
Observations on Modeling Software Processes
with SPEM Process Components

Antero Järvi and Tuomas Mäkilä

University of Turku,
Department of Information Technology,
FI-20014 University of Turku, Finland

Abstract. OMG’s standard for software process modeling (SPEM) con-
tains an element, ProcessComponent, that could be used as a reusable
element to assemble end-to-end software processes. However the com-
position mechanism and the nature of process components is not well
defined in SPEM. In addition the organization of process components
is not straightforward. In this paper we describe an experiment of us-
ing CMMI Process Areas and Rational Unified Process disciplines as a
basis for structuring process components. The two approaches produced
process components that could not be used together. We conclude that
in order to achieve reusable process components, the components must
be defined using a common process framework. Further, we give proposi-
tions for organizing process components that facilitate component reuse
and composition.

1 Introduction

All organizations involved in developing software need to organize, manage and
support the development work. Organization’s software development process ties
together all activities and practices addressing this need. Recent years have
shown a clear trend of growing emphasis on the software process – the process
is thought to be a key factor in ensuring high product quality, achieving accu-
rate time and cost estimates, providing cost efficiency in software development
and coordinating large development efforts. In other words, software process has
and increasingly important role in achieving and maintaining competitiveness in
software business.

Software processes can be defined in many levels of detail, ranging from
processes defined implicitly in project management, tools and work practices up
to high-ceremony explicitly defined and documented processes. Explicit process
description opens the route for software process engineering (SPE), consisting of
modeling, authoring, tailoring and enacting processes. A natural part of SPE is
software process improvement (SPI), a deliberate effort to document and modify
organizations software processes to increase its competitive strength. However,
manual process authoring and tailoring may be impractical. SPI that involves
constant change of software processes becomes prohibitively expensive. The over-
head cost of SPE and SPI can be brought down by tool support and process
automation, both enabled by a process modeling language.



Recently, OMG published a standard for software process modeling, Software
Process Engineering Metamodel (SPEM) [1], that provides the required formal-
ism for process engineering tools. This paper investigates the suitability and use
of SPEM for modeling reusable process components. Section 2 briefly introduces
SPEM and related concepts of organizations process engineering. In section 3 we
describe the modeling experiment that was carried out. We focus on two frame-
works: Capability Maturity Model Integration (CMMI) [2] and Rational Unified
Process (RUP) [3]. CMMI is a maturity model, which provides a roadmap for
practicing SPI in an organization, RUP is a de facto process standard, which
defines a software process and its roles, activities, and work products at detailed
level. In section 4 the problems of SPEM in this context are summarized and
a proposition of process component organization to alleviate the problems is
made. This paper is based on work done in the ReProCo-project1 aiming at
constructing reusable process components for various software projects.

2 Background

The background of software process modeling and related technologies are com-
prehensively reviewed in [4]. Since then the research has somewhat focused
around SPEM.

2.1 Software Process Engineering Metamodel (SPEM) overview

The SPEM specification is used for describing a concrete software development
process or a family of related software development processes [1]. SPEM is struc-
tured as an UML profile and provides a complete OMG Meta-Object Facility
(MOF) metamodel. SPEM also defines a notation for its concepts, defined as
UML stereotype icons. The main idea of SPEM based process representation
is the interplay of three basic elements: ProcessRoles that are responsible for
and execute Activities that consume and produce WorkProducts. ProcessRoles,
WorkProducts and Activities are all process definition elements. Relationships
between these basic elements are illustarted in Figure 1.

SPEM defines LifeCycle, Phase and Iteration that are used for dynamic struc-
turing of the process. A LifeCycle defines the ordering of Phases, which in turn
can contain Iterations. A Process must have one LifeCycle.

SPEM also defines elements that are meant for organizing other process el-
ements from the viewpoint of process authoring, assembly and reuse. Packages
are concerned with dividing one or more process descriptions into self-containing
parts. These parts can then be placed under configuration and version man-
agement and used in assembling and tailoring software development processes.
ProcessComponents are specializations of Packages. A ProcessComponent is an
internally consistent and self-contained chunk of process description that may be

1 Part of E!3320 project, in co-operation with Genestia Group Inc. - Neoxen Systems
and Devera Software Development Center.



