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ABSTRACT
As of today, model-based testing is considered as a leading-edge
technology in the IT industry. In model-based testing, an implemen-
tation under test is tested for compliancewith amodel that describes
the required behaviour of the implementation. Uppaal Tron is a
popular tool for online model-based conformance testing of real-
time systems; it uses the Uppaal verification engine to generate
and convert on-the-fly timed symbolic traces into concrete test
sequences. Among the advantages of online testing is the reduc-
tion of the symbolic state space needed for computing traces, bet-
ter addressing non-determinism, as well as the possibility to exe-
cute longer-lasting test runs. However, analysing and debugging
long test runs can be tedious and time-consuming especially when
analysing root causes of failed tests. In game theory, backward-
induction is a process to reason backwards in time, from the end of
a problem or situation, in order to determine a sequence of optimal
actions. In this paper, we propose an approach to reconstruct sym-
bolic traces from test sequences generated by Uppaal Tron using
backward-induction. The resulting symbolic traces can be imported
in the Uppaal tool and visualised in the Uppaal simulator. The
evaluation of the implementation of the approach shows that it has
the potential to satisfy the needs of industrial level testing.

CCS CONCEPTS
• Theory of computation → Timed and hybrid models; For-
mal languages and automata theory; Solution concepts in
game theory; • Software and its engineering→ Software test-
ing and debugging;
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1 INTRODUCTION
Model-based testing (MBT) [28] is increasing in popularity in both
academia and industry due to its ability to automatically generate
tests from abstract models depicting the expected behaviour of the
system under test (SUT). Approaches for test modelling and test gen-
eration from different specification languages have been proposed
in the past, both in the un-timed [3, 14, 19] and timed [8, 10, 12, 17]
domain. In the latter category, testing using timed automata (TA)
gained interest especially due to the maturity of model-checkers
like Uppaal and adjacent work on test case generation from TA,
e.g., using Uppaal Tron [16].

The Uppaal model-checking tool suite is an integrated envi-
ronment for modelling, validation, and verification of real-time
systems [2]. It uses a network of extended TA to specify the be-
haviour of the system and it can be used to verify whether given
properties of the system, specified in temporal logic, are violated
or not. In the former case, a counter example (aka diagnostic trace)
is presented and can be visualized in the Uppaal simulator.

Hessel et al. proposed algorithms for online test generation from
Uppaal timed automata (UTA) based on the relativized timed in-
put/output conformance relation (rtioco) [16]. The algorithm relies
on the capability of Uppaal to create traces via symbolic reachabil-
ity analysis, which by interacting with the implementation under
test (IUT) are transformed into observed test runs or test sequences.

When executing test sequences, the symbolic states to be visited
are calculated and a decision on the next input is taken based on
the received output of the IUT and choosing randomly one of the
enabled model transitions. A test session stops when the model
reaches a final state, the test duration expires, or when a violation
of the conformance relation is encountered.

1

https://doi.org/10.1145/3123779.3123813
https://doi.org/10.1145/3123779.3123813


While online testing brings benefits in terms of reducing the state
space stored in the memory, addressing non-determinism better,
and executing long test runs, it suffers from difficulties in analysing
and diagnosing the test result in case of long lasting test runs [16].
In many situations, especially when a failed or inconclusive test
result is encountered, one would like to understand and visualise
which traces have been explored in the model during a test session,
which symbolic states have been visited, and which were the values
of both clock and integer variables in each symbolic state.

In order to locate the fault at specification level, one potential
solution is to include the functionally in Uppaal Tron to record
and store the symbolic test traces corresponding to the generated
test sequence. Since Uppaal Tron is not open-source, the updates
can only be done by the original authors. However, the record-
ing and storing of symbolic test traces during the test run might
interfere with the real-time constraints of test generation due to
i/o latency and, consequently, may lead to a incorrect test verdict.
Furthermore, the new functionality will not be useful for previously
created test sequences, generated with current and past versions of
Uppaal Tron and stored for later inspection. These test sequences
are not reproducible due to the random choices of inputs and time
delays and because of different optimization techniques used for
reducing the symbolic state space used by the test generation algo-
rithm of Uppaal Tron [20]. Reconstructing a posteriori the sym-
bolic trace by forward traversing of the timed test sequence might
not be a feasible choice either since one has to generate all reachable
symbolic states and to identify the choices which corresponded to
the test sequence, which will require intense computation effort.

Therefore, in this work we propose a generic approach which
uses backward-induction to reconstruct the symbolic trace corre-
sponding to a conformance testing session of Uppaal Tron. While
the timed test sequence will include events and delays observable on
the test interface, the reconstructed symbolic trace will include both
observable and non-observable events and delays, corresponding
to model-level transitions.

