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Abstract—Webserver farms and datacenters currently
use workload consolidation to match the dynamic work-
load with the available resources since switching off
unused machines has been shown to save energy. The
workload is placed on the active servers until the servers
are saturated. The idea of workload consolidation can be
brought also to chip level by the OS scheduler to pack
as much workload to as few cores as possible in a many-
core system. In this case all idle cores in the system are
placed in a sleep state, and are woken up on-demand. Due
to the relationship between static power dissipation and
temperature, this paper investigates the thermal influence
on the energy efficiency of chip level workload consolida-
tion and its potential impact on the scheduling decisions.
This work lay down the foundation for the development
of a model for energy efficient OS scheduling for many-
core processors taking into account external factors such
as ambient and core level temperatures.

I. INTRODUCTION

Energy efficiency is becoming a key issue in all
types of computing systems, from hand-held devices to
large scale distributed systems. The energy efficiency
and proportionality characteristics can be studied on
different levels, from the level of enterprise server farms
and datacenters to the level of cores in a many-core
processor. On the level of datacenters, a mismatch
between the energy-efficiency region [1] and the typical
processed workload is usually observed. This leads to
a non-proportional relationship between the produced
work and the corresponding energy consumption i.e. all
energy is not used for useful work. Several approaches
based on load consolidation [2], [3] were proposed
to solve this issue and to accomplish better energy
efficiency.

On the level of cores in a many-core processor, the
current Advanced Configuration and Power Interface
(ACPI) standard defines processor power states, called
C-states or sleep states, and performance states called
P-states. Using only P-states by exploiting dynamic
voltage and frequency scaling (DVFS) mechanisms does

not fully solve the power proportionality problem as
an idling core still dissipates a non-negligible static
power. The overall static power of a chip can be reduced
by removing cores from the set of active cores and
by using their C-states. Therefore, mapping portions
of the workload to appropriate processing elements at
any time and by using the processor and performance
states influences the power dissipation of the processor.
This mapping decision is usually done within the OS
scheduler which can make scheduling and load balanc-
ing decisions leading to different operating states. As
example, fairly distributing all tasks on all cores will
disable the possibility to exploit any processor power
states but will allow the use of performance states on
all cores. On the other hand, consolidating all tasks on
as few cores as possible will drastically limit the use of
performance states on the remaining active core, but will
take full advantage of the power states on the unused
cores.

However a side effect of consolidating the workload
to few cores is an increase of the temperature of the
active cores, while the idle cores, on the other hand, re-
main cool. In an extreme case, because a hot core dissi-
pates more static leakage power [4], a positive feedback
effect of thermal runaway might lead to a continuously
increase of temperature and static power dissipation
over time. Moreover this factor tend to become more
significant as the manufacturing technology decreases
[4]. Although chip aging, calculation errors and thermal
breakdown are also affected by the temperature, the
scope of this paper is only focused on the relation to
power dissipation. In this paper we will investigate the
issue of energy efficient workload mapping in many-
core systems and workload mapping guidelines will be
given by investigating and considering:

• The spatial location of workload

• The ambient temperature conditions

• The processor temperature



All measurements and implementations have been ob-
tained from a benchmark running on real hardware and
using Linux 3.6.11 as the underlying software platform.

With the given insight into efficient workload map-
ping, this paper demonstrates that under certain con-
ditions an OS scheduler should not only consider the
inherited characteristics of the measured workload, but
also account for external factors such as ambient and
core level temperatures.

II. RELATED WORK

Several strategies based on load consolidation to im-
prove the system energy efficiency have been proposed
in the literature. For example load consolidation is a
well studied approach to reduce the energy consumption
on the level of cellular access networks [5] and datacen-
ters [2]. Improvements in energy efficiency based on the
consolidation of virtual machines on a reduced number
of physical servers, as shown by [6], has even resulted
in commercially available implementations [7].

