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Abstract. In this paper we focus on analysis of transient physical faults and de-
signing mechanisms to tolerate them. Transient faults are temporal faults that 
appear for some time and might disappear and reappear later. They are common 
in control systems. However transient fault appearing even for a short time 
might result in a system error. Hence fault tolerance mechanisms for detecting 
and recovering from temporal faults are of great importance in the design of 
control systems. Often the system module which detects errors and performs er-
ror recovery is called a Failure Management System. Its purpose is to prevent 
the propagation of errors in the system. In this paper we propose a formal ap-
proach to specifying the Failure Management System in the B Method. We fo-
cus on deriving a general specification and development pattern for Failure 
Management Systems for tolerating transient faults.  

1   Introduction 

Nowadays software-intensive control systems are in heart of many safety-critical ap-
plications. Hence dependability of such systems is a great concern. While designing 
controlling software for such systems we should ensure that it is able not only to de-
tect errors in system functioning but also to confine the damage and perform error re-
covery. In this paper we focus on designing controllers able to withstand transient 
physical faults of the system components [9]. Transient faults are temporal defects 
within the system. We focus on analysis and design of a special subsystem of control 
systems – a Failure Management System (further referred to as FMS) – which per-
forms error detection, damage confinement and error recovery. The FMS is a subsys-
tem of the embedded control system responsible for providing the controller with the 
error free inputs obtained from the environment. Since controller is relying only on 
the input from FMS, it is important to ensure its correctness. 

Design of the FMS is particularly difficult since often requirements changes are in-
troduced at the late stages of the development cycle. These changes are unavoidable 
since many requirements result from empirical performance studies executed under 
failure conditions. To overcome this difficulty we propose a formal pattern for speci-
fying fault tolerance mechanism in the FMS. The contribution of our work is in veri-
fying the suggested pattern rather then a particular specification. The proposed pattern 
can be reused in the product line development and hence its correctness is crucial.  



We demonstrate how to develop the FMS by stepwise refinement in the B Method 
[3]. Our approach is validated by a realistic case study conducted within EU project 
RODIN [7].  

2   Fault tolerance mechanism in FMS 

Failure Management System (FMS) [2] is a part of the embedded control system re-
sponsible for managing failures of the system inputs as shown on Figure 1.  
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   Figure 1. Place of the FMS in an embedded control system 
 
The main role of FMS is to supply the controller of the system with the error free in-
puts from the system environment.  

All inputs supplied to the FMS are analysed. The analysis of each input results in 
invocation of the corresponding remedial action. There are three categories of reme-
dial actions: healthy, temporary or confirmation actions. If an input is considered to 
be error free, it is forwarded unchanged to the controller. This is a healthy system ac-
tion. If an error is detected, the input gets suspected and the FMS decides on error re-
covery. The aim of FMS is to give error free output even when input is in error, i.e., 
during recovery phase. Hence, when the input is suspected, the system sends the last 
good value of the input as the error free output toward the controller. This is a tempo-
rary system action. In the recovery phase the input can get recovered during certain 
number of operating cycles. If the input fails to recover, the confirmation action is 
triggered and the system becomes frozen.  

In Figure 2 we illustrate the behaviour of FMS over one analogue input. 
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Figure 2. Specification of the FMS behaviour 

A general description of FMS behaviour is as follows: after getting the input from 
the environment through the system sensors, the FMS determines whether the input is 
in error or error free. If the input is error free, the FMS applies healthy remedial ac-
tion. If it is in error, it is classified as suspected and the system initiates recovery 
phase. When the recovery starts, a counting mechanism responsible for ensuring the 
recovery termination is triggered. If after recovery the input is still suspected, the con-



firmation action is applied, i.e., the input is confirmed failed and the system freezes. 
Otherwise, the system considers the input again as error free, applies the healthy ac-
tion and continues the operation without any interruption.  

The general description of FMS behaviour lacks, however details about the error 
detection.  