Symbolic trace reconstruction allows us to take advantage of
Uppaal’s capabilities for simulation and visualisation in order to
improve the debugging process and to reduce the cognitive effort
needed to identify the underlying causes of inconclusiveness or
failure. For clarity, we would like to point out that: a) we do not
recreate the entire symbolic state space of the model, but only the
symbolic trace (sequence of states and state transitions) leading to
the verdict state and b) our approach can be applied to any sequence
generated by Uppaal Tron regardless of its test verdict or number
of test events.

This paper is divided into the following sections. Section 2 revis-
its background information and concepts related to UTA and rtioco.
We briefly introduce backward-induction in Section 2.4. Section
3 details our proposed approach, followed by a brief overview of
tool support. We evaluate the scalability of approach with a smart
lamp light controller and a temperature control system examples
in Section 4. We give an overview of related literature in Section 5
and conclude in Section 6.

2 BACKGROUND
In this section, we briefly introduce the terminology and notations
used throughout this paper.

2.1 Timed input-output transition systems
Definition 2.1. A timed labelled transition system (TLTS) [23] is a 4-

tuple ⟨S, s0,Actτ ,ϵ ,−→⟩, where S is a non-empty set of states; s0 ∈ S

is the initial state;Actτ ,ϵ
def
= Act ∪{τ }∪D are the actions,Actτ ,ϵ

including the internal action τ and time-passage actions (delay) ϵ ;
where D is τ (d)|d ∈ R+. A transition −→⊆ (S × Actτ ϵ × S) is a
relation with the following consistency constraints:

• Time determinism. whenever s
ϵ (d )
−→ s ′ and s

ϵ (d )
−→ s ′′ then

s ′ = s ′′

• Time additivity. ∀s, s ′′ ∈ S ∧ ∀d1,d2 ≥ 0 : (∃s ′ ∈ S : s
ϵ (d1)
−→

s ′
ϵ (d2)
−→ s ′′) iff s

ϵ (d1+d2)
−→ s ′′

• Null delay. ∀s, s ′ ∈ S : s
ϵ (0)
−−−→ s ′ iff s = s ′

The labels inActϵ (Actϵ
def
= Act ∪ D) represent the observable

actions of a system, i.e. labelled actions and passage of time; the
special label τ represents an unobservable internal action. A tran-
sition (s, µ, s ′) is denoted as s

µ
−→ s ′. A computation is a finite or

infinite sequence of transitions:

s0
µ1
−→ s1

µs
−→ s2

µ3
−→ · · ·

µn−1
−→ sn−1

µn
−→ sn (−→ · · · )

A timed trace captures the observable aspects of a computation;
it is a sequence of observable actions. The set of all finite sequences
of actions over Act including empty sequence ϵ is denoted by Act⋆ϵ .

We define timed input-output transition system (TIOTS) is a timed
labelled transition system ⟨S, s0,Actτ ϵ −→⟩ with Act partitioned
into input actions, ActI , and output actions, ActU , such that ActI ∪
ActU = Act ,ActI ∩ActU = ∅.

Briones et. al. [9] suggest the convention that input actions are
identified by names followed by symbol (?), and output actions by
names followed by symbol (!). Thus, a timed trace σ is a sequence
of i/o actions and delays, e.g. σ = a? · ϵ(d1) · ϵ(d2) · b!. Obviously,
the consecutive delays in a trace as in σ = a? · ϵ(d1 + d2) · b! can
be aggregated and alternatively be written as sequences of actions
with relative time stamps, viz. σ = a?(0) · b!(d1 + d2).

Definition 2.2. (Formal definition of TIOTS) For a set of ac-
tions Act , partitioned into two disjoint sets of input actions AI and
output actions AU , by adding a unobservable action τ < Act , we
get an extended action set denoted Actτ = Act ∪ {τ }.

Thus, a TIOTS S is a tuple (S, so ,AI ,AU ,→), where
– S is a set of states, and s0 ∈ S ;
– AI and AU are the set of input and output actions respectively;
– and→⊆ S × (Actτ ∪ R≥0) × S is a transition relation satisfying

the usual constraints of time determinism (see definition 2.1) (if

s
d
−→ s ′ and s

d
−→ s ′′ then s = s ′′), time additivity (if s

d1
−→ s ′ and

s ′
d2
−→ s ′′ then s

d1+d2
−→ s ′′), and null-delay (for all states s

0
−→ s).

d,d1,d2 ∈ R≥0, and R≥0 denotes the set of non-negative real
numbers.

