
Software Implementation Knowledge Management
with Technical Debt and Network Analysis

Johannes Holvitie
TUCS - Turku Centre for Computer Science &

Department of Information Technology, University of Turku
Turku, Finland

jjholv@utu.fi

Abstract—Modern, fast-phased, iterative and incremental soft-
ware development constantly struggles with limited resources and
a plethora of frequently changing requirements. This environment
often requires the development projects to intentionally — for
example through implementing quick-and-dirty — or uninten-
tionally — for example through misinterpretation of requirements
— deviate from the optimal product state. While most of the
deviation is caught through practices like customer reviews,
the remainder stays hidden in the product. The undocumented
remainder is difficult to remove, it expands uncontrollably and
it negatively affects development as deviations are unexpectedly
encountered and overcome. The term technical debt describes this
process of accumulating hidden work. Management of technical
debt can be expected to be a major factor in software development
efficiency and sustainability and as such it should be an integral
part of the software implementation’s knowledge management.
In addition to being difficult to capture, the continuous evolution
of the implementation makes maintenance of gained information
a challenge. This paper discusses applying technical debt man-
agement for software implementations including the entry points
for knowledge discovery, network analysis for overcoming the
maintenance challenges as well as the pursued outcomes.

Keywords—technical debt management, network analysis, pro-
gram visualization, refactorization.

I. INTRODUCTION AND PROBLEM STATEMENT

Modern software development methods deal with increas-
ing complexity and frequently changing requirements by de-
creasing increment size and shortening iteration times. These,
often Agile or Lean, methods try to imply control over the
product in requiring that all releases meet the definition of
done. For the client this definition encompasses the product’s
perceivable capability to fulfill set requirements. The devel-
oper’s definition is a super-set of this in also capturing how
the requirements are implemented. This dualism of definitions
allows iterations to deliver increments which meet the former
but not the latter, that is they are perceived done while actually
being incomplete.

This is a very common phenomenon in software de-
velopment resulting from developer actions that are either
intentional, like relaxing quality requirements when pressed
for time, or unintentional, like making uneducated design de-
cisions. Since the opposing party, the client, does not perceive
these inconsistencies it can not pursue their completion. Rather,
the developing organization is implicitly assumed to manage
them. But, when faced with the choice of allocating resources
to implement perceivable requirements or fixing unperceivable
inconsistencies, the choice of the former can be expected —
especially when no information supporting the latter is readily

available. These decisions and the discussed phenomenon
respectively accumulate new and increase existing technical
debt.

Technical debt considers the deviation between the current
and optimal product state and it is problematic due to a number
of reasons. Firstly, as its emergence is the end result of a
rather obfuscated process, it rarely gets documented. Low
visibility makes management difficult and it hides problem
severity. Technical debt has the ability to accumulate super-
linearly as software solutions are built by depending onto
earlier, unsuccessfully implemented, components. And even
if technical debt gets indicated the evolving implementation
promptly degrades this information.

Due to the multiple issues exposed by technical debt,
software development projects require mechanisms that are
able to efficiently capture, track and govern it. The mechanisms
need to accomplish these while retaining development charac-
teristics like agility. The mechanisms should also accommodate
the fact that some instances of technical debt exist due to
informed decisions.

This paper discusses research to overcome these challenges
and it is structured as follows. Section II discusses motivation
for this research in more detail while Section III derives the
main hypothesis and work objectives. In Section IV work
related to technical debt and its management is presented with
accompanying terminology. Section V proceeds to layout the
research plan to accomplish set objectives while Section VI
discusses the expected outcomes. Section VII concludes this
paper.

II. MOTIVATION

There exist mechanisms, like bug reports and unit tests,
that are able to capture the deviation between the current
and optimal software implementation states, but none of these
consider the dynamic aspects of software development. The
Agile Manifesto’s [1] 10th principle states that ”software
development should pursue simplicity - the art of maximizing
amount of work not done”. In respect to this, it is not ideal
to immediately fix every encountered non-conformality, since
this may amount to a lot of unnecessary work, but at the same
time total ignorance can not be exercised as some of the non-
conformalities may end up causing much more work than the
initial fix would have required.

