fgy, the primitiventh root of unity. an n x n packing as we are using transmitters. This can

be achieved by using the isomorphism Let us denote by

A. Perfect algebra 8(B) = (E/F,0,7%(7)), k=0, ...,m— 1 them isomorphic
In [3] the authors presented the so-called perfect codes tbapies of B and the respective matrix representations by

satisfy certain, quite strict, design criteria and hence perform i

very well in computer simulations. The underlying algebra in TH(B) = (7(bij))i<ij<r k= 0,0ym — L. @)

their 4 x 4 construction is the cyclic division algebfaA = Proposition 4.1:(Method 1) Letb ¢ A C B and F =

(E/F,79) with E = Q(0,7), F = Q(i), v’ =7 =i, Q(s), whered € {i,w}. Assumey € Oy. The lattice

0 = (5 + (5 = 2c0927/15), and 7(0) = > — 2. The

corresponding perfect code is C(A) = {M = diag(B, 7(B),..., 7" '(B))}

PC ={ax | x € Apy (cf. Prop. 3.2) a = 1 — 3i + i6?}, built from (2) has a nonvanishing determinadat C(A) € Z[4].
Thus, the minimum determinant is equal to one. The code rate

whereZ = (a) is an ideal ofOg. equalsr?m/rm = r.
Moreover, a change of basis given by Proof: According to Definition 3.2 and Proposition 3.2,

1 0 0 0 m—1 ) m—1 .
0 1 00 det M =[] det7'(B) = [] nr('(b))
0 -3 0 1 i=0 i=0
-1 -3 1 1 m—1

. . - . = ¢ b))) =N, b)) € Z[4],

is required for obtaining an orthogonal basis. g 7 (nr (b)) v (nr(0)) 1]

B. Cyclotomic algebra and a new isomorphic algebra and hencé det M| > 1. ]

The AST codes obtained from the perfect algebra will be NOw the natural question is how to choose a suitable

compared with the ones within the algetttd = (E/F, r,~) division algebra. In [5] and [6] several systematic methods
with £ = Q(¢ = Ci6), F = Q(i), u! = v = 2+, and for constructing extension&'/L are provided. All of them

(&) = i€. make use of cyclotomic fields. In what follows we show how
This algebra has appeared earlier in at least [4] and [7]_to maximize the code density (i.e. minimize the voll_Jme of
Now let us denote by the first quadrant fourth root of the fundamental parallelotope, see [7]) with a given minimum

2 + 4. The algebraC.A is isomorphic to the algebra/A = determinant by minimizing a certain discriminant. Another

(Q(t)/Q(i),t — it,i) with a unit~ [7]. Even thoughy is a guestion worth asking is how to do this in practice.

unit and hence the energy evenly spread, one has to realiz¥/e need the following result. For the proof, see [11, p. 223].

that the fact thaf /2 +i| > |¢,| = 1 may hostilely affect Lemma 4.2:Suppose\ C A = (E/L,,7) is anOp-order

to the average code energy (cf. Remark 2). We return to ti#8d thatf” C L. The discriminants then satisfy

example in Section V. d(A/Op) = Nip (d(AJOL)) d(OL/OF)dimLA.

IV. CONSTRUCTINGASYMMETRIC ST LATTICES The same naturally holds in the commutative case when we
A straightforward way to obtain AST lattices would be justeplace A with E.

to switch off the extra layers in a symmetric MIMO setting. The definition of the discriminant closely resembles that of
In the case of 4T%2Rx antennas this would mean that in (1jhe Gram matrix of a lattice, so the following results are rather
we set e.gz; = x3 = 0 in order to transmit a limited number unsurprising.
of 8 Gaussian numbers that can be received with only twoLemma 4.3:Assume thaf’ is an imaginary quadratic num-
receivers in four time slots. In what follows we present anothéer field and tha{1, p} forms aZ-basis of its ring of integers
— in some cases significantly better — method for constructids. Let r = [E : L], m = [L : F], andn = rm. If the
AST lattices. orderC(A) defined as in Proposition 4.1 is a frég--module



(which is always the case ®r is a principal ideal domain), Therefore, if we denote bp!"! the 412 x 412 matrix havingr?
then the measure of the fundamental parallelotope equals copies ofD(6) along the diagonal and zeros elsewhere, we get

. g G(C(A)) = L (DIL(x)) (DL(X)) ™. Thus,m(C(A)) =
(C(A)) = [Sel™ |d(A/Op)] det G(C(AQ)) = |det L(X)L(X)H|"? . (1) [det D(B)[" .