Several TIOTS can be composed in parallel to model the be-
haviour of SUT and its environment under a closed system which
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interact via observable behaviour. We define TIOTS parallel com-
position as follows:

Definition 2.3. (TIOTS composition) LetS = (S, s0, AI ,AU ,→)

and E = (E, eo ,AU ,AI ,→) be TIOTSs. Here E is the set of environ-
ment states and e0 being the initial state such that e0 ∈ E. Both E

and S share the identical set of input (output) actions. The parallel
composition ofS and E forms a closed systemS ∥ E whose observ-
able behaviour is defined by the TIOTS (S × E, (s0, e0),AI ,AU ,→),
where→ is defined as:

s
a
→ s′ e

a
→ e′

(s, e)
a
→ (s′, e′)

s
τ
→ s′

(s, e)
τ
→ (s′, e)

e
τ
→ e′

(s, e)
τ
→ (s, e′)

s
d
→ s′ e

d
→ e′

(s, e)
d
→ (s′, e′)

and a ∈ Act , d ∈ R≥0 and τ < Act .

2.2 UPPAAL timed automata
A timed automaton is essentially a finite automaton (that is a graph
containing a finite set of nodes called locations and a finite set of
labelled edges) extended with real-valued variables [17] [6]. Such
an automaton may be considered as an abstract model of a timed
system. The variables model the logical clocks in the system, that
are initialized with zero when the system is started, and then incre-
mented synchronously with the same rate. The behaviour of the
automaton is restricted by using clock constraints i.e. guards on
edges. A transition represented by an edge can be taken when the
clock values satisfy the guard which labels the edge. The clocks
may be reset to zero when a transition is taken.

Assume a finite set of real-valued variables C, ranged over by
x ,y, denotes the clocks and a finite set of alphabet A ranged over
by a,b denotes actions. A clock constraint is a conjunctive for-
mula of atomic constraints of the form x ∼ n or x − y ∼ n for
x ,y ∈ C,∼∈ {≤, <,=, >, ≥} and n ∈ N. The set of clock constraints
B(C) is ranged over by д. A zone for a set of clocks C is a conjunc-
tion of atomic constraints consisting of a pair of clock variables
where difference of clock variables is maintained using the tightest
constraint between them [4].

Definition 2.4. A timed automaton (TA) T over action A is a
tuple ⟨S, l0,E, I ⟩, where [23]:
• S is a non-empty finite set of locations;
• l0 ∈ S is the initial location;
• E ⊆ S ×B(C) ×A× PC × S is a set of edges where PC represents

the power set of C (clocks).
• I : S 7→ B(C) is the location invariant mapping, that gives an

invariant д ∈ B(C) for each location l ∈ S .

To model concurrent systems, TA can be extended with parallel
composition. A network of TA NTA = (T1 | | · · · | |Tn ) is a collection
of concurrent TA Ti composed by parallel composition. The state
of the network is modelled by a configuration ⟨ℓ̄, c̄⟩. The first com-
ponent is a location vector ℓ̄ = ⟨ℓ1, · · · , ℓn⟩ where ℓi is the set of
locations of automaton Ti . The second component c̄ ∈ R+ is the
valuation of all clock variables. The initial state of the network is
⟨ℓ̄0, 0̄⟩ where all automaton in NTA are at initial locations and the
valuation of clock variable is zero.

The semantics of a timed automaton T is defined by associ-
ating a timed labelled transition system ST withT . A symbolic state
s of a timed automaton is a pair ⟨ℓ, c⟩, where ℓ ∈ L is a location

and c is the valuation of all clocks in B(C). The valuation c must
always satisfy the invariant constraints in the current location of
the automaton ℓ : c |= I (ℓ). There are three types of transitions
in a TA network: A transition for TA network NTA is defined by:
• Action: if ℓi

д,a,r
−−−−→ ℓ′i is an action transition in the i-th automa-

ton with a guard over clock constraint д(c̄), c̄ ′ |= I (ℓ̄′) and a ∈ A

an action, and an action transition ⟨ℓ̄, c̄⟩
a
−→ ⟨ℓ̄′, c̄ ′⟩.

• Synchronization: if ℓi
д1,a,r1
−−−−−−→ ℓ′i and ℓj

д2, ā,r2
−−−−−−→ ℓ′j is syn-

chronized transition in i-th and j-th (i , j) automata with c̄ |=

(д1 ∧ д2) and c̄ ′ |= I (ℓ̄′) then ⟨ℓ̄, c̄⟩
τ
−→ ⟨ℓ̄′, c̄ ′⟩ is an internal

action transition in NTA, where a,τ ∈ A, ℓ̄′ = ℓ̄[ℓ′i /ℓi , ℓ
′
j/ℓj ] and

c̄ ′ = (r1 ∪ r2)(c̄). The ℓ̄[ℓ′i /ℓi ] represents that the i-th element of
the ℓ̄ has been replaced by ℓ′i [5].