Technical debt is about acknowledging these dynamic
aspects in order to optimally manage the singular deviations.
Technical debt management pursues the formation of technical



debt instances [2], units of deviation that share the same
context and are thus governable by a single person or team.
This enables documenting the impact probability for each
instance, capturing the chances that it causes additional work
during continued development. Further, the instances allow
estimating accumulated impact for them as they become more
coupled to the system. The estimates can then be fed back to
project decision making in order to make technical debt — or
optimized deviation — management a concrete part of it.

As technical debt management does not concern with dif-
ferent types of non-conformalities it is possible to superimpose
it on top of existing mechanisms. Additionally, this allows
considering contexts composed from elements at different
implementation abstraction levels, in different project artifacts
or purely subjective observations as manageable instances.

While technical debt exposes these dynamic characteristics,
it does not expose a model or a mechanism for maintaining
the captured information. Thus, the greatest challenge in in-
troducing technical debt management to software development
lies in deriving feasible maintenance approaches. In technical
debt management research (see Section IV), one discussed
approach to this considers manual updating a possibility. The
research presented in this paper argues that software develop-
ment, especially for the implementation artifact, is carried out
based on a number of underlying models for which network
analysis can reveal static update models. A hybrid approach
of initial manual input and continued updates through a static
model could retain a high level of accuracy while supporting
automated maintenance.

III. HYPOTHESIS AND OBJECTIVES

Research work discussed in this paper facilitates exploring
a general hypothesis through a more specific one. As techni-
cal debt management pursues optimized governance of non-
conformalities in software development, a general hypothesis
for this is stated as technical debt management is a factor
in software development efficiency and sustainability. As the
non-conformalities are exposed, made into explicit instances,
and input into the decision making processes, the uncertainty
about required additional work decreases. This is expected to
result in more streamlined development and thus increased
development efficiency. Sustainability is increased based on
the same grounds: as non-conformalities and their impact on
to development are made explicit, the developing organization
is provided with means to perceive and control the problem
before it becomes unbearable.

The more specific hypothesis, or task, studied here facili-
tates the general one. It concerns the maintenance challenges
in the software implementation context (see Section II) in
stating that software implementation technical debt can be
captured and maintained. Captured via tools that are present
when notions about technical debt are made and maintained
via a model that takes the subjective notions and incrementally
updates them. These increments require a static reference,
a model, that dictates granular updates for the structured
notions based on observed evolutionary steps in the software
implementation.

Three consecutive work objectives facilitate studying the
specific hypothesis. The first step concerns building a tool

capable of capturing technical debt instances, the notions
discussed earlier. The second step builds the static model by
applying network analysis to programming theory, the user
inputs and captured technical debt propagation characteristics.
The third step combines the tool with the model, inputs
the model with structured notions about technical debt and
observed evolutionary steps in the implementation to derive
information updates. The specific hypothesis is studied by
determining if the information captured and maintained in the
third objective is successful in serving technical debt manage-
ment approaches. Quantifying enhancements to technical debt
management can be seen to further efforts to overcome the
general hypothesis.

IV. RELATED WORK AND TERMINOLOGY

In meeting the work objectives discussed in Section III, a
number of research contexts are consulted. Building the tool
for the first objective, the documentation structure needs to
accommodate requirements set by technical debt management.
The update model derived in the second objective bases
on identifying and separating technical debt instances from
software implementations and applying network analysis to
capture shared and unique attributes. In the following sections
essential research and terminology are introduced for these
areas.

A. Technical Debt

Technical debt is a term that was first coined by Ward
Cunningham in his technical report to OOPSLA’92 [3]. Up-
dated definitions have followed this for example in Seaman et
al. [4] as well as in Brown et al. [5]. A consensus between
these definitions is that technical debt is based on a principal
on top of which interest is paid — similarly to its financial
counterpart. The principal captures the original, deliberately
or indeliberately, incurred non-conformality. The size of the
principal is equal to the work required to provide an optimal
solution for it. The interest is relative to the amount of
adaptation the surrounding system has committed to when the
principal has become more coupled to it. Seaman et al. [2]
expand the definition of interest by stating that interest is an
impact value coupled with impact probability. This probability
communicates about the chances of development work being
continued in the interest’s implementation area. For example,
if no further development is carried out in this area, the
probability of needing to pay the interest is zero.