When an input is received by FMS, FMS performs certain tests on the inputs to de-
termine its status: in error or error free. We differentiate between the individual and 
collective tests. Individual tests (e.g., Test1 and Test2 in Figure 3) are obligatory 
for each input and they determine the preliminary abnormality in the input. When 
triggered, individual tests run solely based on the input reading from the sensor. We 
use two kinds of individual tests: the magnitude test and the rate test. In the magni-
tude test the input is compared against some predefined limit (bound) and if exceeds, 
it is considered in error. The rate test is detecting erroneous input while comparing the 
change of the input readings in consecutive cycles. Namely, the current value of the 
input is compared against the previous input value and if some predefined limit is ex-
ceeded, the input is considered in error. It is obvious that both tests have some precon-
figurations expressed through the predefined limits which allow dynamic test changes 
as appropriate. 
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Figure 3. Introducing error detection 

The error detection for multiple sensors (InputN in Figure 3) implies first the ap-
plication of individual tests and then, when these tests are passed, the collective test is 
applied. The collective test is commonly a redundancy test. It is applied on the group 
of multiple sensor inputs. As presented on the Figure 3, redundancy test takes the de-
tected multiple inputs (Input_ErrorN) and based on their values (TRUE or FALSE) 
votes for the input status (Input_Error). This status becomes TRUE (i.e., the input is 
considered in error) if there are more erroneous inputs for the multiple sensor readings 
then error free ones. When the input status is finally detected, FMS proceeds with the 
corresponding remedial actions.  

  Before presenting our formal pattern for handling fault tolerance in FMS, we 
give the short introduction to the B Method.  

3   Formal system modelling in the B Method 

In this paper we have chosen the B Method [3] as our formal modelling framework. 
The B Method is an approach for the industrial development of correct software. The 



method has been successfully used in the development of several complex real-life 
applications [6]. The tool support available for B, for instance - Atelier B [1], pro-
vides us with the assistance for the entire development process.  

In this paper we adopt event-based approach to system modelling [4]. The events 
are specified as the guarded operations SELECT cond THEN body END. Here cond is 
a state predicate, and body is a B statement describing how state variables are af-
fected by the operation. If cond is satisfied, the behaviour of the guarded operation 
corresponds to the execution of its body. If cond is false at the current state then the 
operation is disabled, i.e., cannot be executed.  Event-based modelling is especially 
suitable for describing reactive systems. Then SELECT operation describes the reac-
tion of the system when particular event occurs. 

For describing the computation in operations we used following B statements: 
 
Statement Informal meaning 
X := e Assignment 
IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise S2 
S1 || S2 Parallel execution of S1 and S2 

X :: T 
Nondeterministic assignment – assigns 
variable x arbitrary value from given set T 

 
The last statement allows for abstract modelling and hence, postponing implemen-

tation decisions till later development stages.  
The development methodology adopted by B is based on stepwise refinement [8]. 

While developing a system by refinement, we start from an abstract formal specifica-
tion and transform it gradually into an implementable program by a number of cor-
rectness preserving steps, called refinements. In the refinement process we reduce 
non-determinism of the original specification and eventually arrive at deterministic 
implementable specification.  

The result of a refinement step in B is a machine called REFINEMENT. Its structure 
coincides with the structure of the abstract machine. However, refined machine 
should contain an additional clause REFINES which defines the machine refined by 
the current specification. Besides definitions of variable types, the invariant of the re-
finement machine should contain the refinement relation. This is a predicate which 
describes the connection between state spaces of more abstract and refined machines. 

 To ensure correctness we should verify that initialization and each operation pre-
serve the invariant. Verification can be completely automatic or user-assisted.  

Next we demonstrate how to formally specify failure management system de-
scribed in Section 2. 