• Delay: if δ ∈ R+ is a delay with condition ∀d < δ : (c̄+d) |= I (ℓ̄),

then ⟨ℓ̄, c̄⟩
δ
−→ ⟨ℓ̄, c̄ + δ⟩ is a δ -delay transition in NTA.

Then, Uppaal timed automata (UTA) [2] are an extension of TA
with bounded integer variables and simple data types (aka, TA with
data variables) as defined in [5]:

Definition 2.5. A timed automaton with data variables over
actionsA, clock variables C and data variablesV is a tuple (L, ℓ0,E)
where
• L is a finite set of nodes (control-nodes),
• ℓ0 is the initial node,
• E ⊆ L × G(C,V ) ×A × PC × L corresponds to the set of edges,
– where G(C,V ) is set of guards ranged over by д.
– д is a constraint in the form: c ∼ n or v ∼ n for c ∈ C,

v ∈ V ,∼∈ {≤, ≥,=} and n being an natural number.
– the guardsG(C,V ) can be divided into two parts: a conjunction

of constraints over clocks variables in the form c ∼ n and
conjunction of constraints over data variables in the form
v∼n.

2.3 Conformance testing with UTA
During a test session, Uppaal Tron uses the Uppaal verification
engine to generate symbolic timed traces in the UTA model. For
each symbolic state, the possible symbolic states to visit are calcu-
lated and the next state is chosen by randomly choosing one of the
enabled transitions. A test session ends when the model reaches a
final state, the test duration expires, or a violation of conformance
between implementation and specification is encountered.

A symbolic timed trace TTrS of an UTA model is a (possibly
infinite) sequence of symbolic states, each state being defined as a
tuple (ℓ̄,D, v̄), where ℓ̄ is a location vector,D is the clock constraints
(zone) [4] and v̄ a vector of variable values [15]. The transition from
one symbolic state to another can be either an action (ai ) or a delay
(δi ).

(ℓ̄i ,Di , v̄i )
ai /δi
−−−−−→ (ℓ̄j ,D j , v̄j ) (1)

In UTA, an action may be composed of an event e and a ma-
nipulation of the global data space V . As a consequence, when the
system state changes, we can observe either an event e , a modified
data space V , or both.
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An example is shown in Figure 1. The symbolic state a has
been visited after evaluating the guard (д), performing the re-
set operation (r ), and observing an action (A). Similarly, states
b, c, · · · ,d, e are visited after evaluating their respective guards д,
reset r and action event A. The state f represents an error state
where Uppaal Tron assigned a verdict failed (f ) to the test run.✬

✫

✩

✪

S

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

· · · a

b

c

...

d

e

f

...

д, r, A

д, r, A

· · ·

...
...

д, r, A

д, r, A

...

д, r, A

...

...

...

...

...

...

...

...

...

...

д, r, A

Figure 1: Symbolic state space and visited states

The decision on which state transitions are enabled in a given
state is done based on the interaction between Uppaal Tron and
the IUT [16] by evaluating received output, available inputs or
delays.

In order to identify the observable behaviour between the tester
and the IUT, Tron partitions the UTA model into two parallel
partitions S and E, which model respectively the IUT and its envi-
ronment. The interaction between S and E is done via observable
actions, further divided into input (AI ) and output (AU ) actions.
The former are used as stimuli to the IUT during testing whereas
latter are used for conformance. Additionally,S and E have internal
actions confined to each partition, evolving the partition to next
state where the next observable action can be taken.

During testing, the observable actions AI and AU are triggered
based on a testing event e , following an observable delay ∆ ∈ R≥0
which abstracts the internal events (described later in this sec-
tion). A vector of externally visible variables (v̄) which contains the
value of data variable at the time of event is also observable. The
events and variables are partitioned into three disjoint sets of in-
put events/variables Evin/Vin , output events/variables Evout /Vout ,
and internal events/variables Evint /Vint [15].

Thus, after partitioning the model into environment and SUT
partitions, a symbolic trace can be rewritten as a timed input out-
put trace. The latter is a (possibly infinite) sequence of observa-
tions starting from a given state, where each observation is a tuple
(e,D, v̄) consisting of an event e ∈ Ev(in/out ), a clock zone D in
which event occurs, and a vector v̄ ∈ V(in/out ) containing the val-
ues of data variables that are externally visible as inputs/outputs at
the time of event e .

ttri/o = (e0,D0, v̄0), (e1,D1, v̄1), . . . (ei ,Di , v̄i ), . . . (2)

Uppaal Tron is only using the externally visible (observable)
events to interact with the IUT, while abstracting the internal ac-
tions (τ ) and the internal delays (d) to observable delays (∆).