Proof: In order to keep the notation simple let us assum 1122 2 2 or?
m = 2. The proof directly generalizes to an arbitrary Let GAS (di) L |detD(f)2‘ E N t_|d(OL5/OF)| N by h
A = (a;;) be ann x n complex matrix. We flatten it out into a( ). an emma 4.z, Equation (5) now gives us the
claim when we still note (again by Lemma 4.2) that

4 x 4n? matrix L(A) by first forming a vector of length? out 2
of the entries (e.g. row by row) and then replacing a compléégOL/OF) d(A/OL)7(d(A/OL)) = ‘,i(A/OF)'
Corollary 4.4: In the caseF' = Q(i) we getm(C(A))

number z by a diagonal four by four matrix with entries )
z,7(z), 2%, and 7(2)* (z* is the usual complex conjugate of|d¢(é\)/mzr[ﬂ|)d|@':/(;[}])|: Q(w) the volume equalsn(C(A))
5 wi)|.

z). If A and B are two square matrices withh rows we can (%5 .
easily verify the identities.(4)L(B)¥ = Now we can conclude that the extensioRgL, L/F and

the orderA C B should be chosen such that the discrimi-
diag(tr(AB™), 7(tr(AB™)),tr(A" B), 7(tr(A" B))) (3) nantsd(O./Or) andd(A/O;) are as small as possible. By
TNT choosing a maximal order within a given division algebra we
and L(A)L(B™)" = can minimized(A/Or) (cf. Remark 3). As in practice an
diag(tr(AB), 7(tr(AB)), tr(AB)*, r(tr(AB))*).  (4) Iimaginary quadratic number field’ is contained inL, we
know that L is totally complex. In that case the fact that

Next let X = {x1,x,..., 2,2} be anO-basis forA. We r(r—1)
form the 472 x 4r? matrix L(X) by stacking the matrices d(A/OL) = (PLP,) g (")
L(x)axar> 0N top of each other. Similarly we gét(X) by \yhere P, and P, are prime idealss O, with the smallest
using the matrice€(z1)7 as column blocks. Then by (4) thenorms (to Q) helps us in picking a good algebra (for the
matrix M = L(X)R(X) consists of four by four blocks of yrqof see [7, Theorem 3.2]). In [7] we have studied the use
the form L(z;) L(z])" = of maximal orders in the design of dense, symmetric, CDA
based MIMO STBCs in more detail. The same ideas can be

diag(tr(zsx;), 7(tr(zsxy)), tr(xw,)*, 7(tr(zsx;))") . .
Qtr(wix), 7ltr(zaey)), tr(waes)", rtr(@izs))") adapted to the asymmetric scheme as well.

Clearlydet R(X)R(X)H = £ det L(X)L(X)H anddet M = Remark 4:The nTx+rRx antenna AST code from Propo-
|d(A/OL)?|T(d(A/OL))|?. Thus, sition 4.1 can be transformed into afix+rRx antenna multi-
block code [9] by an evident rearrangement of the blocks:
[det L(X)L(X)" |2 = |d(A/OL)||(d(A/OL))]. (5) o) by g
diag(B,7(B),...,7" '(B)) < (B -+ 1™ YB)).

Next we turn our attention to the Gram matrix. Let
{1,6,...,6°} be aZ-basis forO. Then by our assumptionsAs the Gram matrices of an AST lattice and a multi-block

the setY UOX U- - - UG X is aZ-basis forA. From the theory ST lattice coincide, Lemma 4.3 also holds for multi-block ST
of algebraic numbers we know that codes with the same parameters.
Remark 5:(Method 2) Another way to construct AST
d(OF/Z) = det D(p)* andd(Or/Z) = det D(0)*, () |attices would be as follows. Led = (E/F,r,~) be an index
1 1 n division algebra andE : L] = m, [L : F] = r. If in the
where D(p) = ( o o ) and matrix (1) the elements;; are restricted to belong tb (rather
than to '), we obtain a division algebral’ with the center