4   Formal development of FMS 

4.1   Specifying the failure management system 

Control systems are usually cyclic, i.e., their behaviour is essentially an interleaving 
between the environment stimuli and controller reaction on these stimuli. The control-



ler reaction depends on whether the FMS has detected error in the obtained input. 
Hence, it is natural to consider the behaviour of FMS in the context of the overall sys-
tem.  
 The FMS gets certain inputs from the environment, applies specific detection 
mechanisms and depending on the detection results produces output to the controller 
or freezes the whole system. Inputs that FMS receives from the environment are in-
puts from various sensors. In this paper we consider only analogue sensors. In ab-
sence of errors the output from the FMS is the actual input to the controller. However, 
if error is detected the FMS should try to tolerate it and produce the error free output 
or to stop the system without producing any output at all. 

In our abstract specification given in Figure 5, for modelling fault tolerance on 
given input we used different variables. The variable FMS_State defines the phases 
of control cycle execution. Its values are as follows: env – obtaining inputs from the 
environment, det – detecting erroneous inputs, act – changing the system operating 
mode, rcv – recovering of the erroneous input, out – supplying the output of the 
FMS to the controller, stop – freezing the system. The variable FMS_State models 
the evolution of system behaviour in the operating cycle. At the end of the operating 
cycle the system finally reaches either the terminating (freezing) state or produces the 
error free output. After the error free output was produced, the operating cycle starts 
again. Hence, the behaviour of the FMS can be described as in Figure 4. 

 

 

Figure 4. Behaviour of the FMS 

Since the controller relies only on the input from the FMS, we should guarantee 
that it obtains the error free output from the FMS. Hence, our safety invariant ex-
presses this: whenever the input is confirmed failed, the FMS output is not produced 
(i.e., Input_Status=confirmed => FMS_State=stop) and, whenever the input 
is confirmed ok, the output should have the same value as input or be different if the 
input is suspected (i.e., (Input_Status=ok => Output=Input) & (In-

put_Status=suspected => Output/=Input)).  
Although the abstract specification of FMS is highly abstract it anyway specifies 

the fault tolerance mechanism allowing us to ensure the desired behaviour of the sys-
tem. In this abstract specification the input values produced by the environment are 
modelled nondeterministically. After getting the inputs, FMS performs detection on 
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inputs to determine if they are in error or error free. This is modelled in the Detec-
tion operation of the FMS machine as a nondeterministic assignment of some boo-
lean value (TRUE or FALSE) to the variable modelling input state (i.e., Input_Error 
:: BOOL). After the input state is detected, FMS triggers the healthy action if the in-
put is error free. If the input is in error, FMS initiates temporary action, i.e., error re-
covery.  
 
MACHINE 

FMS 
SEES 

Global 
VARIABLES   

Input, Input_Error, FMS_State, cc, num 
INVARIANT 

Input : T_INPUT &     /*actual input to the FMS*/ 
Input_Error : BOOL &  /*variable modelling input  
                        status*/ 
FMS_State : STATES &  /*variable modelling system  
                        state*/ 

    cc : NAT &            /*cc and num are counters*/ 
    num : NAT &                

<safety invariant> 
INITIALISATION  

FMS_State :=env || cc:=0 || num:=0  
OPERATIONS 

 
Environment= 
SELECT <the system is functioning normally> 
THEN 
       <nondeterministically choose some input> || 
       FMS_State:=det 
END; 
 
Detection= 
SELECT <the system is in the detection state> 
THEN 
       Input_Error :: BOOL || FMS_State:=act 
END; 
 
Action= 
SELECT <the input is not in error> 
THEN 
       <healthy action > || FMS_State:=out  
WHEN 
       <the input is in error and the  
        error is just discovered> 
THEN 
       <input is marked as suspected> || 
       cc:=cc+xx || num:=num+1 || FMS_State:=rcv 
WHEN 
       <the input is not in error but it is already  
        marked suspected> 

