Evaluation of protein hydropathy scales
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Abstract

Hydropathy is a dominant force in protein folding
and has been measured with numerous methods.
Several hydropathy scales are widely used in
sequence-based  predictions, however, without
knowedge about their reliability. We investigated the
prediction accuracy of 56 hydropathy scales by
correlating predicted values with the accessible
surface area in known 3-D structures of proteins. The
correlations for the best scales are in the order of -
0.26, whereas the weakest have on average merely -
0.11. Results for different amino acids vary greatly
within the scales, but are more consistent between the
scales. One of the most common applications of
hydropathy scales is to predict antigenic regions. Our
analysis indicated that some epitopes are located
among the most exposed regions. Despite poor overall
correlation, hydropathy predictions can still be used
in certain applications where qualitative analysis is
sufficient.

1. Introduction

Hydropathy is a general term which refers both to
hydrophobicity and hydrophilicity, the tendency of
proteins and amino acids to like or didike water
interaction. Hydropathy has a profound effect on
numerous protein features and is the dominant forcein
protein folding [1]. Severd lattice based methods have
been developed to predict the folding process based on
hydropathy. Hydrophobic interactions in the protein
core remarkably stabilize the structure. Hydrophobic
interactions are energetic factors favoring the
partitioning of an amino acid side chain from agqueous
solution into a protein core or into a membrane
bilayer. Hydropathy of proteins and amino acids has
been investigated for a long time and several
hydropathy scales have been produced for amino
acids. Hydrophobic residues are more likely buried in

the protein core than hydrophilic amino acids, which
are more common on protein surface.

The more buried a residue, the more likely that
mutations of the site will be pathogenic [2]. Cavity
forming mutations in the hydrophobic core of T4
lysozyme decrease the stability [3] and mutations
introducing charge into the core decrease the stability
and enzyme activity. Hydropathy predictions have
been applied to a number of protein properties. The
predictions are easy to make - only the amino acid
sequence and propensity table for the residues is
needed. Hydropathy scales have been used extensively
e.g. to membrane topology prediction, signal peptide
recognition, prediction of regions on surface or core of
the protein, epitopic regions, amphipathy of helica
dructures, protein secondary structures, turns,
membrane-associated sequences, and surface (-
strands. The property has aso been applied to
sructural homology search by hydropathy profile
alignment [4], and identification of novel membrane
proteins [5]. Long hydrophilic runs are common only
in membrane proteins [6].

Complementarity in hydropathies is important for
several protein-protein and peptide interactions [7],
and it can be used for protein docking [8].

Scales to measure and indicate amino acid
hydropathy have been introduced since the 1970's.
Currently there are a large number of scales available
and, because the scales have been produced based on
different measurements and principles, they often
disagree on the degree of hydrophilicity/-phobicity of
individual residues. This makes it difficult for
prediction method users to select a suitable hydropathy
scale. Since the calculation is always done with the
same agorithm, the differences originate from the
hydropathy scales. Here, we have performed
systematic anaysis of the accuracy of the hydropathy
scales to predict the distribution of amino acids
between the protein surface and interior, by
correlating predictions with solvent accessible surface
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as determined from three dimensional structures of
proteins.

2. Results and Discussion

Protein hydropathy predictions are widely used for
numerous purposes. However, there has not been
information available about the accuracy of the
methods apart from prediction of membrane topol ogy
(eg. [9,10]) and surface B-strands [11]. Here we
performed a systematic analysis of the prediction
accuracy by comparing hydropathy predictions with
experimental information, namely the accessible
surface of the residues in proteins for which the three
dimensional structure has been determined either by
X-ray crystallography or NMR spectroscopy.

The adjustable parameters in  hydropathy
predictions are the prediction method, amino acid
hydropathy scale used, and the prediction window
size. We analyzed atogether 56 scales which have
been presented for amino acid hydropathy. Since
nearly all prediction methods in literature use the
sliding window technique, we also used that approach.
First we optimized the length of the window i.e. the
number of resdues for which the hydropathy
parameter iscalculated at atime.