Also, on the level of many-core processors tech-
niques to improve the energy efficiency have been
proposed. The optimization problem of achieving a
minimum energy consumption with the use of load
consolidation and performance states on a many-core
processor is mathematically formulated in [8]. Previous
research has demonstrated the power saving potential
of load consolidation in many-core systems [9]–[11].
For example, the behavior of the currently implemented
power-awareness feature in the Linux scheduler is dis-
cussed in [11]. Without taking into account the thermal
state of the cores, this paper demonstrates that the
effectiveness of the power saving functionality in the
Linux scheduler, described in more details in [12], on a
many-core processor is workload dependent. In particu-
lar the current Linux scheduler is unable to consolidate
load consisting of short running jobs and high rate of
process creation and deletion. This paper indicates that
the consolidation of tasks to keep as many cores as
possible in long idle state is needed in order to reach
the most optimal processor power state.

Indeed, idle states can be disturbed by needless inter-
rupts, even when implementing an idle friendly interrupt
scheme, such as the dynamic ticks in Linux [11]. To
solve this issue, a form of interrupt migration framework
to remove all needless interrupts from idling cores is
needed [11]. Such a mechanism can be found as part of
OS:es, such as the Linux hotplug functionality, which
does not only remove interrupts but, depending on the
underlying architecture, can shut down an entire core
and remove it from the reach of the system scheduler.
Migrating interrupts also cost time and it is important
that the magnitude of this cost justifies the use of the
mechanism [11]. However, since this functionality is

capable of removing all activity on a core and placing
it in a deep sleep state, it is argued that it can be used
as a form of load consolidating power saving measure.
By turning off cores at times of low load the remaining
load would be consolidated over the remaining active
cores.

It is often assumed that consolidating tasks onto
fewer cores will result in a trade off between power
and performance. However, load consolidation applied
in conjunction with DVFS can, in some circumstances,
also increase performance [10], [11]. Nevertheless, plac-
ing the CPU in a higher performance state, as a result
of the load consolidation increasing the load over the
active cores, the dynamic power of these cores as well
as their heat production will increase, in turn increasing
their static power consumption [13]. Since load consol-
idation can, depending on the load situation, a) either
increase or degrade the performance, b) directly affect
the dynamic power and c) indirectly, through thermal
fluctuations, affect the static power, a prediction of its
potential power saving is challenging. The situation is
further complicated by the ambient temperature, since
it also directly affects the system’s leakage power.

Research has shown that load consolidation is in
some cases a viable power saving technique on many-
core platforms [14]. However, due to different variables
such as load perception, interrupt handling, core and
ambient temperature, DVFS behavior, and their impact
on the overall energy consumption and performance,
a best practice regarding load consolidation is yet to
be found. This paper discusses the load consolidation
challenges on many-core processor in order to discern
scenarios in which load consolidation approaches are
beneficial.

III. POWER DISSIPATION AND ENERGY
CONSUMPTION IN MICROPROCESSORS

A. Power breakdown

The total power dissipated by a processing element
origins from two distinct sources: a) the dynamic power
dissipation Pd due to the switching activities and b)
the static power dissipation Ps mainly due to leak-
age currents. The dynamic power is dissipated when
the load capacitance of the circuit gates is charged
and discharged. Such activities occur when the CPU
functional units are active. Because the dynamic power
is proportional to the square of the supply voltage
Pd ∼ V dd2, much effort was put into the design
of integrated circuits being able to operate at a low
supply voltage. However decreasing the supply voltage
of integrated circuits increases propagation delays which
force the clock frequency down accordingly. Therefore
by dynamically adjusting the clock frequency along the
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supply voltage when using performance states maxi-
mizes the power savings. The dynamic power is given
in Eq. 1.

Pd = C · f · V dd2 (1)

Where C is the circuit capacitance, f is the clock
frequency and V dd is the core voltage.