THEN 
       <input stays suspected> ||      
       cc:=cc-yy || num:=num+1 || FMS_State:=rcv 
WHEN 
       <the input is in error and it is already  
        marked suspected> 
THEN 
       <input stays suspected> || 
       cc:=cc+xx || num:=num+1 || FMS_State:=rcv 
END; 
 
Return= 
SELECT <healthy action> 
THEN 
       <input is passed to the output> || 
       FMS_State:=env 
WHEN 
       <temporary action>  
THEN 
       <output is assigned the last good  
        value of the input> || FMS_State:=env 
END; 
 
Recovering= 
SELECT <input is suspected> & (num>=Limit or cc>=zz) 
THEN 
       <input confirmed failed> || FMS_State:=stop 
WHEN 
       <input is suspected> & num<Limit & cc=0 
THEN 
       <input has recovered> || FMS_State:=out 
WHEN 
       <input is suspected> & num<Limit & cc/=0 &  
       cc<zz  
THEN 
       FMS_State:=env 
END; 
 
Stopping= 
SELECT FMS_State=stop 
THEN 
       skip 
END 

END 

 

Figure 5. Excerpt from the abstract FMS specification

Error recovery is modelled by introducing the two counters: cc and num. At the 
beginning of the operating cycle, both counters are set to zero and their values are 
changed only in the recovery phase. The first counter cc counts inputs which are in 
error. While the system is in the recovery phase, every time when the obtained input 
is found in error, the system sets as the output the last good value of the input and the 
counter cc is incremented by some given value xx. However if the input is error free, 
the cc is decremented by the given value yy. In each operating cycle system is setting 
some values for the counter cc either by decrementing or incrementing it. If at one 
point the value of the cc exceeds some predefined limit zz the counting stops and the 
system confirms the input failure by terminating the operation and freezing the sys-
tem. Since each erroneous input increments the value of cc and each error free input 
decrements it, eventually the counter cc is set to zero. This is possible if eventually 
the FMS starts to receive error free inputs. If cc reaches zero the input is considered 
to be recovered and the system returns to normal functioning initializing cc to zero 
and making it thus ready for the next recovering cycle. The way cc reaches zero or 
exceeds the limit zz is determined via setting the parameters xx, yy and zz. These 
parameters are set by observing the real performance of the failure. By setting the 



value of xx higher then the value of yy, the counter cc is going to yield the limit zz 
faster. However, such a specification is insufficient for guaranteeing termination of 
recovery. Observe that the input may vary in such a way that the counter cc is practi-
cally oscillating between some values but never reaching the limit zz or zero. Hence, 
we introduce the second counter num which is counting each recovering cycle. When 
some allowed limit for num is exceeded, the recovery terminates and if cc is different 
than zero the input is confirmed failed. 

Our initial specification completely describes the intended behaviour of the FMS 
but leaves the mechanism of detecting errors in input unspecified. Next, we demon-
strate how to obtain the detailed specification of error detection in the refinement 
process.  

4.2   Refining error detection in FMS 

Since we observe multiple sensors the refinement of the FMS starts with replacing the 
Input variable with the InputN variable modelling the sequence of input values re-
ceived by the FMS as N sensor readings, instead of only one sensor reading. The non-
deterministic assignment of value to the variable Input_Error in the Detection 
operation of the abstract machine is further refined. By introducing new variable In-
put_ErrorN we can set the value for each particular sensor reading. Input_ErrorN 
is a sequence with Boolean values TRUE or FALSE. These values are determined for 
each multiple sensor input by running two detection tests: the magnitude test and the 
rate test. If the input passes the magnitude test, the value of the temporary variable 
Input_Error1 is set to FALSE, otherwise is TRUE (i.e., the test on this input failed). 
Similarly, if the input passes the rate test, the value of the temporary variable In-
put_Error2 is set to FALSE, otherwise TRUE.  
 The input is error free if none of these tests fail. Hence we define the status of the 
input as the disjunction of Input_Error1 and Input_Error2 and set the variable 
Input_ErrorN accordingly. 
 After setting the values of the variable Input_ErrorN in described way, we apply 
the redundancy test (as shown in Figure 3). We consider N sensor readings which val-
ues are stored in introduced variable InputN. Moreover, our assumption is that this 
number is odd to prevent the situation in which the number of the erroneous and error 
free inputs is the same. The status of each one of the N sensor inputs is recorded in the 
variable Input_ErrorN. The redundancy test performs majority voting. It means that 
if there are more values TRUE in the Input_ErrorN sequence, the whole input is 
considered failed, otherwise it is error free. After the status of the input is detected, 
FMS makes a decision how to proceed with handling it, i.e., which action it is going 
to apply as specified in the abstract specification. 

