International Conference on Computer Systems and Technologies - CompSysTech’16

A Survey on Aims and Environments of Diversification and Obfuscation
in Software Security

Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Makela, Johannes
Holvitie, Sami Hyrynsalmi, Ville Leppanen

Abstract: Diversification and obfuscation methods are promising approaches used to secure software
and prevent malware from functioning. Diversification makes each software instance unique so that malware
attacks cannot rely on the knowledge of the program’s execution environment and/or internal structure anymore.
We present a systematic literature review on the state of-the-art of diversification and obfuscation research
aiming to improve software security between 1993 and 2014. As the result of systematic search, in the final
phase, 209 related papers were included in this study. In this study we focus on two specific research questions:
what are the aims of diversification and obfuscation techniques and what are the environments they are applied
to. The former question includes the languages and the execution environments that can benefit from these
two techniques, while the second question presents the goals of the techniques and also the type of attacks
they mitigate.

Key words: Software security, diversification, obfuscation, systematic literature review (SLR)

INTRODUCTION

To make software secure, the risk caused by the vulnerabilities in software needs to
be alleviated. Instead of eliminating the security holes, in this work we focus on making the
exploitation of software vulnerabilities harder. For this purpose, our research concentrates
on two promising software security approaches.

The first approach is obfuscation. Obfuscation transforms the program code so that it
remains functionally identical to the original code but is much more difficult for the adversary
to understand [7]. Reverse-engineering the code will become more onerous and costly [23].
Obfuscation does not guarantee that the attacker cannot tamper with the targeted program
(given enough time, any obfuscation can be undone), but it makes this task significantly
more difficult to accomplish, adding an extra layer of defence. There are several obfuscation
methods exist that scramble different parts of the code during different stages of software
development process.

The second approach, diversification, means changing the internal structure of soft-
ware in order to create uniquely diversified copies of it [11]. Now computers can run unique
instances of the same program that all have the exactly same functionality but differently
diversified code. Software monoculture, where programs have identical internal structure
on a huge amount of machines, is broken, and malware counting on the known internal im-
plementation details is rendered useless [28]. It is worth noting that in order to preserve the
trusted programs’ access to the essential resources, we have to propagate the diversification
to all trusted libraries and applications in the system.

Diversification makes it more arduous for malware to exploit vulnerabilities and launch a
successful attack. Even if a malicious program somehow succeeds in running its code on one
computer, this attack only works on that specific computer. Because of unique diversification
secrets, a costly analysis has to be performed on each computer separately in order to attack
it. Because of this, diversification especially decreases the risk of automated large-scale
attacks.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

CompSysTech'16, 23-24 June 2016, Palermo, ltaly

Copyright is held by the owner/author(s). Publication rights licensed to ACM. ISBN 978-1-4503-4182-0/16/06...$15.00
http://dx.doi.org/10.1145/2983468.2983479 113

International Conference on Computer Systems and Technologies - CompSysTech’16

We conducted a systematic literature review of the papers discussing obfuscation and
diversification techniques in the context of software security. In this study, we address two
research questions. First, what is the aim of obfuscation or diversification. Second, for what
environments are the obfuscation or diversification approaches proposed in order to improve
security. This tells us what exactly is being protected — for instance, what is the programming
language and the execution environment the techniques are applied to.

Of course, this setting of the study still leaves out some other interesting research ques-
tions. For example, what are the different obfuscation techniques usually used to protect
software and how effective and costly these approaches are. However, to illustrate the wide
usability of obfuscation and diversification techniques in different domains (e.g., loT [15] and
cloud computing [14]), we believe the aims and environments are the most interesting ques-
tions to discuss in this limited space. Also, different obfuscation transformations have already
been studied to some extent elsewhere [6].

The rest of the paper is organized as follows. In the second section, we explain the
method of the study. The third section discusses the aims of obfuscation and diversification
approaches presented in the literature. The fourth section covers the environments where
these approaches have been used. Finally, we present the conclusions and discuss future
work.

METHOD OF THE STUDY

The method of the study we used in this research work is Systematic Literature Review
(SLR). As defined by Kitchenham et al. [17], an SLR is a means of research to identify,
evaluate and interpret all the studies related to one field of research. A systematic review
has the benefit that it collects, classifies and maps the scattered studies. Therefore, it is a
suitable way to pinpoint research gaps, which could give baselines for future research.