Thus, the result of a test session will be a finite sequence of
events Tseq of the form:

Tseq =(e0, (τ0 + d0), v̄0), (e1, (τ1 + d1), v̄1), · · · ,

(en , (τn + dn ), v̄n ), (en+1, (τn+1 + dn+1), v̄n+1) (3)

which can be written in terms of observable delays and actions as:

Tseq =(e0,∆0, v̄0), (e1,∆1, v̄1), · · · ,

(en ,∆n , v̄n ), (en+1,∆n+1, v̄n+1), · · · (4)

This allows one to check the timed conformance of the IUT
against the specification via the rtioco relation, by allowing the IUT
to refine the timing behavior of the specification [16].

Definition 2.6. Relativized timed input/output conformance
(rtioco): An implementation I conforms to its specification S un-
der the environmental constraints E if for all timed input traces
σ ∈ TTri (E) the set of timed output traces of I is a refinement of
the set of timed output traces of S for the same input trace.

I rtioco S iff ∀σ ∈ TTri (E) :
TTro ((I , E),σ ) ⊑ TTro ((S, E),σ ) (5)

A conceptual mapping between a symbolic timed trace and test
sequence is shown in Figure 2.

Specification Env IUT

d1
d2
d3
d4
d5

∆1

∆2
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d6
d7
d8
d9

d10
d11
d12
d13
d14
d15
d16

τi1

τi2

τi3

τi4

τi5

τi6

τi7

τi8

τi9

.

.

.

τi10

τi11

τi12

τi13

e1

Figure 2: Conceptualmapping between symbolic and observ-
able test sequence

The resulting test sequence is provided by Uppaal Tron as a
sequence of test events. For each test event, symbolic state in which
the event occurred is specified in terms of clock constraints, vari-
able valuation, list of next available states, and list of input/output
actions as shown in Figure 3.
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Figure 3: Structure of the test sequence

A new test event occurs at a specified time instant, the clock
constraints are updated, a transition to a new symbolic state occurs
and the list of the next available states is updated. However, no
information is provided regarding which transition is taken to
reach next state and under which conditions. Thus, in order to be
able to reconstruct a symbolic trace that can be simulated in the
Uppaal simulator one needs to infer all the missing information
from the last state of the trace to the initial one.

2.4 Backward-induction
The process of inferring a sequence of optimal actions by deducting
backwards from the end of a scenario to the initial conditions is
known in game theory as backward-induction. The process starts
in the last step of a two-player game and, by anticipating what the
last player did, it determines what moves are likely to lead to it.
Backward-induction was first mentioned by game theory inventors
John von Neumann and Oskar Morgenstern in 1944 [29].

The scope of game theory is out of the context of this paper.
Therefore, we restrict our discussion concerning building a game
tree and rationale about the choice function in a stochastic be-
haviour concerning reconstruction of a timed symbolic trace from
a timed test sequence. One may refer to [29] for details.

Walter et. al. [7] proposed an algorithm showing that every
choice rule is backward-induction rationalizeable. Jiangtao Li et.
al. [21] extended this work by including random choices. The al-
gorithm constructs a tree based on the available finite universal
solution set X of alternatives, and denotes by P (X ) as the collection

of all non-empty subsets of X . A choice function f : P (X ) −→ X is
a map such that f (A) ∈ A for all A ∈ P (X ), selects an alternative
fromA. A random choice rule is a map ρ : X ×P (X ) −→ [0, 1] such
that for all A ∈ P (X ). The random choice rule defined as:

ρ(x ,A) =

{
1 if x ∈ A

0 if x < A
(6)

where A is a set of alternatives and x is a random choice. The
interpretation of the mapping rule denotes the probability that
alternative x is chosen when the possible alternatives are in A.
Following definition are taken from [21] and [7].

A preference is the ordering of alternatives based on their relative
utility, a process which results in an optimal choice.

Definition 2.7. Preference ordering. A preference ordering is a
reflexive, complete, transitive and antisymmetric binary relation.
We denote by RA the set of all preference orderings on A ∈ P(X ).

By using preference ordering, the order of alternatives is decided.
To decide the relation between alternatives we define a precedence
relation amongst alternatives.

Definition 2.8. Precedence relation. Let ◃ be a transitive and
asymmetric binary relation on a non-empty and finite set N . We
say that n ∈ N is a direct predecessor of n′ ∈ N if n ◃ n′, and there
is no n′′ ∈ N such that n ◃ n′′ ◃ n′. Similarly, we say that n ∈ N
is a direct successor of n′ ∈ N if n′ ◃ n and there is no n′′ ∈ N
such that n′ ◃ n′′ ◃ n. The set of direct predecessors of n ∈ N is
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denoted by P(n). The set of direct successors of n ∈ N is denoted
by S(n).

