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Abstract— In this paper, the need for the construction of
multiple input-double output (MIDO) space-time block codes
(STBCs) is discussed, concentrating on the case of four trans-
mitters for simplicity. Above the trivial puncturing method, i.e.
switching off the extra layers in the usual multiple input-multiple
output (MIMO) setting, two other, more sophisticated yet simple
MIDO construction methods are proposed. The use of these
general methods is then demonstrated by building explicit, sphere
decodable codes using two different cyclic division algebras
(CDAs). We verify by computer simulations that the newly
proposed methods can compete with the puncturing method, and
in some cases outperform it. Our best construction exploiting
maximal orders improves even upon the punctured perfect code
and the DjABBA code.

I. BACKGROUND

Multiple-antenna wireless communication promises very
high data rates, in particular when we have perfect channel
state information (CSI) available at the receiver. In [1] the
design criteria for such systems were developed, and further
on the evolution of space-time (ST) codes took two directions:
trellis codes and block codes. Our work concentrates on the
latter branch.

We are interested in the coherent MIMO case where the
receiver perfectly knows the channel coefficients. The received
signal is

Ynr×` = Hnr×ntXnt×` + Nnr×`,

whereX is the transmitted codeword taken from the STBCC,
H is the Rayleigh fading channel response and the elements
of the noise matrixN are i.i.d. complex Gaussian random
variables. The indicesnt andnr denote the number of transmit
and receive antennas. The block length is denoted by`.

A lattice is a discrete finitely generated free abelian sub-
group of a real or complex finite dimensional vector space
called the ambient space. In the space-time setting a natural
ambient space is the spaceMn(C) of complexn×n-matrices,
i.e. nt = ` = n.

From the pairwise error probability (PEP) point of view [2],
the performance of a space-time code is dependent on two
parameters:diversity gainand coding gain. Diversity gain is
the minimum of the rank of the difference matrixX − X ′

taken over all distinct code matricesX, X ′ ∈ C, also called
the rank of the codeC. WhenC is full-rank, the coding gain is
proportional to the determinant of the matrix(X −X ′)(X −
X ′)H , whereH denotes the transpose conjugate of a matrix.

The minimum of this determinant taken over all distinct code
matrices is called theminimum determinantof the codeC. If it
is bounded away from zero even in the limit as SNR→∞, the
ST code is said to have thenonvanishing determinant(NVD)
property [3]. For non-zero square matrices, being full-rank
coincides with being invertible.

The data rateR in symbols per channel use is given by

R =
1
n

log|S|(|C|),

where |S| and |C| are the sizes of the symbol set and code
respectively. Therate of a code design, for its part, is defined
as the ratio of the number of transmitted complex symbols to
the decoding delay (equivalently, block length). If this ratio
is equal to the delay, the code is said to havefull rate. In
literature full-rate codes are also referred to as rate-optimal.

The very first STBC for two transmit antennas was the
Alamouti code[4] representing multiplication in the ring of
quaternions. As the quaternions form a division algebra, such
matrices must be invertible, i.e. the resulting STBC meets
the rank criterion. Matrix representations of other division
algebras have been proposed as STBCs at least in [5]-[14],
and (though without explicitly saying so) [15]. The most
recent work [8]-[15] has concentrated on adding multiplexing
gain, i.e. MIMO applications, and/or combining it with a
good minimum determinant. It has been shown in [13] that
CDA-based square ST codes with the NVD property achieve
the diversity-multiplexing gain (D-MG) tradeoff introduced in
[16].

The codes proposed in this paper are not fully multiplexing
nor do they have full rate due to the modified application
requirements. This follows from the fact that the number of Rx
antennas will be strictly less than the number of Tx antennas.

The paper is organized as follows. In Section II we explain
why these kinds of code constructions are needed in practice
and shortly discuss our solutions to the problem. The required
facts from the theory of cyclic division algebras are shortly
introduced in Section III. Also some examples are given there.
In Section IV we depict in detail two different methods for
MIDO code construction. These methods are then exemplified
in Sections V and VI by two specific algebras. Finally, we
provide simulation results in Section VII.