Technical Debt Management Framework (TDMF) intro-
duced in Guo et al. [6] is a software development method
independent approach for integrating technical debt manage-
ment into project decision making. The two first steps of
this three part approach build a Technical Debt List (TDL)
which captures the technical debt instances for a software
project. The instances are captured as Technical Debt Items
(TDI) following a documentation structure dictated by the
TDMF. Most notably, this structure requires that for each TDI,
explicit impact size and interest probability are estimated. As
the TMDF enables integration of and information interchange
between other management approaches, the tool pursued for
the first work objective will adhere to it.

McGregor et al. [7] were the first to discuss about technical
debt’s propagation in software implementations. In their work



they hypothesize about two concurrent mechanisms. The first
states that ”technical debt for a newly created asset is the sum
of the technical debt incurred by the decisions during develop-
ment of the asset and some amount based on the quality of the
assets integrated into its implementation”. During introduction
of this mechanism, they communicate about technical debt’s
ability to diminish as a result to increases in interface layers.
The second mechanism describes that ”the technical debt of an
asset is not directly incurred by integrating an asset in object
code form, but there is an indirect effect on the user of the
asset”.

B. Capturing Information from Software Implementations

Software implementations are structures in which compo-
nents rely onto others in order to fulfill their functionality.
Capturing these structures as sparse matrices either dynam-
ically, from the program execution trace, or statically, from
data mining the source code, allows the application of network
analysis approaches to further analyse and understand them.

Link structure algorithms produce either global or query-
specific importance rankings for matrix elements. The PageR-
ank algorithm by Page and Brin [8] has received most of
the attention regarding producing global rankings for im-
plementation components. In amongst others [9]–[11] have
introduced their own adaptations of the algorithm for use in
analysing software implementations. They have acknowledged
the possibilities in using this approach for example in valuing
components for software impact analysis as well as relating
implementation elements for feature location. An important
notion from these works is that even the slightest changes in
building the matrix result in large fluctuations in the received
rankings.

Program visualization is, in some regards, a more humane
approach to link structure analysis. Interesting observations can
be quickly made even for a complex context if it is possible
to produce a visualization for it and especially to highlight
structures of interest within it. Caserta and Zendra present a
program visualization classification in [12]. In this they state
that graph as an approach is a forerunner for architecture
level visualizations that focus on highlighting relationships.
Noack and Lewerentzes discuss a requirements space for
visualizing software implementations with graphs [13]. They

formalize it as the three degrees of clustering, hierarchicalness
and distortion. For approaches interested in exploring directly
visible structural relations, all previous degrees should be low.

V. APPROACH AND CHALLENGES

The author’s study focuses on capturing and maintaining
technical debt information for the software implementation in
order to facilitate integration of technical debt management for
it. Section III described the three work objectives that were
derived to overcome this: creating a tool capable of capturing
technical debt instances, a static model to automate mainte-
nance for them and integration of the model with the tool to
produce a fully functioning management suite. At the current
state, a solution exists for the first objective while research
is underway to facilitate the second one. This chapter walks
through the three objectives describing the chosen approach,
existing work and foreseeable challenges for each.

A. First Objective - Technical Debt Management Tool

The first objective required a tool that was readily available
when notions about technical debt were made in the imple-
mentation. To overcome this the author co-designed a two-
partite tool called DebtFlag which is presented in [14]. The
first part of this tool (see Fig. 1) is a plug-in for the Eclipse
integrated development environment (IDE). The plug-in allows
developers to create TDIs by interacting directly with edited
implementation elements. The TDIs are bound to revisions and
thus are synchronized through the version control system. In
addition to ensuring that intrinsic information about the TDI’s
impact and propagation characteristics is recorded, the plug-in
also provides a representation for them. The plug-in introduces
an update mechanism that uses the static update model from
Section V-B to calculate where given TDIs propagate. Affected
implementation elements are highlighted in colors according
to given rules. The highlights in both the editor view as well
as the content-assist (see Fig. 2) make it virtually impossible
to carry on implementation without knowledge about technical
debt’s presence. This mechanism is one of the first concrete
tool solutions to controlling unwanted technical debt propaga-
tion.

The second part of this tool is an overview web-application
(see Fig. 2). The plug-ins are to communicate TDIs to a

Fig. 1. The DebtFlag plug-in managing code highlighting and content-assist cues in the Eclipse IDE



Fig. 2. The DebtFlag tool’s web interface

database from which the web-application builds project spe-
cific TDLs. Basic functionalities, like modifying details for
TDIs and observing their history as a function of revision
commits, are available through the web-application. The TDLs
can be used as is for inter-organization communication but they
are also intended to provide an interface for integrating other
technical debt management approaches to the projects.