The static power is dissipated due to leakage current
through transistors. Moreover, when lowering the supply
voltage of integrated circuits, the threshold leakage cur-
rent increases which also increases the dissipated static
power [15], [16]. In addition to this, scaling down the
technology process of integrated circuits increases the
gate tunneling current which also leads to an increased
static power [15]. Until recently, the power dissipated
by a processing element was mainly consisting of the
switching activities i.e. Pd � Ps [17]. However due
to technology scaling, the static power dissipation is
exponentially increasing and starts to dominate the
overall power consumption in microprocessors [4], [15],
which leads to increased research efforts in minimizing
static power e.g. with the use of sleep states.

B. Thermal influence

The temperature of a microprocessor directly influ-
ences the static power dissipation of the chip since the
leakage current increases with increased temperature.
The rate at which the static power is increased depends
on the architecture and manufacturing techniques, and
in this paper we mainly focus on mobile many-core
processors. In order to determine the temperature-to-
power ratio, we let a quad-core processor (ARM based
Exynos 4) idle with no workload in different ambient
temperatures.

Fig. 1. Static power dissipation as function of ambient temperature
for idling chip

Figure 1 shows the increase in static power as a
function of the temperature for both board and CPU
level measurements. At the left hand side of the curve,

the chip was put in a freezer and its internal temperature
was measured to be 1 ◦C, and afterwards it was placed
in room temperature and heated up to 80 ◦C with an
external heat source. As seen from the figure, the power
dissipation of the chip increases more than twofold
depending on the ambient temperature conditions. The
sudden drop in chip power at the 80 ◦C point is due
to the chip’s frequency throttling mechanism, which is
automatically activated at this point in order to prevent
overheating leading to physical and functional damage.

C. Energy consumption

The amount of energy consumed by a processor is
the product of the processors power Ptot and the time
t as shown in Eq.2

E = Ptot · t (2)

where Ptot is the sum of dynamic and static power
Ptot = Pd + Ps. The linear combination of power and
time results in a two-variable optimization problem for
minimizing the energy consumption. A strategy called
race-to-idle [14] primarily used in handheld devices
aims to execute work as fast as possible in order to
minimize the execution time and save energy. On the
other hand, decreasing the clock frequency and supply
voltage at the cost of longer execution time might reduce
the total energy if the processing elements are not
overheated due to hot ambient temperature.

We will therefore investigate the energy consump-
tion of different workload placement policies with re-
spect to both power and execution time.

IV. WORKLOAD MAPPING POLICIES AND ENERGY
CONSUMPTION

The main goal of this paper is to investigate how
different workload placement policies affect the dissi-
pated power and execution time and how it impacts the
energy consumption. Practically the workload on an OS
is defined in a certain work quanta called process or
task. A task executing on a core may utilize or load a
certain percentage of the core’s capacity. The methods

Fig. 2. Workload placement for the evenly balanced policy

for calculating load varies but are usually defined as
the ratio between core execution and core idling over a
certain time window.
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Figure 2 shows the traditional method of task map-
ping in Linux [18]. Four theoretical CPU-bound tasks,
each imposing 20% load, spread out evenly over a quad
core CPU to create a balanced schedule.

The complete opposite mapping policy would be to
pack as much work onto as few cores as possible.

Fig. 3. Workload placement for the packing policy

Figure 3 illustrates a scenario in which four tasks
have been mapped on only one core and the remaining
cores are turned off. In this case the system must insert
the notion of overloading a core because as soon as the
loaded core is overloaded, a new core must be woken
up to offload the overloaded core. In a non-ideal (and
more realistic) case the workload is not ideally divisible
over the complete platform.

Fig. 4. Workload migration in a non-ideal workload case

Figure 4 shows how the core with the least workload
offloads a task to the most loaded (but not overloaded)
core, in this case Core 0. Similarly, if a core becomes
overloaded, the core offloads a sufficiently large portion
of the workload to the most loaded but not overloaded
core.