II. M OTIVATION AND PROBLEM STATEMENT

In some applications it is well possible that the number of
Rx antennas is required to be strictly less than the number of
Tx antennas. A typical example is a cellular phone downlink
with two receivers exploiting polarization. Due to the lim-
ited size of 3+G mobile phones and DVB-H (Digital Video
Broadcasting-Handhelds) user equipment, only a very small
number of antennas fits at the end user site. For this kind
of an application, the minimum delay MIMO constructions
arising from the theory of cyclic division algebras have to be
modified. For simplicity, we will concentrate on the 4Tx+2Rx
antennas MIDO case. If we could afford four Rx antennas,
the task would be easy – just to use the4 × 4 minimum
delay, rate-optimal CDA based construction transmitting 16
Gaussian numbers (= complex integers) in four time slots, i.e.
four in each time slot. Now, however, the reduced number
of Rx antennas limits the transmission down to two Gaussian
numbers per each time slot.

We have come up with two different types of solutions
to this problem. Both solutions take advantage of cyclic
division algebras and yield rate two codes with a nonvanishing
determinant. One idea is to first pick an index two division
algebra with a center that is four-dimensional overQ, form
an isomorphic copy of it and then use them as blocks in a
4×4 code matrix. Another possibility is to take the usual4×4
MIMO code, but choose the elements in the matrix from an
intermediate field instead of the maximal subfield. The exact
principles for the constructions are given in Sections IV-A and
IV-B.

III. C YCLIC DIVISION ALGEBRAS

The theory of cyclic algebras and their representations as
matrices are thoroughly considered in [6] and [17]. We are
only going to recapitulate the essential facts here.

In the following, we consider number field extensionsE/F ,
whereF denotes the base field andF ∗ (resp.E∗) denotes the
set of the non-zero elements ofF (resp. E). The rings of
algebraic integers are denoted byOF andOE respectively.
Let E/F be a cyclic field extension of degreen with Galois
group (= the set of automorphisms ofE such thatF is fixed
under them)

Gal(E/F ) = 〈σ〉 = {id = σn, σ, σ2, ..., σn−1},
whereσ is the generator of the cyclic group. Let

A = (E/F, σ, γ)

be the corresponding cyclic algebra of degreen (n is also
called theindexof A and in practice it determines the number
of transmitters), that is

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

with a noncommuting elementu ∈ A such thateu = uσ(e)
for all e ∈ E andun = γ ∈ F ∗. An element

x = x0 + ux1 + · · ·+ un−1xn−1 ∈ A

has the following representation as a matrixA =



x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)




.

(1)
Definition 3.1: The determinant (resp. trace) of the matrix

A is called thereduced norm(resp. reduced trace) of the
elementx ∈ A and is denoted bynr(x) (resp.tr(x)).

Definition 3.2: An algebraA is calledsimple if it has no
nontrivial ideals. An F -algebraA is central if its center
Z(A) = {x ∈ A | xx′ = x′x for all x′ ∈ A} = F .

All algebras considered here are finite dimensional associa-
tive central simple algebras over a field. From now on, we
identify the elementx of an algebra with its standard matrix
representation defined above in (1).

The next proposition describes a ring from where the
elements are drawn in a typical CDA based MIMO space-time
block code.

Proposition 3.1:Let us define the ring

ΛA = {x0 + · · ·+ un−1xn−1 | xi ∈ OE}
⊆ A = (E/F, σ, γ). For any non-zero elementx ∈ ΛA its
reduced normnr(x) is a non-zero element of the ring of
integersOF of the centerF . In particular, ifF is an imaginary
quadratic number field, then the minimum determinant of the
lattice ΛA is nonvanishing and equal to one.

Proof: See [18, Theorem 10.1, p. 125].

The next proposition provides us with a condition when an
algebra is a division algebra, i.e. each of its non-zero elements
has a multiplicative inverse. This is an old result of A. A.
Albert [19].