In this paper, we systematically review the papers that are published between 1993 and
2014 and study obfuscation and diversification techniques with the objective of securing the
software. By collecting and analyzing the papers, we try to identify what kind of problems
are being solved with the help of these techniques. In other words, for what purpose they
are used, what type of software security attacks they thwart, and what type of environments
and languages are these techniques applied to.

In order to collect the data systematically, we followed a protocol suggested by Kitchen-
ham et al. [18]. In this process, shown in Figure 1, we first defined a set of search strings
and searched into the top databases of the field, including IEEEXplore Digital Library, ACM
Digital Library, Wiley online library, ScienceDirect, dblp, and SpringerLink (Phase I). Then
we excluded the irrelevant studies based on their titles (Phase Il), after that based on their
abstracts (Phase lll), and finally based on their full texts (Phase 1V). Using the snowballing
technique we found the missing studies (Phase V). To decide on inclusion or exclusion of
the papers, we set some inclusion criteria. A study is included, if it answers all the inclusion
criteria positively, and it is excluded otherwise. We used the following four inclusion criteria:

* Is the study related to software development/production?
* Is the study aims at improving the software security?
* |Is the study related to obfuscation/diversification?

* |Is obfuscation/diversification proposed/discussed/used with the goal of enhancing the
security in code/program/software?

As the result of systematic search, we had 209 papers published in this field of study.
From the final set of papers, we extracted the data, analyzed them and classified them, in
order to answer our research questions. 114

International Conference on Computer Systems and Technologies - CompSysTech’16

firstround 149,
second round 84

2525 619 171
Database search and removing > Title [Abstract - Full text ———>» Dataextraction

duplicates
219
209
<

Snowballing

Data analysis

Figure 1: The Systematic Search and Selection Process used when conducting the systematic literature review.

There have been some other studies similar to this research work published previously
[2, 19]. However, several factors make our SLR different from the existing works: First, we
are following a systematic process for data collection. Second, we consider both obfuscation
and diversification techniques, as we believe they are closely related. Finally, we study the
papers in which security is the main scope of study.

AIMS OF OBFUSCATION AND DIVERSIFICATION

Obfuscation and diversification are techniques used for improving security of software.
The rationale behind these two techniques is not to remove the security holes in the software
but to prevent (or at least make it difficult) an adversary from taking advantage of the vul-
nerabilities. In the literature reviewed, typically, these two techniques were used for making
the reverse engineering difficult [4], countering the static and dynamic analysis of the code
[25], hiding some fraction of the code or some data inside the code [26], hiding or faking the
original control flow of the program [9, 30], protecting the mobile agents against a malicious
host, and preventing occurrences of large-scale [8] and targeted attacks.

Among all, in the following we discuss the top high level goals that the papers were
trying to achieve, through obfuscation and diversification techniques. We will then continue
by presenting the top attacks that were successfully mitigated with the help of these two
techniques.

1. Preventing malicious reverse engineering of the software: the most common aim be-
hind the use of obfuscation and diversification techniques is to make the program’s code
more complex, and harder to read/comprehend. As a result of this complication the act
of reverse engineering of the program’s logic becomes harder [22, 24]. Reducing the
understandability of the software makes it resistant against unwanted modification [12].

2. Preventing unauthorized alteration of the software: tamper resistance approaches at-
tempt to make it harder for an attacker to modify the program. For this purpose, these
techniques can use methods that make comprehending the program difficult. In this
scenario, obfuscation is helpful method for creating tamper-resistant programs [1, 21].

3. Hiding some data in the code: obfuscation can be used to conceal static non-executable
data in the code, for instance hiding watermarking information, cryptographic keys, and
static integers [26].

4. Preventing the vulnerabilities to be widely spread: Typically, the exploits work by gain-
ing knowledge on the program'’s internal structure and its vulnerabilities, and exploiting
those vulnerabilities. Obfuscation makes it challenging and costly (in terms of time and
effort) for the attacker to achieve this knowledge. Furthermore, diversifying the pro-
gram internals lowers the chance of large-scale attacks, that is, the same attack model
is less likely to work on multiple target§1[§].

International Conference on Computer Systems and Technologies - CompSysTech’16

We acknowledge that there are some overlaps between the different classes we pre-
sented here. Still, we tried to categorize the research works based on their high-level aims
of using obfuscation and diversification techniques, in order to answer the question that what
types of real-world problems are being solved by using the aforementioned techniques.