The essence of our refinement step is to introduce modelling of the N sensor inputs 
instead of only one and replace the nondeterministic assignment to the variable In-
put_Error with deterministic error detection. The refinement relation for this step is 
as follows: 

 
(Input_Error=TRUE =>  

(card(Input_ErrorN|>{TRUE}) > card(Input_ErrorN|>{FALSE}))) 



 
The above refinement relation establishes connection between the abstract variable 

Input_Error and the concrete variable Input_ErrorN. Namely, if the value of In-
put_ErrorN is such that the number of error free inputs is smaller then the number 
of erroneous inputs then it should correspond to the value TRUE of Input_ErrorN. 

 To produce the final output, FMS calculates the median value of all error free in-
puts and passes it as the output from the FMS. 

In the Figure 6 we give the excerpt from this refinement step of the FMS with in-
troduced error detection.  
 
REFINEMENT  

FMSR1 
REFINES  

FMS 
SEES  

Global 
VARIABLES   

InputN, Input_Error, Input_Error1, Input_Error2,       
Input_ErrorN,  
FMS_State, 
cc,num, 
Passed1, Passed2 

INVARIANT 
InputN : seq(T_INPUT) & /*N sensor input reading*/ 
Input_Error : BOOL &   
Input_Error1 : BOOL &   /*test results for 1 input*/ 
Input_Error2 : BOOL &  
Input_ErrorN : seq(BOOL) & /*test results for  
                             N sensor inputs*/ 
FMS_State : STATES & 
cc : NAT & num : NAT & 
Passed1 : BOOL &           /*variables for modeling 
                             test application*/ 
Passed2 : BOOL &    
<safety and gluing invariants> 

INITIALISATION  
InputN := [] || Input_Error := FALSE ||  
Input_Error1 := FALSE || Input_Error2 := FALSE ||  
Input_ErrorN := [] || 
FMS_State := env || 
cc := 0 || num:=0 || 
Passed1 := FALSE || Passed2 := FALSE 
 

OPERATIONS 
 
<obtaining the input from the environment> 
 
Detection= 
SELECT <magnitude test not passed yet> 
THEN 
    IF  
       <the input is in defined low and high limits> 
    THEN 
       Input_Error1:=FALSE 
    ELSE 
       Input_Error1:=TRUE 
    END || 
    Passed1:=TRUE || 
    FMS_State:=det 

WHEN 
    <rate test not passed yet> 
THEN 
    IF 
       <the input change exceeds the limit> 
    THEN  
       Input_Error2:=TRUE 
    ELSE 
       Input_Error2:=FALSE 
    END || 
    Passed2:=TRUE || 
    FMS_State:=det 
WHEN 
    <both test are passed> 
THEN 
    IF  
       /*simulate disjunction*/ 
       Input_Error1=Input_Error2 &  
       Input_Error1=TRUE 
    THEN 
       /*record the input status*/ 
       Input_ErrorN:=Input_ErrorN <- TRUE 
    ELSE 
       Input_ErrorN:=Input_ErrorN <- FALSE 
    END || 
    /*remove the detected input from further  
      observation*/ 
    InputN:=tail(InputN) ||  
    FMS_State:=det 
WHEN 
    <input sequence InputN is empty> 
THEN 
    /*apply the redundancy test*/ 
    IF  
       <the number of TRUE values in Input_ErrorN  
        greater then the number of FALSE values> 
    THEN 
        Input_Error:=TRUE 
    ELSE 
        Input_Error:=FALSE 
    END || 
    FMS_State=act 
END; 
 