Proposition 3.2:The algebraA = (E/F, σ, γ) of degreen
is a division algebra if and only if the smallest factort ∈ Z+

of n such thatγt is the norm of some element inE∗ is n.

Proof: See [19, Theorem 11.12, p. 184].

For instance, let us define two cyclic division algebras that
will be later on used in the actual code constructions. We
denote byζn = e2πi/n the primitiventh root of unity and the
imaginary unit byi =

√−1.

A. Perfect algebra

In [9] the authors presented the so-called perfect codes that
satisfy certain, quite strict, design criteria and hence perform
very well in computer simulations. The underlying algebra in
their 4× 4 construction is the cyclic division algebra

PA = (E/F, τ, γ)
= {x = x0 + ux1 + u2x2 + u3x3 | xi ∈ E}

with E/F = Q(θ, i)/Q(i), γ = i, θ = ζ15 + ζ−1
15 =

2cos(2π/15), and τ(θ) = θ2 − 2. The corresponding perfect



code is

PC = {ax | x ∈ ΛPA (cf. Prop. 3.1), a = 1− 3i + iθ2},
whereI = 〈a〉 is an ideal ofOE .

Moreover, a change of basis given by



1 0 0 0
0 1 0 0
0 −3 0 1
−1 −3 1 1




is required for obtaining an orthogonal basis.

B. Cyclotomic algebra

The MIDO codes obtained from the perfect algebra will be
compared with the algebra

CA = (E/F, τ, γ)
= {x = x0 + ux1 + u2x2 + u3x3 | xi ∈ E}

with E/F = Q(ξ = ζ16)/Q(i), γ = 2 + i, andτ(ξ) = iξ.
This algebra has appeared also in at least [10] and [14].

IV. CONSTRUCTINGMIDO LATTICES

A straightforward way to obtain MIDO lattices would be
just to ’switch off the extra layers’ in a MIMO setting, i.e.
by puncturing. In the case of 4Tx+2Rx antennas this would
mean that in (1) we set e.g.x1 = x3 = 0 in order to transmit
a limited number of 8 Gaussian numbers that can be received
with only two receivers. In what follows we present two more
sophisticated methods for constructing MIDO lattices.

A. Construction by Method I

Proposition 4.1:Let A = (E/F, τ, γ) = E + uE + u2E +
u3E be an arbitrary index four division algebra. Then we also
have an index two division algebraB = (E/L, σ, γ) = E +
u2E, where the centerL is fixed by σ = τ2. The Galois
groups areGal(E/F ) = 〈τ〉, Gal(E/L) = 〈σ = τ2〉, and
Gal(L/F ) = 〈τ|L〉.

Proof: For the extension field degrees we clearly have
[E : L] = [L : F ] = 2. Let E = L(α), L = F (β) for some
primitive elementsα ∈ E, β ∈ L, and Gal(L/F ) = 〈ν〉.
Then ν2(β) = β and the automorphismν can be extended
to an automorphismρ : E → E by definingρ(α) = τ(α)
andρ|L = ν. The fieldL is the center of the algebraB as it
is fixed by σ. It remains to prove that for allx ∈ E∗, γ 6=
NE

L (x). Let us make a counter assumption that for somex ∈
E∗, NE

L (x) = γ. As γ ∈ F ∗, τ(γ) = γ. Whence it follows
that NE

F (x) = NL
F (NE

L (x)) = NL
F (γ) = γτ(γ) = γ2. This is

a contradiction as the algebraA is a division algebra.

An elementb = x0 +ux1, x0, x1 ∈ E of the algebraB has
a representation as a2× 2 matrix

B =
(

x0 γσ(x1)
x1 σ(x0)

)
. (2)

However, we can afford a4× 4 packing as we are using four
transmitters. This can be achieved by using the isomorphism

τ . Let us denote byτ(B) = (E/F, σ, τ(γ)) the isomorphic
copy ofB and the respective matrix representation by

τ(B) =
(

τ(x0) τ(γ)τ(σ(x1))
τ(x1) τ(σ(x0))

)
. (3)

Proposition 4.2:Let OE be the ring of algebraic integers
of E andF = Q(i). The lattice

C1 =

{
M = M(x0, x1) =

(
B 02×2

02×2 τ(B)

) ∣∣∣∣∣ x0, x1 ∈ OE

}

built from (2) and (3) has a nonvanishing determinantdet(C1)
∈ Z[i]. Thus, the minimum determinant is equal to one.