Fig. 1. The core elements of SPEM and their relationships. [1]

reused with other ProcessComponents to assemble a complete process. Process-
Components can import a non-arbitrary set of process definition elements. The
Discipline is a specialization of ProcessComponent and is used for representing
activities in a common area (corresponding to e.g. Core Workflows in the Unified
Process). Process finally is a also a specialization of ProcessComponent that is
intended to stand alone as a complete end-to-end process.

The assembly of processes is done by composition of ProcessComponents.
This requires unification of the ProcessComponents. Corresponding output and
input WorkProducts must be unified, as well as ProcessRoles and possibly other
elements that are used in more than one ProcessComponent. The details of
unification are not defined in SPEM.

2.2 OPA, OSSP and software process frameworks

Capability Maturity Model Integration (CMMI) [2] introduces concepts of Or-
ganization’s Process Assets (OPA) library and Organization’s Set of Standard
Processes (OSSP). OPA library is a loosely tied collection of ”process assets
that are potentially useful to those who are defining, implementing, and manag-
ing processes in the organization”. OSSP defines a set of processes that ”guide
all activities in an organization” and ”cover the fundamental process elements”.
OSSP forms a base for organization’s project-level tailoring whereas more de-
tailed definitions for process elements can be found from the OPA library. Both
OPA Library and OSSP are highly organization specific, depending on the busi-
ness goals and characteristics of the organization. Similar tailoring mechanisms
are also suggested by other major process standards (ISO 12207 [5], RUP [3]).



OSSP is not normally developed from scratch nor simply put together from
existing and past projects – instead, so called software process frameworks should
be used as guidelines. There are numerous process frameworks available, each fo-
cusing on certain types of software development organizations. A partial overview
of the software process frameworks and their categorization can be found from
the Frameworks Quagmire [6] [7].

2.3 Levels of process modeling

The process modeling language must support modeling at the framework level,
at the OSSP level, and at the project level. In Figure 2 these different levels
of process modeling are shown with respect to the four-layered organization of
SPEM [1]. Layer M2 defines the SPEM language as OMG MOF model. Layer
M1 contains process models created with SPEM language, and layer M0 is the
enacted software process. Different levels of process modeling are not directly
supported by the layering, specifically layer M1 must be divided into two sub-
layers: 1) general process modeling and description that models elements of
process frameworks, and 2) OSSP that structures modeled process elements
so that reusability of these assets is achieved. In ’Project-level tailoring’, level
M0 performing processes are enacted by selection, composition and tailoring of
reusable process components of OSSP M1 sub-layer. These components in turn
contain modeled elements from ProcessFramework M1 sub-layer and are tailored
to meet organizations need for different types of processes.

Fig. 2. Process modeling levels contrasted with the OMG SPEM language organization
as an UML profile.

Support for this kind of sub-layer organization of organizations process assets
is not well included in SPEM standard. The basic SPEM construct for struc-



turing process elements, ProcessComponent, is simply a self-contained Package.
SPEM does not define how the underlying process or process framework should
be decomposed into components. However, this decomposition largely deter-
mines how reusable and how pluggable the process components become. Most
process frameworks define a natural decomposition, e.g. Process Areas in CMMI
or Disciplines in Unified Process. SPEM standard mentions e.g. Disciplines of
Rational Unified Process as possible candidates for ProcessComponents. It ap-
pears, however, that this proposed framework decomposition does not yield very
reusable process components. The whole issue of framework decomposition to
define conceptual organization of the OSSP is far more complicated than we
and apparently the SPEM standard anticipated. We will get back to this issue
in Section 4.

