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Abstract. In this paper we demonstrate how to formalize UML-based
development of protective wrappers for tolerating transient faults. In
particular, we focus on the fault tolerance mechanisms common in the
avionics domain and show the development of a protective wrapper,
called Failure Management System. We demonstrate how to integrate
the formal refinement approach proposed earlier into the UML-based
development.
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1 Introduction

To guarantee dependability [1] of safety-critical software-intensive systems, we
should ensure that they are not only fault-free but also tolerant to faults [2]
of system components. This paper focuses on designing controlling software for
tolerating transient faults [3]. Transient faults are temporal defects within the
system. The mechanisms for tolerating this type of faults should ensure that
the controlling software does not overreact on isolated faults yet does not allow
the errors caused by these faults to propagate further into the system. These
mechanisms constitute a large part of software in complex systems and hence
they could be perceived as a separate subsystem dedicated to fault tolerance. In
avionics, such a subsystem is traditionally called Failure Management System

(FMS).
Earlier we proposed a generic formal pattern for specifying and developing

the FMS [4] in the B Method [5, 6]. However, industrial engineers often per-
ceive constructing a formal specification from informal requirements to be too
complex to be done without an intermediate modeling stage. They usually use
graphical modeling, mostly in UML [7], to facilitate this process. In this paper we
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demonstrate how to integrate the formal approach proposed previously into the
UML-based development. We use a subset of UML called UML-B [8] to specify
and develop the FMS. To automate the process of obtaining a formal specifica-
tion from UML models, we use the U2B tool [9], which translates UML-B models
into Event-B [10]. Event-B is an extension of the B Method for developing re-
active and distributed systems. We use the automated tool support for Event-B
to verify the correctness of our development. Therefore, the proposed approach
has a high degree of automation.

The paper is structured as follows. In Section 2 we shortly describe the FMS.
Section 3 gives a brief introduction into our modeling frameworks – Event-B and
UML-B. Section 4 demonstrates the process of developing the FMS in UML-B.
We start from an abstract model of the FMS and obtain more detailed FMS
models through a number of development phases. Moreover, we show how to
translate these models into Event-B and verify their correctness. Finally, Section
5 concludes the paper.

2 Failure Management System

The Failure Management System (FMS) [11, 12] is a part of the embedded safety-
critical control system as shown in Fig. 1. It can be perceived as a protective
”wrapper” with the task to detect erroneous inputs from the sensors and prevent
their propagation into the controller.
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Fig. 1. Structure of an embedded control system

Based on sensor readings, the FMS calculates the output and forwards it
to the controller. While calculating the output, the FMS has to ensure that
only fault-free inputs received from the system environment are passed to the
controller. This is achieved by considering the following pattern of the FMS
behavior. We assume that initially the system is fault-free. Since control systems
are usually cyclic, it is natural to describe the behavior of the FMS as cyclic
as well. The FMS operating cycle starts by obtaining the readings from the
monitored sensors as the inputs to the FMS. The FMS then tests the inputs by
applying a certain error detection procedure. As a result, depending on whether
the error was detected or not, the inputs are categorized as fault-free or faulty.
Then the FMS takes the corresponding remedial actions that can be classified
as healthy, temporary or confirmation [12]. An important part of these actions
is input analysis, which distinguishes between recoverable and non-recoverable
faulty inputs by assigning them different statuses.



To explain how the remedial actions work, for simplicity we consider a single
sensor. Healthy action describes the ”normal” FMS reaction when a received
input is fault-free. In such a case, the input is assigned the status ok and it is
forwarded unchanged to the controller. Temporary action describes the FMS re-
action when a received input is faulty and recovering, meaning that the number
of previously received faulty inputs has not yet reached some predefined limit.
If this is the case, the input is assigned the status suspected. Then, the FMS
calculates the output using the last good value of this input obtained in the pre-
vious FMS cycles. Finally, confirmation action describes the FMS reaction when
a received input is faulty and it has failed to recover. Then, the input is assigned
the status confirmed failed and the system proceeds with the control actions
defined for freezing (stopping) the system or switching to a backup controller, if
possible.

The pattern of the FMS behavior described above can be used in the prod-
uct line development of the controlling software [13]. We use this pattern for
developing the aircraft engine FMS in UML-B (and indirectly in Event-B). In
the next section we introduce these modeling frameworks.

3 Modeling Frameworks – Event-B and UML-B

Event-B. The Event-B Method [10] is an approach for modeling dependable
systems, which extends the B Method [5, 6]. In Event-B, a model of a system
is described by contexts and machines. Contexts describe the static part of the
system using carrier sets, constants and axioms. Machines describe system dy-
namics using variables, invariants, theorems, events and variants. Variables of
the machine define the machine state. They are strongly typed by invariants
and can be altered by events. Events are given in the form event=WHEN

guard THEN action END, where guard is a state predicate on the variables,
and action is a set of assignments, which simultaneously update the machine
variables. If guard is satisfied, the event is enabled and the behavior of the event
corresponds to the execution of its action. If guard is false, then the event is
disabled, i.e., its execution is blocked.