The most formidable challenges regarding the tools use af-
fect application of the captured information. Firstly, maximized
efficiency and intuitiveness for the tool’s usage tries to en-
courage developers to capture all technical debt they perceive.
Unfortunately, this also presents a way to measure performance
for the authoring persons. This would inevitably discourage
further use of the tool and negatively affect the approach’s
viability. The presenting paper [14] discusses certain levels of
information hiding as a remedy for this. The other challenge
is closely related to this: if authors for TDI entries are hidden
and producing them is easy, there is a danger that for TDIs
for which the correct action would have been to directly repair
them, instead a TDI entry is made. Expediting repairs for
small entries through valuing them higher in the static model
is discussed as a possible answer to this.

B. Second Objective - Static Update Model

The second work objective concentrates on building a static
update model for the DebtFlag tool introduced in the previous
section. The tool queries the model with indicated locations
and expects a (fuzzy) set of elements as output — indicating
technical debt expansion for them. This objective is a derivative
from the technical debt integration requirement by Seaman et
al. [4] which states that software project decision processes
need to be accompanied with usable and current information
regarding the project’s technical debt. Introducing automated
maintenance for manual observations allows efficient extension
of their applicability thus retaining more information for
decision making.

The author has partaken in a number of studies to facilitate
exposing the static models. In the first such study we examined
the role of dependency propagation in the accumulation of
technical debt by conducting a manual retrospective analysis
for a large refactorization project [15]. Based on captured

relations at the class level, the following observations were
made. First, the number of incoming dependencies to an imple-
mentation element correlated with the number of propagation
paths for technical debt. Second, dependency propagation was
the main driver for technical debt accumulation. This was
evident from that for a majority of chronological modifications
a direct dependency relation was observed.

Third, technical debt diminished due to propagation. This
was a result from measuring propagation depths to be smaller
than what component dependencies would have allowed for.
Fourth, the component’s role was a good indicator of the
propagation’s shape. This was apparent from observing that for
technical debt affecting data models the reparations expanded
in the system in a shape that was wide but shallow, while for
reparations targeting direct functionalities the shape was more
focused but deeper reaching. In our yet unpublished journal
extension Examining Technical Debt Accumulation in Software
Implementations, we studied the four observations for another
independent data set at a lower, class-member, level. Finding
that data supported the observations here as well was perceived
as an indicator for technical debt’s universal propagation
capabilities. As such, the initial static model is required to
accommodate at least the four observed characteristics.

To facilitate studying technical debt and its propagation
characteristics for large implementations and non-conformality
counts, a program visualization approach was designed. We
demonstrate this in a yet unpublished study Illustrating Soft-
ware Modifiability - Capturing Cohesion and Coupling in a
Force-Optimized Graph. The approach has three consecutive
steps to forming the visualization. The first step traverses
a source implementation and captures all program elements
that are capable of forming direct dependencies in it. The
second step forms a graph by presenting the implementation
elements as nodes and capturing the direction and frequency of
dependency invocation between them as the graph’s directed
and weighted edges. The third step lays out the graph through
force-minimization. In this, the directed weighted edges rep-
resent forces and finding a global energy minima for such a
system emphasizes those structures that contribute towards it.

Fig. 3 demonstrates applying the visualization approach to
the source code of the Eclipse IDE’s Debug component. Here,



nodes represent Java interface members and edges capture their
invocations. The gray graph is the component’s part from the
Eclipse’s implementation force-minimally laid out. The distinct
hub in the upper part is the component’s more independent,
cohesive and less coupled, event system. The highlighted part
in the bottom is the component’s bug #148965. The red
and green lines indicate dependencies that are outbound and
inbound respectively to elements declared for the bug. The
highlighting mechanism allows us to quickly inspect how non-
conformalities propagate. In this case, the green lines indicate
that the root cause for this bug maybe coming from outside
the Debug component’s implementation.

Fig. 3. Presents Eclipse’s bug no. 148965 highlighted against its host Debug
project graph

Variations of the static update model are currently being
trialed to effectively account for the four observations that were
described earlier. The aforementioned visualization approach
allows to efficiently handle large implementation data sets and
to distinguish special characteristics from them. The network
analysis approaches discussed in Section IV-B are used on
the produced graphs to rank their elements and produce cor-
relation coefficients. Distinguished special characteristics are
then extracted as components for the static model using basic
functional regression and related machine learning approaches.