By considering the preference ordering and precedence relation,
we construct a game tree define as:

Definition 2.9. Tree.A tree Γ is given by a quadruple (r ,D,T,◃),
where the variables are defined as follows: (i) the notation r is the
root; (ii) the variable D is a finite set of decision nodes such that
r ∈ D; (iii) the variable T is a non-empty and finite set of terminal
nodes such thatD ∩ T = ∅; (iv) the notation ◃ is a transitive and
asymmetric precedence relation on the set of all nodesN = D ∩ T

such that: (a) P(r ) = ∅; and |S(r )| ≥ 1; (b) for alln ∈ D\r , |P(n)| = 1,
and |S(n)| ≥ 1; (c) for all n ∈ T, |P(n)| = 1, and S(n) = ∅;.

The nodes in a game tree are connected via edges forming a path,
defined as follows:

Definition 2.10. Path. A path in Γ from a decision node n ∈ D

to a terminal node n′ ∈ T (of length K ∈ N) is an ordered (K + 1)
tuple (n0,n1, ...,nK ) ∈ N |K+1 | such that n0 = n, {nk−1} = P(nk )
for all k ∈ 1, 2, ...,K , and nK = n′.

Definition 2.11. A game is a triple G = (Γ ,
∫
,π ). where :

• Γ = (r ,D,T,◃) is a tree;
•

∫
: T −→ X is an outcome function that maps each terminal

node n ∈ T to an alternative
∫
(n) ∈ X ,

• π is a probability measure over the space of preference assign-
mentmaps, where each preference assignmentmap R : D −→ RX
specifies for each decision node n ∈ D a preference ordering
R(n) ∈ RX . We denote by ℜD,X the space of all such prefer-
ence assignment maps, and denote by △ ℜD,X the set of all
probability measures overℜD,X . Formally, π ∈△ ℜD,X .

To play a legitimate game, the restrictions are defined as follows:

Definition 2.12. Restriction of a game: For a gameG = (Γ ,
∫
,π ),

we define restriction of game G on A ∈ P(X ) as G |A = GA =

(ΓA,
∫
A
,πA), where

• rA = r ;
• DA = {n ∈ D : there exists n′ ∈

∫ −1
(A) and a path in Γ from n

to n′};
• ΓA =

∫ −1
(A);

• ◃A is the restriction of ◃ to NA = DA ∩TA;
•

∫
A

is the restriction of
∫
to TA;

• πA ∈△ ℜDA,A is the induced probability measure from π ∈△
ℜD,X . For any RA ∈ ℜDA,A, πA({RA}) = π ({R ∈ ℜD,X :
RA is the restriction of R toDA and A}).

For any R ∈ ℜD,X , we denote by RA the restriction of R to
DA and A.

Definition 2.13. Backward-induction rationalizable.A choice
function f is backward-induction rationalizable if there is a game
G = (Γ ,

∫
,R) such that: e(ΓA,

∫
A
,RA) = f (A) for any A ∈ P(X ).

We say that G is a backward-induction rationalization of f or that
G backward-induction rationalizes f . A random choice rule ρ is
backward-induction rationalizable if there is a game G = (Γ ,

∫
,π )

such that π ({R ∈ ℜD,X : e(ΓA,
∫
A
,RA) = x}) = ρ(x ,A) for any

x ∈ A ∈ P(X ). We say that G is a backwards-induction rationaliza-
tion of ρ or that G backward-induction rationalizes ρ.

A game tree Γ = (r ,D,T,◃) consists of an initial node r , a set
of decision nodesD; a set of terminal nodes T; a set of restrictions
◃. An outcome function

∫
such that

∫
(n) =

∫ A,x
(n) gives a choice

x from set of alternatives A of n (see [7][21] for detailed proofs).

3 RECONSTRUCTING SYMBOLIC TIMED
TRACES FROM TEST SEQUENCES

As stated in the introduction, online testing brings benefits with
respect to reducing the size of the state space, addressing non-
determinism better, and executing long test runs. However, it suffers
from difficulties in analysing and diagnosing the test result in the
case of long-lasting test runs.

During the online testing session, the internal state of the IUT is
not visible. Notably, Uppaal Tron presents an obscure execution
test sequence which consists of a list of reachable states along with
events. The ambiguity might lead a human tester to spend increased
cognitive effort to diagnose faults and errors in the IUT and the
specification, respectively.

Therefore, we propose an approach to reconstruct a symbolic
timed trace from a test sequence by applying backward-induction.
Backward-induction fits well to our needs since it is able to deal
with random behaviour and to reconstruct the initial state of a
problem starting from its outcome. In the following, we describe our
approach to reconstruct a symbolic trace using backward-induction.
In short, the approach takes as input a test sequence and returns a
symbolic trace which can be imported in Uppaal. There are three
main steps: (1) build an initial game tree; (2) define an outcome
function and (3) identify the test path in the form of a symbolic
trace.