The development methodology adopted by Event-B is based on stepwise
refinement [14]. The result of a refinement step in Event-B is the machine that
refines the state and events of an abstract machine. The invariant of this machine
additionally contains the gluing invariant that describes the connection between
the state spaces of the more abstract and refined machines.

To ensure correctness of a specification, we should verify that each event of
the machine, including the initialisation, preserves the invariant. A high degree
of automation in verifying correctness is provided by the available Event-B tool
support [15].

UML-B. UML-B [8] is a specialisation of UML [7], which combines UML and
Event-B to define a graphical formal modeling notation. UML is widely used
graphical modeling language. However, it lacks precise semantics. Event-B, on



the other hand, is a formal modeling framework, but it requires significant math-
ematical training from the users. The UML-B is developed as an alliance of these
two modeling approaches. It contains a limited subset of UML entities which se-
mantics is provided by their translation into Event-B using the U2B [9] translator
tool. U2B converts a UML-B model into its equivalent Event-B model. We can
then verify the model correctness by using the Event-B tool support.

In UML-B, a model of a system is described by package, context, class, and
state-machine diagrams. A package diagram describes the abstract view on the
system architecture. In other words, it describes the packages encapsulating the
system on different levels of abstraction and the dependencies between them. In
addition, it allows separating specification of the static and the dynamic parts
of the system. This is achieved by defining two types of packages: Context and
Machine package, which coincide with the concepts defined in Event-B. Each
context has the associated context diagram defining the constants and properties
of these constants (axioms). Each machine has the associated class diagram
capturing the functional requirements of the modeled system. The classes of
the class diagram define system components whose properties are specified as
class attributes. The behavior of each component is defined by a statemachine
diagram. Hence, on the abstract level the system is described by a set of class
diagrams and statemachines encapsulated within the abstract machine package.

UML-B adopts the same approach to system development as Event-B, i.e.,
stepwise refinement. In particular, it uses superposition refinement [14], which
allows us to extend the state space while preserving the existing data structures
unchanged. The first step of refining a UML-B model is ’cloning’ the current
model in order to preserve the old class diagrams and statemachines. Then, we
introduce new UML-B elements gradually by incorporating more details about
the system structure and behavior. Specifically, more detailed behavior of the
system is modeled with hierarchical states by adding sub-states and new tran-
sitions to the existing statemachines. Refinement of UML-B statemachines is
described in detail in [16].

In general, while developing the system in a number of refinement steps,
we create a chain of machine packages, where each subsequent package is a
refinement of the previous package, i.e., of its class diagrams and statemachines.
The refinement relation is established by adding the association Refines between
the corresponding packages.

A more detailed description of UML-B entities is given in the following sec-
tion, where we demonstrate how to specify and refine the FMS in UML-B. We
also show how to obtain the Event-B models of FMS from their UML-B coun-
terparts and verify their correctness.

4 Developing the FMS with specification and refinement

templates in UML-B

The development of the FMS in UML-B is done in several phases. Each devel-
opment phase corresponds to a refinement step. It is characterized by a set of



UML-B models (class and statemachine diagrams) representing the main struc-
tural and behavioral aspects of the FMS at the corresponding level of abstraction.

FMS abstract specification. At the highest level of abstraction, we con-
sider a very simple FMS as shown in Fig. 2. In the class diagram FMS0, the
fixed class SENSORS describes the set of n analogue sensors that are monitored
by the FMS. Signals from each sensor are modeled as the class attribute Value.
The output of the FMS is modeled as the machine variable Output. At this de-
velopment phase, the FMS nondeterministically calculates the output using the
last good sensor readings. Hence, we introduce an additional attribute to the
class SENSORS – Last Good Value. Moreover, the subclass FAILED SENSORS is
introduced to model the sensors that have failed.

(a) (b)

Fig. 2. (a) class diagram FMS0 and (b) statemachine fms state for the 1st FMS devel-
opment phase

The way in which the FMS behaves is described via the statemachine fms state.
The states env, det, act, out and freeze in this statemachine denote different
stages of the FMS cycle. At this phase, we model the FMS cycle very abstractly:
the FMS reads input values from the sensors, then it performs error detec-
tion, and either continues the cycle by calculating the output or fails. If the
output is successfully calculated, the FMS cycle starts again. The FMS state
changes are described by transitions between the states in the statemachine
fms state. For instance, the transition determine failed simulates the error detec-
tion by nondeterministically choosing failed sensors, i.e., FAILED SENSORS:∈
{x | x ∈ P(SENSORS)}. At the later development stages this transition will be
refined to implement a more detailed error detection procedure.