<system action upon detection> 

 
END 
 
 

Figure 6. Excerpt from refining the error detection in FMS

5   Conclusion 

In this paper we proposed a formal pattern for specifying and refining fault tolerant 
control systems susceptible to transient faults. We demonstrated how to ensure that 
safety requirement – confinement of erroneous inputs – is preserved in the entire de-
velopment process. We focused on the design of subsystem of the control system – 
the failure management system, which enables error detection, confinement and re-
covery. Our approach has currently focused on considering multiple analogue sensors. 
We derived a general specification of the corresponding error detection mechanism 
which defines the appropriate tests run on the obtained inputs. We verified our pattern 
on a case study. 



Laibinis and Troubitsyna [5] proposed a formal approach to model-driven devel-
opment of fault tolerant control systems in B. However, they did not consider tran-
sient faults. Since we consider this type of faults our approach can be seen as an ex-
tension of the pattern they proposed. 

More work on specifying FMS has been done by Johnson et. al [2]. However, they 
focused on reusability and portability of FMS modelled using UML in combination 
with formal methods. The error detection mechanism proposed here is based on the 
application of specific tests combined with the counting mechanism. Hence we fo-
cused on specifying the essence of mechanism for tolerating transient faults. 

We verified our approach with the automatic tool support – Atelier B. Around 95% 
of all proof obligations have been proved automatically by the tool. The rest has been 
proved using the interactive prover. We believe that the availability of the tool sup-
porting formal specification and verification can facilitate acceptance of our approach 
in industry. 

In this paper we addressed a specific subset of transient faults. As a future work we 
are planning to enlarge this subset and derive generic patterns for specification and 
development of control systems tolerating them. Moreover, it would be interesting to 
investigate the possibility of automatic instantiation of specific requirements from 
which the general pattern is obtained.  
 

Acknowledgments 

 
This work is supported by EU funded research project IST 511599 RODIN (Rigorous 
Open Development Environment for Complex Systems). 

6   References 

1. CClearSy, Aix-en-Provence, France. Atelier B - User Manual, Version 3.6, 2003. 
2. I. Johnson, C. Snook, A. Edmunds and M. Butler. “Rigorous development of reusable, do-

main-specific components, for complex applications”, In Proceedings of 3rd International 
Workshop on Critical Systems Development with UML, pages pp. 115-129, Lisbon, 2004.  

3. J.-R. Abrial. The B Book: Assigning Programs to Meanings, Cambridge University Press, 
1996. 

4. J. R. Abrial. Event Driven Sequential Program Construction, 2001.   
http://www.atelierb.societe.com/ressources/articles/seq.pdf 

5. L. Laibinis and E. Troubitsyna. “Refinement of fault tolerant control systems in B”, In Com-
puter Safety, Reliability, and Security - Proceedings of SAFECOMP 2004 Lecture Notes in 
Computer Science, Num: 3219, Page(s): 254-268, Springer-Verlag, Sep, 2004. 

6. MATISSE Handbook for Correct Systems Construction. EU-project MATISSE: Methodolo-
gie and Technologies for Industrial Strength Systems Engineering, IST-199-11345, 2003. 
http://www.esil.univ-mrs.fr/~spc/matisse/Handbook 

7. RODIN - Rigorous Open Development Environment for Complex Systems, Project Number: 
IST 2004-511599, http://rodin-b-sharp.sourceforge.net  

8. R. J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Springer-
Verlag, 1998. 

9. Storey N. Safety-critical computer systems. Addison-Wesley, 1996. 