3.1 Building the initial game tree (Γ ) from
rtioco-based test sequence

From the test sequence provided by Uppaal Tron after a test ses-
sion, we build the initial game tree (Γ ) as a set of nodes, belonging
to different collections, each collection having multiple layers. The
game tree is constructed as a one-to-one mapping to the structure
of the Uppaal Tron test sequence shown in Figure 3) as follows. A
collection represents an observable delay in the test sequence. Inter-
nally, each observable delay consists of a set of internal transitions
between symbolic states corresponding to different clock zones.
Each such clock zone is represented as a level in the collection. The
levels are in chronological order. The nodes included in a given level
depict the set of next available symbolic states that were available
before executing an internal transition and moving to a new clock
zone. These nodes are used as alternatives from which a single
solution is selected to be included in the test path.

3.2 Outcome function for Γ
In order to identify a path in the game tree Γ , we need to identify
the predecessor node Nodeli of a Nodelj situated on level i and,
respectively j, where i < j.

For this we define an outcome function that calculates the back-
ward reachability of node Nodeli from Nodelj as follows.
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∫
(Nodeli ,Nodeli ,E

∏) =

(Nodeli
δ
−→ Nodelj ) |= (д ∧ zlj )r ∧ I (Nodelj ) ∧ δ ∈ E∏ (7)

where д is a guard of the transition between the symbolic states
corresponding to the to nodes, zlj is the clock zone corresponding
to level lj of the tree, I is the invariant of the symbolic state corre-
sponding to Nodelj , and δ is an observable delay or an unobservable
action associated with test event E∏.

Since the two nodes have been explored during the test genera-
tion process, we know that Nodelj is reachable from Nodeli .

3.3 Identification of a test path
Using the outcome function, we can identify the path in the tree Γ
corresponding to the symbolic trace of the test session, as shown
in Algorithm 1. The starting node of the algorithm is the one cor-
responding to the terminal state which is selected as a goal state.
Then we search (lines 4 – 10) for a predecessor amongst the alter-
natives on the level above it. Once a predecessor node is found, the
goal and the predecessor node along with the connected action are
pushed to a stack XTR. The goal state is updated with the discovered
predecessor node and the search process continues until algorithm
reaches the initial node.

Figure 4 shows a generic example of a reconstructed symbolic
trace using our approach. The resulting trace can then be loaded in
the Uppaal simulator and used to visualize the trace in the model.

Algorithm 1 Trace Reconstruction algorithm to transform a game
tree Γ to a test path
1: function Transform(Γ )
2: XTR := ∅ → Initilaze a stack XTR
3: Goal :=Terminal Node → Initilaze the goal state
4: for (k := n − 1;k > 0;k − −) do → n collection in a game tree
5: Ek := E∏

k
→ Collection events

6: for (j :=m; j ≥ 0; j − −) do → m level of alternatives
7: for (i := 0; i ≤ p ; i + +) do
8: if ∃ e = (

∫
(Nodemi , Goal, Ek )) then

9: PU SH (Nodemi , e, Goal ) → XTR;
10: Goal := Nodemi ; → update goal with new node
11: break ;
12: end if
13: end for
14: end for
15: end for
16: return XTR
17: end function

3.4 Tool support
During testing, the IUT is attached to Uppaal Tron via a test
adapter [20] and the user supplies Uppaal Tron with a UTAmodel.
The test primitives are generated directly from the model, executed
through the adapter, and the system responses are checked. The
state transitions evolve the testing session into a next state along
with new clock and variable valuations.

The proposed TR algorithm was implemented in Java as a pro-
totype tool called “Tron2Uppaal Back-Tracker”1. The tool uses
Uppaal Timed Automata Parser Library [13] to parse the UTAmodel.

1available at http://users.abo.fi/jiqbal/back-tracker/

As shown in Figure 5, our tool takes as an input a Tron test run
log file, a UTA model, and an intermediate format file. The latter
contains an internal representation of the model using the numeric
indices used by UPPAAL to improve the performance and to reduce
the memory utilization during model-checking. These indices are
used to map the elements of XTR stack to the elements of the UTA
model. The tool produces a Uppaal simulation trace which can be
imported into Uppaal. More technical details about the implemen-
tation of the tool can be found in the technical report [18].

4 EXAMPLES AND EVALUATION
The applicability of our approach is exemplified using the smart
lamp light controller example available with the Uppaal Tron dis-
tribution [22] and a real-time temperature control system presented
in [27].