1 1 1 1 F[u"]. Obviously also the algebrd’ is a division algebra as

Do) = g 10 o0 T(0) it is contained inA. This construction also yields ratecodes
0% (0% (0*)* T(6*H)* |- for nTx+rRx antennas with a nonvanishing determinant.
0 T(0

V. EXPLICIT AST CODES

In this section we provide explicit constructions for the
T () * 7(x)* important case ofTx + 2Rx antennas.
For PA (cf. Section llI-A) we have the nested sequence

)
3) (03)* 7(03)*
(

DO)L(x) = ; , P of fields F C L C E with L = Q(i,v/5). As 7(v/5) =
0°z  7(0°x) (0°z)" T(0°z) —+/5, the field L is fixed by ¢ = 72. By embedding the
together with (3) it follows that for any twe x n matricesA  algebra(E/L, s,4) as in Proposition 4.1 we obtain the AST
and B we havel (D(0)L(A)) (D(0)L(B))" = codePA; C
R(tr(ABT)) - Rtr(AWPB)H) zo do(z1) 0 0
. . x1  o(xo) 0 0 O
: 0 0 T(zg) iT(o(21)) ¢ B

R(tr(63ABT)) .. R(tr(6*A(6°B)T)) 0 0 rl@) rlo(x)



As the center is now with [L : Q(i)] = 2andOr = Z[i,u = codes. It outperforms the next best code by approximately
(1 ++/5)/2], the elementse; in the matrix are of the form 0.6 — 1 dB. In [12] the authors show that the DjABBA code
ay + asp + a3l + agpb, wherea,; € ZJ[i] for all i. Hence, the wins the punctured Perfect code loy5 dB or less in the
code rate i8/4 = 2. BER performance at the rate 4 bpcu. The same holds for the
The algebraC.A (cf. Section 1lI-B), for its part, has the BLER performance and thus our code improves even upon
nested sequence of fields C L C E with L = Q(s = (3). the DjABBA code - or at the worst ties with it. A suitably

As 7(s) = —s, the field L is fixed by o = 72. Again by modified (more details will follow in a forthcoming paper)
embedding the algebrgE/L,0 : £ — —&,v =1+ s —1i) as sphere decoder was used for decoding the lattices.
in Proposition 4.1, the AST codeA; C It seems that the best construction method depends on the

very algebra that is in use. Figure 1 shows that the puncturing
method is not always the first choice, hence proving the point

x; € O of new construction methods. Actually, for the algeb€as
and A A puncturing yields the worst performance.

10° T ;

i) ’VO'(!I?l) 0 0

x1  o(xo) 0 0

0 0 7(wo) 7(v)7(0(x1))
0 0 7(z1)  7(o(z0))

is obtained. The center i5 with [L : Q(i)] = 2 and O, =

Z[s]. The elementsg; in the matrix are of the form; +ass+

as€ + ays€, wherea; € Z[i] for all 4, and so the code rate is

2. Note that we have chosen here a suitable non-norm elem
~ from Op instead ofOr (cf. Section IlI-B). We get some
energy savings a + s —i| < |2+ i|.

Example 5.1:For our example algebras ove(i) we have
(cf. Propositions 3.2, 4.1, and 4.3)(C(Ap4)) = 3% - 55,
m(C(Aca)) = 216 - 32, and m(C(An4)) = 216 - 53. The
two smallest prime ideal norms aDq; 5, Oq(s), and
OQNQ—H.) are4 andb, 2 and9, and2 and5, respectively. The =
maximal orders of the respective algebras have fundamer
parallelotopes of measures$, 2° - 32, and 2° - 53. Thus we
see thatP A is the only algebra among these that does n

Block error rate
=
O‘

achieve the discriminant bound that would give the measL 107 " = s = " % o
22.5% instead of5% (cf. (7). The algebr&.A can be expected . SNR (d8)
to have the best performance as it has the smallest measure. Fig. 1. Block error rates at 4 bpcu.
This is also backed up by computer simulations, see Fig. 1. REFERENCES
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