3 The modeling experiment

3.1 Modeling CMMI Process Areas as process components

The original plan was to model CMMI Requirement Management (REQM) and
Requirements Development (RD) Process Areas [2] as two process components.
CMMI was chosen because it structures software process in widely adopted
and accepted way. The reasoning was that with this kind of approach, reusable
process component ’stubs’ would form the OSSP. The conceptual organization of
the OSSP would follow CMMI Process Areas, thus CMMI compliance of the tai-
lored process would be straightforward to show. The contents for these ’stubs’,
the OPA of the organization, would be obtained from other software process
frameworks and the components would be mutually compatible as long as they
comply to corresponding requirements of CMMI. This would have enabled as-
sembling a software process from several different process frameworks and using
most suitable parts of each.

The visible interface of a process component in SPEM is defined by com-
ponents inputs and outputs. Thus, in order to model Process Areas as process
components, we analyzed what process elements were consumed or produced
by a particular Process Area, i.e. its inputs and outputs. Modeling was done
at the CMMI Specific Practice level. Specific Practices are brief statements on
what is required from a software process in order be compliant with regard of
a particular Process Area. Special Practices essentially form the backbone of
each Process Area. It became apparent that Specific Practices, despite their
activity-like nature, describe only the minimum set of Process Areas require-
ments. In order to construct a process component that could be used in a real
software process, Process Areas requirements must be complemented with a soft-
ware process framework that defines the missing detailed content of the process
model, in particular the exact set of inputs and outputs of the Process Area. This
suggests that process components can not be modeled based solely on the CMMI
Specific Practices. The textual guidelines and work product recommendations
of CMMI provide some of the missing content of the process component, but
fall short on providing detailed interface descriptions. The interface detail must



be obtained from another software process framework. This hints that CMMI
Process Area based components will not have high reusability and can not be
used to form an OSSP.

3.2 Integrating RUP and CMMI process components

To set the underlying software process methodology and provide detailed con-
tent for CMMI Process Area based process components, we chose commercial
Rational Unified Process framework (RUP) [3]. The reason for this choice was
that the framework is widely adopted, there is enough reference material about
the framework available and it is based on the more academic Unified Process
framework [8]. Also RUP involves many of the generally accepted properties of
modern software process: iterative, incremental, use-case driven and architecture
centric to mention a few [8].

We began the modeling experiment by mapping relevant parts of RUP method-
ology into CMMI Process Area based process components. Because RUP and
CMMI are structured differently and CMMI generally speaking operates at a
higher level of abstraction, process element level correspondences between these
two frameworks had to be established. This required interpretation of the ele-
ments roles in the two frameworks, since directly corresponding elements could
not be always found. In CMMI, Specific Practices were chosen as elements that
were mapped into RUP activities and work products. Figure 3 illustrates a map-
ping of CMMI REQM Process Area Specific Practices into RUP. The mapping
shows that the practices of the CMMI REQM Process Area do not map into a
single RUP discipline, even though only the Requirements discipline should con-
tain requirements related activities in RUP. It should be noted that only Special
Practices 1.1. and 1.2. are shown in Figure 3 The remaining three Special Prac-
tices of REQM are similarly scattered throughout the RUP disciplines. Inverse
mapping from the RUP Requirements discipline to REQM and RD Process Ar-
eas strengthened this finding: only part of the practices in RUP Requirements
discipline could be mapped back into CMMI REQM or RD.

4 Findings

In our experiment we found two different impediments of full scale use of SPEM
process components as a basis for an OSSP: 1) shortcomings of SPEM standard
regarding process components and 2) lack of established practices of organizing
process components at conceptual level.

4.1 SPEM process component shortcomings

SPEM language is well-designed to model basic process definition elements.
However the definition of ProcessComponent is ambiguous: requirement of self-
contained components means that there must be no ’RefersTo’ dependencies



Fig. 3. An exemplar mapping of CMMI practices to RUP activities illustrate how these
two frameworks structure the requirements management differently.

from within the component to elements not within the component. Other depen-
dency types, e.g. ’Import’ are allowed. The semantics of ’RefersTo’ and ’Import’
can be interpreted in many ways. Figure 4 shows one possible use of the depen-
dencies. [1] The absence of any examples in the standard illustrating the intended
use of these dependencies will lead to different ways of composing process models
from process components in different organizations.