Proof: According to Definition 3.1 and Proposition 3.1,

det(M) = det(B) det(τ(B)) = nr(B)nr(τ(B))
= nr(B)τ(nr(B))) = NL/F (nr(B)) ∈ Z[i],

and hence|det(M)| ≥ 1.

B. Construction by Method II

Proposition 4.3:Let A be as in Proposition 4.1. If in the
matrix (1) the elementsxi are restricted to belong toL (rather
than toE), we obtain a division algebraA′ with the center
F [u2].

Proof: Obviously also the algebraA′ is a division algebra
as it is contained inA. As in Proposition 4.1,L is fixed by
σ = τ2, and thereforelu2 = uτ(l)u = u2τ2(l) = u2σ(l) =
u2l for all l ∈ L. The centerF of A is thus extended by the
elementu2.

Proposition 4.4:Let OL be the ring of algebraic integers
of L andF = Q(i). The lattice

C2 =








x0 γτ(x3) γx2 γτ(x1)
x1 τ(x0) γx3 γτ(x2)
x2 τ(x1) x0 γτ(x3)
x3 τ(x2) x1 τ(x0)




∣∣∣∣∣ xi ∈ OL





has a nonvanishing determinantdet(C2) ∈ Z[i]. Thus, the
minimum determinant is equal to one.

Proof: This immediately follows from the way of con-
struction.

V. MIDO CODES USINGPA
For PA (cf. Section III-A) we have the nested sequence of

fields F ⊆ L ⊆ E with L = Q(i,
√

5). As τ(
√

5) = −√5,
the fieldL is fixed byσ = τ2 as indicated in Proposition 4.1.

A. Method I

By embedding the algebra(E/L, σ, i) as in Proposition 4.2
we obtain the MIDO code

PA1 ⊆








x0 iσ(x1) 0 0
x1 σ(x0) 0 0
0 0 τ(x0) iτ(σ(x1))
0 0 τ(x1) τ(σ(x0))




∣∣∣∣∣ xi ∈ OE





.



As the center is nowL with [L : Q(i)] = 2 andOL =
Z[i, µ = (1+

√
5)/2], the elementsxi in the matrix are of the

form a1 +a2µ+a3θ+a4µθ, whereai ∈ Z[i] for all i. Hence,
the code rate is8/4 = 2.

B. Method II

Let us now use the method from Section IV-B. We get the
MIDO code

PA2 ⊆








x0 iτ(x3) ix2 iτ(x1)
x1 τ(x0) ix3 iτ(x2)
x2 τ(x1) x0 iτ(x3)
x3 τ(x2) x1 τ(x0)




∣∣∣∣∣ xi ∈ OL





.

Each of the elementsxi is of the form a1 + a2µ, where
a1, a2 ∈ Z[i]. Thus, the code rate is again equal to two.

VI. MIDO CODES USINGCA
The algebraCA (cf. Section III-B), for its part, has the

nested sequence of fieldsF ⊆ L ⊆ E with L = Q(s = ζ8).
As τ(s) = −s, the fieldL is fixed byσ = τ2.

A. Method I

Again by embedding the algebra(E/L, σ, 1 + s− i) as in
Proposition 4.2, the MIDO codeCA1 ⊆






x0 (1 + s− i)σ(x1) 0 0
x1 σ(x0) 0 0
0 0 τ(x0) (1− s− i)τ(σ(x1))
0 0 τ(x1) τ(σ(x0))








with xi ∈ OE is obtained. Note that we have chosen the
nonnorm elementγ = 1+s−iOL\OF with a smaller absolute
value in order to get some energy savings.