Literature contains numerous hydropathy scales,
many of which were reviewed and normalized [12] to
study the performance of the scales in detecting
amphipathic helices. Altogether 39 of the scales were
complete i.e. parameters were given for all residue
types. In some of the old scales parameters were
incomplete. Some new scales have been presented. We
developed a method to make and present hydropathy
predictions with 17 additional scales [13]. To make
the scal es comparabl e they were normalized.

2.1. Optimization of the prediction window

The effect of the window size was tested by
calculating the correation for al the scales by using
window sizes of odd humbers between 5 and 25. Odd
numbers were used because the resulting value can be
given to the middlemost residue within the window.
The results are for the 2441 protein structures
investigated.

The window size of 9 consecutive residues was the
best for all the scales. The length of the window has a
great effect on the prediction accuracy. For the best
scales the accuracy varied from -0.12 to -0.26 just by
changing the window size. In addition, the order of
accuracy of the windows is the same for all the scales

indicating that this is an intrinsic property of the
hydropathy sliding window method. In all subsequent
analyses the window size 9 was used.

We have previoudy studied the accuracy of protein
flexibility predictions [14]. Flexibility indicates how
mobile a resdue is within a proten. The tested
flexibility predictions had corrdations in the order of
0.33, whereas the best hydropathy correlations are
approximately -0.26 and the worst about -0.11 (Table
1). The correlations are negative because hydrophilic
residues have negative values due to our
normalization, which was used to organize the scales.
The five best scales are those of Nioii [15], Mijer [16],
Ponnu [17], Nneig [12] and Guym [18]. Three of these
scales are based on statistical amino acid distribution
anaysis (Niaii, Mijer and Nneig) while one is a
combined experimental and statistical scale (Ponnu),
and one an average scale (Guym). Thus, different
types of scales can provide smilarly reliable
predictions. However, among the best scales were no
experimental scales, the first being in 16th place
(Abodr [19]). Since differences in the overall accuracy
are small at the beginning of the list, Abodr is not
significantly worse than the top scales. When looking
a the methods giving the poorest predictions (Jones
[20], Ponma [21], Zimmr [22], IHF1 [23] and Urry
[24]), four of these scales are experimental, Ponma
being the only statistical scale Thus, experimental
data alone is not sufficient for the development of
accurate hydropathy prediction methods. The least
accurate methods are significantly worse than the best
scales. The hydropathy characteristics are clearly
structure and context dependent, so therefore amino
acids, fragments or peptide based experimental scales
cannot reliably explain the hydropathy of residues in
folded three dimensional protein structures.

The overall correlation is not very high (Table 1),
however since these methods are primarily used to
search for the most hydrophilic or hydrophobic
regions the applicability is higher than the plain
numbers indicate. The reason for the low correlation is
that amino acids within e.g. exposed structures are not
of one single type. Also protein folding affects the
environments e.g. in B-strands every second residue is
pointing in the opposite direction. Amphipathy is
relativdy common in secondary structural elements.
Predictions based on linear sequence do not provide
very accurate predictions for each individua residue,
but observable trends. Predictions of hydrophilic
regions have been used for example to raise
antibodies. The shapes of the surface accessibility and
hydropathy predictions in Figure 2 are reatively



similar despite the low correlation. These results
clearly point that hydropathy predictions can still be
useful for some qualitative purposes, although one has
to be diligent when choosing the method and applying
the obtained results.

2.2. Prediction accuracy of amino acids

There are several groups of amino acid residues
with similar or related characterigtics;, such as
positively and negatively charged residues, aliphatic
amino acids etc. Amino acids have different
distribution for accessible and buried residues ([25]).
However, practically all residues appear both at buried
and exposed sites. There are several other features that
lead to different distributions of residues in eg.
secondary structures and 3D folds.

Figure 1. Prediction accuracy of individual amino
acids on the five most (Nioii, Mijer, Ponnu, Nneig,
Guym) and least (Jones, PONMA, Zimmr, IFH1, Urry)
accurate scales.

The hydropathy predictions were best for residues
A E G K, P, Sand T (<-0.20) (Figure 1). The
correlations are in the order of -0.3, whereas the worst
predictions for C, I, L, F, W and Y are merely around
-0.1. Among the well predicted residues are A and G,
the mogt flexible residues, and P, which has restricted
main chain torsion angles. Three of the poorly
predicted residues are bulky aromatic amino acids and
two of them are aliphatic (I, L). H aso has relatively
poor overal prediction accuracy. The results are very
similar for al the methods i.e. the same residues have
poor or good predictions independent of the scale.