Composition of process components is done by unification. SPEM states that
at least output work products of component P1 and input work products of com-
ponent P2 must be made identical in order to combine P1 and P2. In addition,
according to SPEM other elements may possibly be also unified, such as Process-
Roles, Templates, and so on. SPEM suggests that composition of components
could only be fully automated if they originate from a common family, so that
unification could be automated. Otherwise the unification would involve human
intervention consisting re-writing of the elements [1]. However, SPEM does not
provide any explicit support for component composition and unification – the
issue is left open.

From the viewpoint of process component reusability, the assembly mecha-
nism may allow too much variation and jeopardize component portability be-
tween two OSSPs. Also tool independency is compromised as tool vendors may
interpret SPEM standard composition mechanisms differently.



4.2 Conceptual organization of process components

Process components could be formed from process frameworks by using their
existing organization to identify components. As an example, making process
components out of RUP disciplines is certainly a natural decomposition. How-
ever, looking closer at how one discipline in RUP interacts with other disciplines
in RUP, we clearly see that the composition interface of the component will
become very complex. The work carried out in a discipline, expressed as an ac-
tivity flow, is connected to many other disciplines in all four phases of RUP.
Further, phases contain iterations, and many disciplines are active during one
iteration. Roles, tools, guidances and templates are shared between disciplines,
and continuous, integral workflows of a single worker continue seamlessly from
one discipline to another. Expressing such a complicated and versatile relation-
ship between process components, with the simple support that SPEM offers, is
challenging.

It is questionable whether these kind of large process components are useful
at all in an OSSP. Achieving reusability in general requires that the reused
component has a well defined task or responsibility, and has a simple interface
- otherwise it will not be pluggable without considerable manual tailoring. It
may very well be the case that these problems originate from the foundational
level, not specifically from SPEM. Process components that are formed from
RUP Disciplines or CMMI Process Areas appear not to be reusable or even
usable. The only situation where the composition is gets manageable is a simple
waterfall type sequencing where process components represent the phases of the
life-cycle and are connected via major mile-stone work products. Note that in
this case disciplines (e.g. requirements, design, testing) in fact coincide with the
phases.

The other possible approach to create process components is to begin by
defining process elements of a process framework: work products, roles, guidances
etc., and model the dependencies between these basic elements. These elements
have high reusability and process independence, and can thus be used to form the
OPA. SPEM Package is a natural choice to model this library of stable process
elements. The OSSP has the role of modeling the dynamic part of the process.
It consists of rather small process components, packaging together a cohesive
flow of activities, the participating roles, guidances and tool mentors, templates,
and related work products. Most of this content could be taken from the OPA
using ’Import’ dependency. Elements that remain internal to only one process
component need not be added to OPA. The main reason for this arrangement is
the unification of process elements shared by several process components.

’RefersTo’ dependency is used in the OPA to indicate which elements must
be imported together due to dependencies. The situation is illustrated in Figure
4. For instance, importing ’Use Case Model’ necessitates also importing ’Use
Case’. ’Impacts’ dependency means that changing one element has a potential
effect on the other. All of these dependencies should be modeled in the OPA
only if they are valid in all possible process components where they will be used,



e.g. ’Software Requirements Specification’ will impact ’Software Architecture’ in
any imaginable process, thus the dependency is reusable.

4.3 The proposed organisation of an OSSP based on process
components

Fig. 4. The proposed organization process assets into OPA that contains low level
reusable process elements, and OSSP that is the target of process authoring and con-
tains goal-oriented small sized process components that package together the flow of
activities and all related process elements.