Attacks mitigated

As discussed, obfuscation and diversification techniques have widely been used to im-
pede malware and defend against a wide range of attacks. Among all, the following are the
most common type of attacks that the studied research works were aiming to mitigate, with
the help of these two techniques: buffer overflow [29], code injection attacks [16], Return-
Oriented Programming (ROP) [13], JIT spraying attacks [10], slicing attacks [10], insider
attacks [27], piracy [3], large scale attacks [8], and web application attacks (including SQL
injection and cross-site scripting (XSS) attacks [5]).

Figure 2 shows the distribution of these attacks in the reviewed papers.

Web application attacks 4%
Piracy 7%

Buffer overflow 29% Insider attacks 7%

Slicing 7%

JIT spraying 11%

Code injection 18%

ROP 18%

Figure 2: Different types of attacks that could be mitigated with the help of obfuscation/diversification techniques

ENVIRONMENT

To analyze the environments obfuscation or diversification were applied to, we exam-
ined each study from two standpoints. Firstly, the execution environment in which the tech-
nique is being employed and secondly, the language that was the target of technique.

Execution environments

Different execution environments secured by obfuscation or diversification are shown in
Table 1. We can see that the largest group of papers describe approaches that are applied
in any environment. This reflects the broad applicability of obfuscation and diversification
in many software layers and different platforms. As any computer system runs native code
on the lowest level of abstraction level, it is not surprising that the second largest group of
obfuscation and diversification approaches deals with native code.

The other execution environments are split quite evenly into smaller groups. These
are general classifications for devices and operating systems based on their uses, such as
server, mobile and desktop. Cloud platform’s third party services are distinguished from
generic servers. Embedded platforms that are not mobile are also in their separate category.

Languages
Figure 3 shows the languages the obfuscation and diversification approaches are ap-
plied to. The languages are also divided into rough categories based on their runtime models

116

International Conference on Computer Systems and Technologies - CompSysTech’16

Language Number of papers Language class Number of papers
Java/ JVM 49
C 37
Machine code 36 Native code | 87 |
C++ 11
Assembly 10 Managed code | 53 |
C#/CLR 5
Functional / declarative 5 DSL | 5 |
SQL 5
JavaScript 3 Script | 3 |
Perl, PHP, Python 3
HTML 1 | Not applicable | 24 |
Visual Basic 1
Cobol 1 | Not specified | 8 |
Not specified 21
Not applicable 12

Figure 3: Languages that obfuscation and diversification techniques are applied to.

and semantic abstractions. For example, some programming languages such as C are usu-
ally compiled to native code while other languages like Java are transformed into bytecode
that is run on a virtual machine. The class of each language is indicated by the arrows in
Figure 3.

Taking a look at language categories, we can see that a majority of the cases fall into two
language types. First, there is the native code category that contains all the local applications
written in systems programming languages. Second, the managed code group is a category
for applications that are written in some high-level run on a virtual machine (for instance, the
Java programming language run on Java Virtual Machine). Two smaller groups identified in
our study were domain specific languages like SQL and scripting languages such as Perl.

On the language level, Figure 3 lists all the proposed target languages, each placed in its
own group. This provides sufficient granularity, even though some languages (like languages
executed on JVM and functional languages) were still bundled together because of their
similar execution environments. We can see that Java, C/C++ and Assembly languages are
most often chosen as target for obfuscation or diversification.

For several papers, a language related to the proposed obfuscation approach could not
be specified. Many studies also proposed very generic solutions covering a broad group
of languages. In some cases, the specific language or class, or the applicability of obfus-
cation technique could not be determined. Some papers also presented abstract high-level
solutions for which a language is not applicable. Moreover, for many obfuscation or diversifi-

Table 1: Environments for diversification and obfuscation approaches.
| Target environment | Number of studies |

Any 67

Any native 65

Server 8

Cloud 6

Distributed/agent based 6

6

3

2

Mobile
Embedded
Desktop

117

International Conference on Computer Systems and Technologies - CompSysTech’16

cation approaches targeting machine code binaries or bytecode the original language cannot
be determined [20].

CONCLUSIONS AND FUTURE WORK

We presented a study of aims and environments of obfuscation and diversification tech-
niques. Obfuscation and diversification are used for many different purposes in the context
of security, mainly to prevent reverse-engineering and unauthorized modification of software.
The two techniques have also been shown to mitigate a wide range of attacks. When it comes
to the environment, the study shows the broad applicability of obfuscation and diversification
for different languages, at several software layers and in various environments.