There are two perceivable challenges to this work objective.
The first is the applicability of the model. A model that
covers multiple programming languages will not take into
account intrinsic details for each one. This is a trade-off
between applicability and accuracy. Additional research needs
to balance this as it is important to produce approximations
with a minimum of false-positives since these are directly
used to produce the technical debt representation. Secondly,
the propagation model training sets as well as its inputs may
contain speculation. For instance the bug in Fig. 3. The location
initially indicated for the bug can be speculative and the true
location is only known when it has been fixed and verified as
such. This must be taken into account.

C. Third Objective - Maintaining Captured Information

The third and last work objective will take the static
update models from the second objective and inputs them
to the DebtFlag tool from the first objective. As stated, the
DebtFlag tool exposes an abstract update descriptor and is
thus able to accommodate all static update models that inhere
to it. Field testing of different models is thus conducted
through the DebtFlag tool which puts further emphasis on its
implementation and user experience quality.

As the third objective corresponds to examining the specific
hypothesis introduced in Section III, it will be overcome
in two stages. The first stage will take the most promising
models, inputs them to the DebtFlag and approaches a small
number of organizations from varying development contexts.
This stage will provide both the tool and the used models
with enhancements. Having accommodated them, the second
stage will be conducted as a quasi-experiment where the tool
is introduced, with the chosen models, to controlled devel-
opment organizations. For these organizations, their implicit
and explicit technical debt management approaches need to be
identified so as to be able to observe how the tool affects them.

This objective decompiles into proving the specific hypoth-
esis, which stated that software implementation technical debt
can be captured and maintained. Measuring this as project
work-in-progress capability increments as well as improve-
ments in estimate confidence comes very close to examining
the general hypothesis for technical debt management. The
main challenges here are those shared by all controlled ex-
periments. What is expected to be especially challenging is
the derivation of valid measuring points and relation of gained
results with control groups.

VI. CONTRIBUTION

The contributions of the presented research come from
accomplishing the three work objectives discussed in the pre-
vious chapter. As it currently stands, the author has completed
the first work objective and is working towards completing the
second one. Completion of both the first and second objective
is required to pursue the third objective, which constitutes
majority of the presented researches’ contribution. However,
several advances can already be seen and they are discussed
in the following.

The DebtFlag tool from the first objective is the first in its
kind to explicitly pursue technical debt management as part
of software development. Close integration with development
tools allows the tool to provide an implementation level rep-
resentation for captured technical debt, which makes technical
debt unaware development impossible while also enabling
micro-management for singular technical debt instances. This
should result in notable efficiency improvements when taking
into account technical debt’s super-linear accumulation speed.

Capability to explicitly manage implementation compo-
nents prone to technical debt has lead to further studies in
which the DebtFlag tool is applied to overcome issues in
legacy software development. The ability to produce a ”legacy
interface” for the project allows to efficiently restrict incoming
dependencies to these parts while developers work towards
adapting the legacy parts to the rest of the project.



Research to expose properties of technical debt propaga-
tion in the second objective allows capturing them in static
update models. Capability to automatically update manually
made observations during continued development allows ex-
tending their applicability. Such a mechanism is required to
pursue optimizing defect governance. Additionally, exposing
and reporting on found propagation characteristics hopefully
leads to further research on the area, possibly emergent to
complementary update models.

Finally, integration of the static models with the DebtFlag
tool in the third objective is expected to produce a fully func-
tioning technical debt management suite. Capturing notions in
a way that adheres to the TDMF documentation requirements
should produce a medium through which developers can easily
communicate about technical debt and its resource require-
ments to the management. Underlying update model ensures
that all information is current and thus applicable in decision
making. Adherence to the TDMF’s documentation policies also
allows this development method independent suite to act as
an interface to integrate further technical debt management
policies into these projects.

VII. CONCLUSION

Technical debt captures the uncertainty for a software
project and communicates about the effects it causes. On the
highest level these can be seen to include declining devel-
opment efficiency and sustainability. Uncertainty in develop-
ment calls for reserving more resources in order to overcome
possibly encountered issues. This leads to a less streamlined
and less efficient process. Having fewer resources available
reduces development sustainability. The project becomes more
rigid and less capable of accommodating quickly changing
requirements. That is, technical debt hides the project’s true
state and leads to decisions being made disconnected from
it: unaware of the project’s actual capabilities to overcome
requirements and unforeseen risks while ignoring the optimal
moments for reductive maintenance.