Some of the process components in OSSP are going to be reusable and some
not. Examples of reusable components are ’DefineSystemScope’ or ’CreateCan-
didateArchitecture’. These components could have different versions for different
types of projects, e.g. a light version of ’DefineSystemScope’ for projects in famil-
iar domain and a more detailed and more comprehensive one for new domains or
multi stakeholder situations. Note that we propose to create process components
based on clearly identified goals during the development work, rather than based
on the structure of the process framework. As stated these components have vari-
able degree of reusability. However this approach facilitates process authoring
intermediate goals of development are a very natural view in process authoring.



Process authoring would then consist of dividing the project into clear interme-
diate goals, looking for reusable components for each identified goal, selecting
the most suitable component depending on the particular project, tailoring or
modifying the selected components, creating new components using elements
from OPA where none could be found in the OSSP, and finally controlling the
input and output work products to make sure that the components fit together.
All of this involves a lot of manual work, but it seems that when practical issues
are taken into account, more automation in process authoring is very difficult to
achieve. The OPA of course gives high degree of reusability of process elements.

5 Discussion

In this ongoing work we aim at understanding the many faceted problem of
decomposing software process models into reusable and easily pluggable com-
ponents. Our original idea, inspired by guidance of SPEM standard, of creating
large components using the structure of existing process frameworks seems to
yield unmanageable process authoring task and no real reuse. Thus we started
looking at smaller scale components and new ways of delineating process com-
ponents. Some promising ideas have emerged, as reported above. However, there
are many forces involved that must be taken into account. Processes with dif-
ferent life-cycle models and other process attributes probably require different
modeling philosophy, e.g. document-driven methodologies using the traditional
waterfall life-cycle model can be modeled using SPEM type language and process
components quite easily while evolutionary methodologies with iterative activity
flows are more demanding. Agile methodologies probably would require some-
thing very different because they usually lack clear intermediate work products
and therefore process component interfaces could not be formed. The control
relies heavily on inter-person communication and seamless integration of many
activities by the developer into one whole. Establishing artificial interfaces and
work products to implement the interfaces would be catastrophic in this envi-
ronment. We believe that an agile process can not be decomposed at all into
process components.

The traditional goals for OSSP are not easily achieved. The issue must be
addressed from many viewpoints: process analysis, design, assessment, process
component reuse, process improvement, process authoring, publishing, enact-
ment and authoring. The issues are organization dependent; at least organiza-
tions size and business context affect the OSSP.

Common understanding on these issues must be achieved: academic commu-
nity, tool vendors and standardization work all have a role here. SPEM standard
version 1.1. has not gained widespread acceptance, possibly due to insufficient
guidance on how it should be put into use. The standardization work for SPEM
version 2.0. [9] is ongoing and hopefully succeeds better on these issues that
have immense practical influence; is process modeling only going to be used for
describing graphically the processes of the organization, or will we be creating a
component oriented OSSP that is the target of SPI and can yield a tailor made



process for each project, possibly supporting third party process component
markets.

References

1. Object Management Group. Software Process Engineering Metamodel Specification
- Version 1.1, January 5 2005. formal/05-01-06.

2. CMMI Product Team. Cmmi for systems engineering and software engineering
(cmmi-se/sw, v1.1) - staged representation. Technical Report CMU/SEI-2002-TR-
002, Software Engineering Institute, Pittsburgh, PA, USA, December 2001.

3. IBM. Ibm rational unified process. Software Product, 2005.
4. D. Wastell J.C. Derniame, B.A. Kaba, editor. Software Process, Lecture Notes in

Computer Science. Springer-Verlag, 1999.
5. ISO/IEC, Geneva, Switzerland. ISO/IEC 12207, Information technology - Software

life cycle processes, August 1 1995. ISO/IEC 12207:1995.
6. The frameworks quagmire. http://www.software.org/quagmire/. Accessed on May

30 2005.
7. Sarah A. Sheard. The framework quaqmire, a brief look. Crosstalk, September 1997.
8. Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Devel-

opment Process. Addison-Wesley Professional, February 4 1999.
9. Object Management Group. Software Process Engineering Metamodel (SPEM) 2.0

- Request For Proposal, November 4 2004. ad/2004-11-04.