Even though this study is a carefully conducted systematic literature review, it still has
some limitations.

As future work, a broader study covering more research questions will be conducted.
In addition to aims and environments that we have studied in this work, there are various
research questions worth considering. For instance, what is the current status of this field
of study? This includes data like types of publications, number of published studies each
year, the distribution of studies between the academia and industry. Also the obfuscation
and diversification methods used provide an interesting topic to study. The exact targets
that are obfuscated or diversified in the code, the levels and stages in development where
techniques are applied, and the cost and effectiveness of techniques are going to be explored
in our future studies.

REFERENCES

[1] Balachandran, V., Keong, N. W., and Emmanuel, S. Function level control flow
obfuscation for software security. In Complex, Intelligent and Software Intensive
Systems (CISIS), 2014 Eighth International Conference on (July 2014), pp. 133—
140.

[2] Baudry, B., and Monperrus, M. The multiple facets of software diversity: Recent
developments in year 2000 and beyond. ACM Comput. Surv. 48, 1 (Sept. 2015),
16:1-16:26.

[3] Chakraborty, R., Narasimhan, S., and Bhunia, S. Embedded software security
through key-based control flow obfuscation. In Security Aspects in Information
Technology, M. Joye, D. Mukhopadhyay, and M. Tunstall, Eds., vol. 7011 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 30—44.

[4] Cho, S., Chang, H., and Cho, Y. Implementation of an obfuscation tool for c/c++
source code protection on the xscale architecture. In Software Technologies for
Embedded and Ubiquitous Systems, U. Brinkschulte, T. Givargis, and S. Russo,
Eds., vol. 5287 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 406-416.

[5] Christodorescu, M., Fredrikson, M., Jha, S., and Giffin, J. End-to-end software
diversification of internet services. In Moving Target Defense, S. Jajodia, A. K.
Ghosh, V. Swarup, C. Wang, and X. S. Wang, Eds., vol. 54 of Advances in Infor-
mation Security. Springer New York, 2011, pp. 117-130.

[6] Collberg, C., Thomborson, C., and Low, D. A Taxonomy of Obfuscation Transfor-
mations. Tech. Rep. 148, The University of Auckland, 1997.

[7] Collberg, C. S., and Thomborson, C. Watermarking, tamper-proofing, and obfus-
cation - tools for software protection. IEEE Transactions on Software Engineering
28, 8 (2002), 735-746.

118

International Conference on Computer Systems and Technologies - CompSysTech’16

[8] Cox, B., E., D, Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-
Tuong, A., and Hiser, J. N-variant systems: A secretless framework for security
through diversity. In Usenix Security (2006), vol. 6, pp. 105—-120.

[9] Darwish, S. M., Guirguis, S. K., and Zalat, M. S. Stealthy code obfuscation tech-
nique for software security. In Computer Engineering and Systems (ICCES), 2010
International Conference on (2010), IEEE, pp. 93-99.

[10] Drape, S., Majumdar, A., and Thomborson, C. Slicing aided design of obfuscating
transforms. In Computer and Information Science, 2007. ICIS 2007. 6th IEEE/ACIS
International Conference on (July 2007), pp. 1019-1024.

[11] Forrest, S., Somayaji, A., and Ackley, D. Building diverse computer systems.
In Operating Systems, 1997., The Sixth Workshop on Hot Topics in (May 1997),
pp. 67-72.

[12] Goto, H., Mambo, M., Shizuya, H., and Watanabe, Y. Evaluation of tamper-
resistant software deviating from structured programming rules. In Information
Security and Privacy, V. Varadharajan and Y. Mu, Eds., vol. 2119 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2001, pp. 145-158.

[13] Gupta, A., Kerr, S., Kirkpatrick, M., and Bertino, E. Marlin: A fine grained random-
ization approach to defend against rop attacks. In Network and System Security,
J. Lopez, X. Huang, and R. Sandhu, Eds., vol. 7873 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 293-306.

[14] Hosseinzadeh, S., Hyrynsalmi, S., Conti, M., and Leppanen, V. Security and pri-
vacy in cloud computing via obfuscation and diversification: A survey. In 2015
IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom) (2015), pp. 529-535.