The key issue for these different mapping policies
is the power breakdown and thermal gradient of the
chip. Consider a case with four tasks, each utilizing
a core running at 400 MHz to 100%, and a chip
implementing P- and C-states. Figure 5 illustrates the
relative differences in terms of static and dynamic power
dissipation for the balanced policy (leftmost part) and
the packing policy (rightmost part). As for the balanced
strategy, every core (in this case a quad-core) dissipates
a small amount of dynamic power since the clock is only
running at 400 MHz and still the core is not overloaded.
At the same time, the cores also dissipate static power
since all cores must be enabled to process the workload.

The same set of tasks using the packing policy is
shown in Figure 5, (rightmost part). Since all four tasks

Fig. 5. Power distribution of two workload placement policies

in this case are mapped on only one core, the core
must quadruple its frequency in order to not become
overloaded. As the frequency increases, the dynamic
power increases due to the frequency factor f and the
voltage factor V dd2 as was shown in Eq. 1. Further-
more, when frequency and supply voltage increase the
thermal dissipation also increases to form a thermal hot-
spot. This increases the static power dissipation because
of increased leakage currents in the semiconductors.

While the packing policy results in high power
dissipation for the busy core, the idle cores can be shut
off and their total power dissipation is in best case zero.
The following sections present a set of benchmarks to
determine the most energy efficient workload mapping
policy with different workload scenarios in different
ambient temperatures.

V. EXPERIMENT SETUP

A. Hardware platform

The hardware platform used for the experiments was
an Odroid-X board equipped with a Quad-Core Exynos
4 implementation of the ARM Cortex-A9 architecture.
The CPU had a maximum clock frequency of 1.6
GHz and 1 GB of DRAM. The board has 15 P-states
corresponding to 15 different clock frequencies and
voltage settings. The highest P-state corresponds to a
frequency of 200 MHz and each P-state step changes
the frequency by 100 MHz. We ran each experiment in
three ambient temperature conditions: 1) hot tempera-
ture (the board was using only a passive heatsink), 2)
normal temperature (an external fan was used), 3) cold
temperature (the board was put in a freezer at -20◦C).
The power was measured with a probe attached to the
current feed pins on the ARM cores and the temperature
was measured by reading internal registers.

B. Software platform

Linux 3.6.11 was chosen as the underlying software
platform because of the possibilities to alter the task
mapping with simple scheduling tweaks and already
implemented CPU hotplugging capabilities. All com-
parisons were run with two policies a) spread out the
workload as evenly as possible, and b) packing the
workload to as few cores as possible without overload-
ing them. The used platform did have capabilities for
DVFS tweaking and CPU hotplugging. The used DVFS
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governor was the default Linux OnDemand, which sets
the clock frequency to the appropriate level depending
on the measured workload by utilizing the P-states.
All OnDemand parameters were constant in all sets of
experiments.

C. Spurg Bench

Spurg-Bench [19] is used to generate controlled
load levels on many-core processors. This benchmark
is designed to test a system with different types of
load levels. It consists of a load generator and a runner
script able to generate one or more single-threaded
load operation schedulable to any core in the system.
Between each portion of operations, the benchmark
idles for a set amount of time to create the desired
workload percentage. This means that the test is able
to generate a specific amount of operations to calculate
by utilizing the CPU to a certain level.

The chosen operation we have used stresses the CPU
and the CPU’s floating point unit with floating-point
multiplications. The C code for the operation is shown
in Listing 1.

1 int operation(){
int i; double a = 2.0;

3 for (i = 0; i < 1000; i++)
a ∗= 2.0;

5 return 0;
}

Listing 1. Example of a operation using the processors floating-point
units.

D. Results

Spurg-Bench was initially set to execute 100000
operations for a certain set of load level setpoints:
[10, 20, 30, 40, 50, 60, 70, 80, 90]. All the tests were
run in the three different ambient temperature conditions
with both the consolidation policy and the balanced
policy.