The center isL with [L : Q(i)] = 2 andOL = Z[s]. The
elementsxi in the matrix are of the forma1+a2s+a3ξ+a4sξ,
whereai ∈ Z[i] for all i, and so the code rate is2.

B. Method II

Let us then construct a MIDO code with the method from
Section IV-B. This time we have

CA2 ⊆








x0 γτ(x3) γx2 γτ(x1)
x1 τ(x0) γx3 γτ(x2)
x2 τ(x1) x0 γτ(x3)
x3 τ(x2) x1 τ(x0)




∣∣∣∣∣ xi ∈ OL





with γ = 1 + s− i.
Each of the elementsxi is of the form a1 + a2s, where

a1, a2 ∈ Z[i]. Thus, the code rate equals two.

VII. S IMULATION RESULTS

In Figure 1, the different construction methods are denoted
by: 0 = Puncturing method,1 = Method 1, and2 = Method
2.

First of all, we have to admit that we have not carried
out optimization as much as would have been possible. For
example, the use of ideals has not been taken advantage of,
except in the case of the punctured (x1 = x3 = 0, cf. (1))
Perfect codePA0 and the codePA1, for which we used the
ideal given in III-A. The codesPA2 and CA2 used for the

simulations in Figure 1 are exactly as given in Sections V-B
and VI-B.

The codesCA1, PA2, PA1, andPA0 perform more or less
equally. The codeCA2 loses to these by 0.2-0.7 dB, depending
on the SNR. Next comesCA0 (x1 = x3 = 0), losing still by
0.7− 1 dB to CA2. A sphere decoder was used for decoding
the lattices.

The best code isCA1 MAX gotten by combining Method
1 with the use of a maximal order [22] within the algebraCA.
It outperforms the next best code by approximately0.5 − 1
dB. In [23] the authors show that the DjABBA code wins the
punctured Perfect code by0.5 dB or less at the rate 4 bpcu.
Hence, our code improves even upon the DjABBA code - or
at least ties with it.

It seems that the best construction method depends on the
very algebra that is in use. Figure 1 shows that the puncturing
method is not always the first choice, hence proving the point
of new construction methods. We also want the reader to
note that in principle, MIDO codes can be designed just by
using the standard CDA based MIMO code with a smaller
constellation. Nevertheless, this destroys the lattice structure
and causes exponential complexity at the receiver.

VIII. C ONCLUSIONS AND FURTHER STUDY

Two nontrivial methods for constructing MIDO lattices were
proposed and illustrated by two explicit example algebras. As
compared to the puncturing method of just switching off the
extra layers in a MIMO code, these new methods perform
very well when we note that we have not yet optimized them
at all as opposed to the heavy optimization carried out for the
perfect code. E.g. the codes can be pre- and postmultiplied
by any complex matrix of determinant one without affecting
neither its density nor its good minimum determinant.

An open question is how to better parameterize these MIDO
constructions. It would also be interesting to find out which
combinations of Tx and Rx antennas with #Tx> #Rx are
possible and efficient. E.g. the case of 6Tx+3Rx is interesting.

At this point, we cannot say whether one of the methods
is universally better than the others. The simulations we have
carried out this far indicate that the optimality depends on the
algebra in question. We are hoping to get deeper insight to
this as we do some further optimization and parameterizing,
and analyze several different algebras. The preliminary results
however tell us that sometimes we are better off not using the
puncturing method.

In [20], [21], and [22] we have studied the use of maximal
orders [18] in the design of dense CDA based MIMO STBCs.
The same ideas can be adapted to the MIDO scheme as well.
We expect the constructions arising from maximal orders to
perform better than the ones within natural orders due to
the increased density. The preliminary results shown here are
indeed promising as we managed to beat or tie with the
punctured Perfect code and the DjABBA code. It would be
worthwhile to see if a maximal order of the Perfect algebra
would perform even better than the codeCA1 MAX. But this
is for further study.
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Fig. 1. MIDO block error rates at 4 bpcu with #Tx=4, #Rx=2.
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