Research proposed in this paper facilitates introducing
technical debt management for software implementations. As
they usually constitute majority of the projects’ accumulated
value, the effects of technical debt and its management are felt
the strongest here. Ability to capture and maintain information
about software implementations’ technical debt does not only
allow the introduction of further management approaches but
also the introduction of this information to existing approaches
so as to make them sensitive to technical debt as well.

Three consecutive work objectives were discussed to
achieve this. The first objective called for a tool that allowed
subjective notions about technical debt to be captured in a
structured manner. The DebtFlag tool was introduced as a
solution to this. In addition to supporting the TDMF, the
DebtFlag introduced a novel micro-management approach for
technical debt. The second objective finds static models to
be used in updating the captured notions. Research towards
this is currently underway, having already distinguished a
number of general propagation characteristics for technical
debt while continued research tries to identify and model the
unique characteristics of specific implementation techniques.
The third and final objective will then combine the two former

ones in order to produce a fully functional technical debt
management suite to overcome the matters discussed in the
previous paragraph.

The author expects the pursued approach to result in a
number of enhancements for software implementation techni-
cal debt management with practical applications. Even small
advancements should be considered as the iterative and in-
cremental properties of current software development methods
multiply the effect in the host project. At the same time, these
methods correspond to the research’s greatest challenge as
technical debt management needs to integrate to them without
suppressing their unique characteristics.

REFERENCES

[1] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” 2001.

[2] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,”
Advances in Computers, vol. 82, pp. 25–46, 2011.

[3] W. Cunningham, “The WyCash portfolio management system,” in
Addendum to the proceedings on Object-oriented programming systems,
languages, and applications (OOPSLA), vol. 18, no. 22, 1992, pp. 29–
30.

[4] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull, and
A. Vetrò, “Using technical debt data in decision making: Potential
decision approaches,” in Managing Technical Debt (MTD), 2012 Third
International Workshop on. IEEE, 2012, pp. 45–48.

[5] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya et al., “Managing technical debt
in software-reliant systems,” in Proceedings of the FSE/SDP workshop
on Future of software engineering research. ACM, 2010, pp. 47–52.

[6] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Da Silva,
A. Santos, and C. Siebra, “Tracking technical debt - an exploratory case
study,” in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on. IEEE, 2011, pp. 528–531.

[7] J. McGregor, J. Monteith, and J. Zhang, “Technical debt aggregation in
ecosystems,” in Managing Technical Debt (MTD), 2012 Third Interna-
tional Workshop on. IEEE, 2012, pp. 27–30.

[8] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: bringing order to the web.” 1999.

[9] B. Turhan, G. Kocak, and A. Bener, “Software defect prediction using
call graph based ranking (cgbr) framework,” in Software Engineering
and Advanced Applications, 2008. SEAA’08. 34th Euromicro Confer-
ence. IEEE, 2008, pp. 191–198.

[10] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto,
“Ranking significance of software components based on use relations,”
Software Engineering, IEEE Transactions on, vol. 31, no. 3, pp. 213–
225, 2005.

[11] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-
based analysis and prediction for software evolution,” in Proceedings
of the 2012 International Conference on Software Engineering. IEEE
Press, 2012, pp. 419–429.

[12] P. Caserta and O. Zendra, “Visualization of the static aspects of
software: a survey,” Visualization and Computer Graphics, IEEE Trans-
actions on, vol. 17, no. 7, pp. 913–933, 2011.

[13] A. Noack and C. Lewerentz, “A space of layout styles for hierarchical
graph models of software systems,” in Proceedings of the 2005 ACM
symposium on Software visualization. ACM, 2005, pp. 155–164.

[14] J. Holvitie and V. Leppänen, “DebtFlag: Technical Debt Management
with a Development Environment Integrated Tool,” in Managing Tech-
nical Debt (MTD), 2013 Fourth International Workshop on. IEEE,
2013.

[15] J. Holvitie, M.-J. Laakso, T. Rajala, E. Kaila, and V. Leppänen, “The
role of dependency propagation in the accumulation of technical debt
for software implementations,” in 13th Symposium on Programming
Languages and Software Tools, k. Kiss, Ed. University of Szeged,
2013, p. 6175.