To ensure that the FMS can proceed operating only with the sensors that
have not failed, we define state invariants in the statemachine fms state. For-
mally, the invariant (∃s · s ∈ SENSORS ∧ s /∈ FAILED SENSORS) is associated
with the states env, det, and out. It means that, when the FMS is in these
states, it processes readings from at least one operational (non-failed) sensor.
The machine invariant, which is a part of the class diagram, additionally states
the properties of the FMS when all the sensors have failed.



FMS refinement. The abstract FMS model is actually encapsulated in the
machine package FMS01, as shown in Fig. 3. We further continue the FMS devel-
opment by creating the refinement package FMSR1, which introduces changes
into the abstract FMS model. At this development phase we refine the error
detection from the abstract model by introducing sensor testing.

Fig. 3. FMS package diagram Fig. 4. sub-statemachine det state

The diagrams from the previous phase remain the same. However, to intro-
duce sensor testing, we refine the statemachine fms state by creating the sub-
statemachine det state inside the state det, as shown in Fig. 4. The newly in-
troduced sub-statemachine defines two new states tes and anl, designating the
steps of the FMS error detection. Namely, after obtaining the sensor readings,
the FMS performs testing the sensors (tes) and then analysis of inputs (anl) in
order to detect errors, and then continues by determining which sensors have
failed. The actual testing procedure is modeled as the transition test sensors in
the sub-statemachine det state. It nondeterministically decides on the result of
error detection. This result is modeled as a value assigned to a newly intro-
duced attribute of the existing class SENSORS – Error Detected. The FMS now
uses this information to decide which sensors have failed. Hence, the transition
determine failed from the statemachine fms state is refined as follows:

FAILED SENSORS:∈ {x | x ∈ P(SENSORS) ∧
(∀s · s ∈ x ⇒ Error Detected(s) = TRUE)}

In addition, a new machine invariant is added to the existing class diagram. It
describes in detail the properties of sensors: i.e., it requires that all failed sensors
should be detected. The invariant is formally expressed as follows:

fms state = act ⇒ (∀s · s ∈ FAILED SENSORS ⇒ Error Detected(s) = TRUE)

The way in which sensors are analyzed after testing is further refined in the
3rd development phase by creating the refinement package FMSR2. It contains
all the class and statemachine diagrams from the previous phase. In addition, it
contains a new sub-statemachine inside the state anl from the sub-statemachine
det state. This sub-statemachine defines more precisely the FMS behavior af-
ter performing tests on the sensors. Namely, the FMS decides about the sta-
tus of each particular input before taking the corresponding remedial actions.

1 FMS0 gets the access to the context Global by the association type Sees.



The structure of the FMS is refined as well, by introducing a new attribute
Sensor Status for modeling the result of this decision. The machine invariants
can now be further strengthened to describe situations in which faulty sensors
can recover. If they can not recover, the invariant guarantees that they will be
considered as failed.

The following FMS development phases continue to refine the structure and
the behavior of the original system. Due to the lack of space, we only outline
these further development phases and omit their detailed description: the 4th

development phase introduces detailed analysis of inputs based on the results of
error detection. The input analysis is further elaborated in the 5th development
phase by specifying a customizable counting mechanism, which reevaluates the
status of the analyzed inputs at each FMS cycle. In a similar way, the 6th de-
velopment phase describes in detail the error detecting procedure performed on
each sensor and continues by introducing error detection tests in the 7th devel-
opment phase. The 8th development phase further elaborates on different types
of these tests.

Creating FMS Event-B models from UML-B models. Using the U2B
tool, the Event-B models are automatically generated from the above UML-B
models. For instance, the machine package FMS0 containing the diagrams given
in Fig. 2 corresponds to the FMS0 Event-B machine shown in Fig. 5.

MACHINE

SEES

VARIABLES

INVARIANTS

EVENTS

INITIALISATION

BEGIN END

WHEN THEN END

WHEN THEN

END

ANY WHERE

THEN END

ANY WHERE

THEN END

WHEN THEN END

WHEN THEN END

END

FMS0
Global, FMS0_implicitContext

fms_state, FAILED_SENSORS, Value, Output, Last_Good_Value

fms_state∈fms_state_STATES ∧FAILED_SENSORS∈#(SENSORS) ∧
Value∈SENSORS→% ∧…

fms_state'env ∥FAILED_SENSORS'∅ ∥Value'SENSORS×{InitInput}∥…
read_sensors ==

fms_state=env fms_state'det ∥Value:∈SENSORS→%
determine_failed ==

fms_state=det fms_state'act
FAILED_SENSORS:∈{xx∣xx∈#(SENSORS)}

continue ==
yy yy∈#(Value) ∧fms_state=act ∧FAILED_SENSORS≠SENSORS
fms_state'out ∥Last_Good_Value'Last_Good_Value,yy

calculate_output ==
xx xx∈#(Last_Good_Value) ∧fms_state=out ∧…
fms_state'env ∥Output:∈ran(xx)

stop ==
fms_state=act ∧FAILED_SENSORS=SENSORS fms_state'freeze

fail ==
fms_state=freeze skip

∥

Fig. 5. Excerpt from the Event-B abstract specification FMS0

Informally, the rules for mapping some frequently used UML-B concepts into
Event-B can be summarized as follows:



– a fixed class is defined as a constant, e.g., the class SENSORS corresponds to a
constant defined in the automatically generated context FMS0 implicitContext;

– a subclass is represented as a variable, which is typed as a subset of its
superclass, e.g., the subclass FAILED SENSORS is defined as a subset of
SENSORS;

– the name of a statemachine corresponds to a variable, which type is de-
fined by enumerating its states, e.g., the statemachine fms state is defined as
the variable fms state of the type fms state STATES, where the type is the
enumerated set {env,det,act,out,freeze} defined in FMS0 implicitContext;

– an attribute of a fixed class becomes a machine variable typed as a function
from the constant designating that class to the given attribute type, e.g.,
Value ∈ SENSORS → N is an array of input readings for n sensors;

– a machine variable and an invariant are equivalent to the same concepts in
Event-B;

– the transitions from a statemachine correspond to the events defined using
the transition properties stated in UML-B. The complete list of translation
rules can be found elsewhere (e.g., [8, 9]).

Similarly to the translation of the package FMS0 into the Event-B machine
FMS0, the package FMSR1 refining the abstract package FMS0 is translated into
the corresponding refined Event-B machine as shown in Fig. 6.

MACHINE

REFINES

SEES

VARIABLES

INVARIANTS

EVENTS

INITIALISATION

BEGIN END

WHEN

THEN END

WHEN

THEN

END

END

FMSR1
FMS0

Global, FMSR1_implicitContext

…, det_state, Error_Detected

… ∧ det_state∈det_state_STATES ∧ Error_Detected∈SENSORS→BOOL ∧
fms_state=act⇒(∀s·s∈FAILED_SENSORS⇒Error_Detected(s)=TRUE)

… det_state'tes ∥ Error_Detected'SENSORS×{FALSE}
read_sensors == …
test_sensors ==

fms_state=det ∧ det_state=tes
det_state'anl ∥ Error_Detected:∈SENSORS→BOOL

determine_failed (refines determine_failed) ==
fms_state=det ∧ det_state=anl
fms_state'act ∥ det_state'tes ∥

continue == …
calculate_output == …
stop == …
fail == …

FAILED_SENSORS:∈{x∣x∈*(SENSORS)∧(∀s·s∈x⇒Error_Detected(s)=TRUE)}

Fig. 6. Excerpt from the Event-B refinement FMSR1

Observe that the machine FMSR1 explicitly states which machine it refines. It
obtains two additional variables: one for the newly introduced class attribute Er-

ror Detected and another one modeling the current state in the sub-statemachine



det state. The invariant of the machine FSMR1 is strengthened by typing the
newly introduced variables and adding the gluing invariant that connects the
new variable Error Detected with the existing variable FAILED SENSORS. Fur-
thermore, FMSR1 introduces the new event test sensors corresponding to the
new transition in the sub-statemachine det state from Fig. 4. It describes how
the new variable Error Detected is changed during the FMS error detection pro-
cedure. Moreover, the event determine failed from the machine FMS0 is refined
in the machine FMSR1. The guard of this event is strengthened by adding the
new predicate that specifies the event enabling state of the sub-statemachine
det state. Correspondingly, the actions of the event are refined as well in order
to incorporate the knowledge of the newly introduced variables.

Formal verification of the obtained Event-B machines is done using the au-
tomatic tool support for Event-B [15].

5 Conclusion

In this paper we demonstrated how to integrate the classical refinement develop-
ment of the FMS [4] with UML-based development. Moreover, we showed how
to use the available tool support to automate modeling and verification. Our
approach has been validated by a case study – modeling and verification of the
engine FMS for tolerating transient faults. The approach has several phases.
Each phase is characterized by the set of UML-B models (class diagrams and
statemachines). The complete specification of the FMS is obtained through a
series of gradually refined UML-B models. Using the U2B translator tool, we
generated Event-B models from the overall set of previously developed UML-B
models. By translating UML-B models into Event-B, we were able to use the
Event-B proof tool support to verify the correctness of our development. The
results showed that we were able to prove the correctness of models significantly
faster, with a higher percentage of automatic proofs than in our previous B
development [4].

In the future, we are planning to investigate instantiation of the developed
templates by using the obtained FMS UML-B contexts.
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