Figure 6 presents the performance, as the number of
operations per second, per watt of CPU power, during
each of the different load level set points for both
scheduling policies in three different ambient temper-
atures. The figure shows that during lower load levels
more work can be accomplished, for the same power
budget of one watt, by consolidating the workload.

In situations when the load is low, consolidating
does not increase dynamic power nor the temperature,
and in extension the static power of the remaining
cores considerably. This leads to a situation where the
reduction in static power is larger than the increase
in total power over the remaining cores, resulting in
power savings. Furthermore, since the static power
consumption is higher at higher temperatures the effect
is more discernible in the high temperature case.

Fig. 6. Power of CPU as a function of operations per second for
different ambient temperatures

From the figure it can be seen that as the load
increases the performance per watt, for the consolidation
policy, degrades in relation to the non consolidation
policy. This results in crossover points between the
performance per power of the two different policies.
These crossover points depict the point at which the
trade off between power and performance, when uti-
lizing consolidation, is no longer energy efficient. This
behaviour is due to the inherent trade-off between power
and performance brought upon by consolidation. Even
though the average power drawn by consolidation is
lower, at higher loads it takes longer to complete the
tasks resulting in decreased performance per watt. The
decrease in performance is also partly due to the con-
solidation policy itself not being as fast at rearranging
tasks as the default scheduling policy.

From Figure 6 we notice that the crossover point for
the studied CPU with no cooling fan is around load level
70% at 1440 operations per second per watt, and at load
level 40% with 1600 operations per seconds per watt if
the CPU is cooled down by a fan. In case the CPU is
in a freezing environment the crossover point already
happens around load level 20% at 1500 operations
per second per watt. The different placement of the
crossover points are due the static power consumption
per core being higher at higher temperatures, which
effects the power saving effect of consolidation.

Even though the gains of using load consolidation
on the chip level where considerably less than expected,
when compared to similar techniques used on the server
level [6] [7], the results indicate that consolidation on
the chip level can, only in some cases, prove to be a
valid measure to improve energy efficiency. Although
we expect comparable behaviour on similar types of
hardware, we intend to extend our analyses to other
architectures as future work. The evaluation of archi-
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tectures having hardware controlled P- and C- states
might produce different results.

VI. CONCLUSION

This paper has investigated the performance and
energy efficiency of a fairly distributed scheduling pol-
icy compared to a workload consolidation policy in
different ambient temperature conditions. The aim of
this work was to determine if under different tempera-
ture conditions the static power saved by shutting off
idle cores weighs up against the increased dynamic
power obtained when increasing the clock frequency
and consolidating the workload on the remaining active
cores.

The results show that as the workload is fairly
distributed over the whole chip, the power and thermal
dissipation of the chip remains rather proportional and
predictable. However, this is not always the most energy
efficient way of scheduling tasks in a many-core system;
for low workloads consolidation provides a more energy
efficient scheduling policy as the unused cores are
completely shut down. Due to the power dissipation of
the CPU increasing exponentially as a function of the
temperature, the effects of consolidation on energy ef-
ficiency is more prominent during higher temperatures.
On the other hand, the improved energy efficiency of
consolidation degrades as the load increases. Reaching a
point where it is more energy efficient to utilize all cores
in the system at a slightly higher power dissipation.

We have found that it is difficult to apply a general
scheduling policy suitable for any environment – as
ambient and chip temperature conditions change, the
energy efficiency of scheduling policies varies. Conse-
quently, scheduling decisions should not only be based
on internal workload measurement, but should also
integrate external conditions such as ambient temper-
ature. On the studied platform, the energy efficiency
can be improved by adding a temperature sensitive
consolidation policy to a modular scheduler, such as the
Linux scheduler. The scheduler can use consolidation
during periods of low load where the switch-over point
between policies will be dependent on the chip temper-
ature. This would enable energy efficient load balancing
mechanisms under variable temperature conditions.
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