4.1 Smart lamp light controller (SLLC)
The UTA model of SLLC mainly consists of seven component au-
tomata namely interface, dimmer, switcher graspAdapter, release
adapter, levelAdapter and user shown in Figures 6—10c. The user
automaton models the environment. The other automata model the
expected behaviour of the SLLC, where the level of light is defined
by the time interval between consecutive user grasp and release
events. Tron is behaving like a smart lamp user by issuing grasp and
release events and at the same time observing if the level of light is
correct according to specification of light controller behaviour writ-
ten in Uppaal timed automata modelling language [22]. Moreover,
the grasp-, release- and level- adapter processes shown in Figure
10a, 10b and 10c, model the latency of issuing the input-stimuli.

4.2 Temperature control system (TCS)
The TCS is a piece of software responsible for controlling a host
device temperature by sensing a number of sensors (between 20 to
40) and controlling the speed of several fans situated at different
physical locations. Due to space limitation we defer details to [27].
The UTA model for TCS consists of one temperature process for
each sensor (Fig.12), a fan process for each fan (Fig.11) and the
environment process (Fig.13).

4.3 Evaluation of tool support
To evaluate our tool with SLLC and TCS, we used an Intel based
64-bit quad-core machine running at 3.20 GHz with 8 GB of RAM.
The maximum size of allocated memory for the tool was 1024 MB
by using virtual machine option Xmx.

For each of the two examples, we executed five test sessions of
different lengths as shown in Table 1, which resulted in 10 test
sequences with different number of events. We used the Visu-
alVM profiler [24] to benchmark the time and memory used by
Tron2Uppaal-Back-tracker tool. The results are shown in Fig-
ure 14. Figures 14 (a) and (b) show that the transformation time
and memory used varies proportionally with the size of the test
sequence.

As one may notice, the time used to reconstruct the symbolic
trace is directly proportional to the size of the test sequence due
to file read operations. However, the memory utilization levels
off due to the fact that the tool maintains information about the
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Figure 4: Test path identified by outcome function

Figure 5: Back-Tracker tool setup

states and transitions. When most of the information is already
present, the tool reuses it for other events which occur later. Further
optimizations can be applied to the tool in order to reduce the
transformation time and memory usage during the transformation
process which is beyond the scope of this paper. Nevertheless, the

results show that the approach has the potential to scale for large
test logs.

5 RELATEDWORK
The closest work we found to our approach was proposed by [25]
which describes several approaches to generating concrete delays
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Figure 6: Interface

Figure 7: Switcher Figure 8: user

Figure 9: Dimmer

for diagnostic traces. Two of these approaches are based on the
diagnostic traces that violate safety properties and one approach is
based on the diagnostic traces that violate liveness properties. Our
approach differs in two ways. Firstly, we reconstruct the symbolic
trace from the timed test sequences and visualise the symbolic trace
by loading the reconstructed symbolic trace into Uppaal simulator.
Secondly, we use backward-induction to identify the predecessor
symbolic state, while they are using backward re-compositionality.

Franck et. al. [11] proposed an algorithm based on on-the-fly
strategy for timed games and Behrmann et. al. [1] developed an
extension of Uppaal called Uppaal-Tiga based on game theory. The
author proposed timed-games on-the-fly strategies for a control

(a) grasp- (b) release- (c) level-

Figure 10: Adapters in SLLC

Figure 11: Model for fan speed controller

Figure 12: Model for sensor

Figure 13: Environment model

program. Another work [26] describes the reconstruction of the
symbolic state space by using the use-definition chains to reduce
symbolic state space and proposed reductions in transformations
required to reconstruct a state space concerning clock operations.
Contrarily to [1] and [26], our approach rebuilds the part of the
state space involved in the test run.

6 CONCLUSIONS
We suggest a tool-supported approach to reconstruct timed sym-
bolic traces from rtioco-based timed test sequences with the purpose
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Table 1: Computational results

Case study Test events Transformation time
(mili-sec)

Memory utilization
(bytes)

TCS

469 741 9 786 848
725 908 21 816 888

27 003 10 424 213 396 016
209 893 90 032 327 112 424

4 949 651 2 074 653 378 172 784

SLLC

711 1 124 394 44 952
1 145 1 720 51 103 440
39 554 34 851 279 789 688
156 480 137 918 319 562 376

1 787 238 1 123 903 347 847 200
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Figure 14: Graphs showing (a) Transformation time, (b)
Memory utilization

of analysing and visualizing a given test session in the Uppaal sim-
ulator. The proof of concept and applicability of our reconstruction
approach have been demonstrated on two examples; a smart lamp
light controller and a temperature control system. The performance
of the algorithm used is not influenced by the verdict of the test
session, but only by the number of events in the test sequence. The
results show that the approach is feasible and our first prototype
has demonstrated satisfactory scalability.
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by the ECSEL JU MegaM@Rt2 project under grant agreement No
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