[15] Hosseinzadeh, S., Rauti, S., Hyrynsalmi, S., and Leppanen, V. Security in the
internet of things through obfuscation and diversification. In Computing, Com-
munication and Security (ICCCS), 2015 International Conference on (Dec 2015),
pp. 1-5.

[16] Jiang, X., Wang, H. J., Xu, D., and Wang, Y. Randsys: Thwarting code injec-
tion attacks with system service interface randomization. In Reliable Distributed
Systems, 2007. SRDS 2007. 26th IEEE International Symposium on (Oct 2007),
pp. 209-218.

[17] Kitchenham, B. Procedures for performing systematic reviews. Keele, UK, Keele
University 33, 2004 (2004), 1-26.

[18] Kitchenham, B., and Brereton, P. A systematic review of systematic review process
research in software engineering. Information and Software Technology 55, 12
(2013), 2049 — 2075.

[19] Larsen, P., Homescu, A., Brunthaler, S., and Franz, M. SoK: Automated software
diversity. In Security and Privacy (SP), 2014 IEEE Symposium on (May 2014),
pp. 276—-291.

[20] Lee, B., Kim, Y., and Kim, J. binob+: A framework for potent and stealthy binary
obfuscation. In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security (New York, NY, USA, 2010), ASIACCS 10, pp. 271-
281.

[21] Majumdar, A., and Thomborson, C. Manufacturing opaque predicates in distributed
systems for code obfuscation. In Proceedings of the 29th Australasian Computer
Science Conference - Volume 48 (Darlinghurst, Australia, Australia, 2006), ACSC
'06, Australian Computer Society, Inc., pp. 187-196.

[22] Monden, A., Monsifrot, A., and Thomborson, C. Obfuscated instructions for soft-

ware protection. Tech. rep., 2003.
119

International Conference on Computer Systems and Technologies - CompSysTech’16

[23] Nagra, J., and Collberg, C. Surreptitious Software: Obfuscation, Watermarking,
and Tamperproofing for Software Protection. Pearson Education, 2009.

[24] Qin, J., Bai, Z., and Bai, Y. Polymorphic algorithm of javascript code protection.
In Computer Science and Computational Technology, 2008. ISCSCT ’08. Interna-
tional Symposium on (Dec 2008), vol. 1, pp. 451-454.

[25] Schrittwieser, S., and Katzenbeisser, S. Code obfuscation against static and dy-
namic reverse engineering. In Information Hiding, T. Filler, T. Pevny, S. Craver,
and A. Ker, Eds., vol. 6958 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 270-284.

[26] Sivadasan, P, and Lal, P. S. Securing SQLJ source codes from business logic
disclosure by data hiding obfuscation. arXiv preprint arXiv:1205.4813 (2012).

[27] Tunc, C., Fargo, F., Al-Nashif, Y., Hariri, S., and Hughes, J. Autonomic resilient
cloud management (arcm) design and evaluation. In Cloud and Autonomic Com-
puting (ICCAC), 2014 International Conference on (Sept 2014), pp. 44—49.

[28] Williams, D., Hu, W., Davidson, J., Hiser, J., Knight, J., and Nguyen-Tuong, A. Se-
curity through diversity: Leveraging virtual machine technology. Security Privacy,
IEEE 7, 1 (Jan 2009), 26-33.

[29] Xu, J., Kalbarczyk, Z., and lyer, R. Transparent runtime randomization for secu-
rity. In Reliable Distributed Systems, 2003. Proceedings. 22nd International Sym-
posium on (Oct 2003), pp. 260—-2609.

[30] Yao, X., Pang, J., Zhang, Y., Yu, Y., and Lu, J. A method and implementation
of control flow obfuscation using seh. In Multimedia Information Networking and
Security (MINES), 2012 Fourth International Conference on (Nov 2012), pp. 336—
339.

ABOUT THE AUTHORS

PhD student Shohreh Hosseinzadeh, PhD student Sampsa Rauti, Research assistant
Samuel Laurén, PhD student Jari-Matti Makela, PhD student Johannes Holvitie, Postdoc-
toral researcher Sami Hyrynsalmi, Prof. Ville Leppanen, Department of Information Tech-
nology, University of Turku, Finland. E-mail: {shohos,sjprau,smrlau,jmjmak,jjholv,sthyry,
ville.leppanen}@utu.fi.

120