The scales were normalized so that glycine has
value 0 and hydrophilic amino acids have negative
values. Values in some scales were so skewed that
glycine was not given value 0 [12]. The differencesin
the values between the scales are very high for some
residues, even so that the scales do not agree whether
aresidueis hydrophilic or hydrophobic. The values for
amino acids in the scales for the best methods are
close to each other, athough they are based on
different principles.

2.3. Correlation of hydropathy predictions to
linear epitoperegions

One widdy wused hiological application of
hydropathy scales is to predict the location of
antigenic regions, i.e epitopes. Based on these
predictions, antibodies have been produced against
synthetic peptides and used to bind to full length
proteins. Epitopes can either be conformational or
linear. Hydropathy predictions cannot detect
conformational epitopes because they are formed by
regions that fold together from different parts of the
polypeptide chain. Linear epitopes are formed by
consecutive amino acids in exposed regions on the
protein surface. Hydropathy predictions should be able
to detect such regions.
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Figure 2. A Correlation of hydropathy predictions and
SAS volumes for the C-terminal zinc binding domain of
the HPV16 E6 oncoprotein (PDB code 2fk4). B
Correlation of hydropathy predictions and SAS
volumes for the major house dust mite allergen Der p 2
(1a9v). The hydropathy predictions with the five most
reliable hydropathy scales are presented Nioii (o), Mijer
(o light gray), Ponnu (o gray), Nneig (o dark gray) and
Guym (-) along with the surface accessible volume of
amino acids (black). The locations of linear epitopes
are indicated with boxes on top.

Table 1. Correlation coefficients for hydropathy
predictions with all proteins.

Scde r Ref Scade r Ref
Nioii -0,258 15 AMPO7 -0,233 40
Mijer -0,258 16 Faupl -0,231 41
Ponnu -0,258 17 MPH89 -0,228 40
Nneig -0,258 12 Choth -0,227 42
Guym -0,257 18 Miller -0,221 43
Meiro -0,256 26 Hoppw -0,220 44
Totls -0,256 12 Prift  -0,213 12
Sweet -0,254 27 Eisen -0,210 45
PKPON -0,254 28 Olsen -0,210 46
Rosef -0,252 29 Fromm -0,207 47
Cass -0,252 30 Clogp -0,199 48
Holbro -0,251 31 Levit -0,198 49
Prils -0,251 12 Rosem -0,198 50
Sweg -0,251 12 Jadlg -0,197 18
Vhebl -0,250 32 Chdlg -0,190 18
Abodr -0,249 19 Engd -0,190 51
Wersc -0,248 33 Zwitter -0,188 40
Krigk -0,246 34 Meek -0,185 52
Wsdlg -0,246 18 Eimc -0,183 53

Janmi  -0,246 35 Kridg -0,181 52
Totft -0,246 12 Kuntz -0,181 54
Alft -0,245 12 1HFO -0,161 23
Altls  -0,244 12 1HFO.5 -0,156 23

Jones -0,150 20

KytDo -0,241 36
Janin  -0,237 37 PONMA-0,144 21
Guy -0,237 18 Zimmr -0,143 22
Buldg -0,234 38 1HF1 -0,142 23
PARKER-0,233 39 Ury -0111 24

We tested the usability of the best hydropathy
scales by predicting epitopes for a number of proteins
for which the structure and location of linear epitopes
is known. The data was taken from the Immune
Epitope Database and Analysis Resource (IEDB) [55].
Figure 2 indicates that the B-cell epitopes are indeed
predicted to have hydrophilic peaks. Instead of long
hydrophilic runs, the predictions have peaks within
the epitope regions. The predictions are not
necessarily highest for epitopes. The house dust mite
allergen Der p2 sructure (Figure 2B) indicates that
epitope regions can be rdatively rdiably predicted
even when the overall corrdation is low (-0.03 to -
0.09). For the other proteins in the figures, the
correlations range from -0.14 to -0.44. It is difficult to
eucidate which ones of the hydrophilic peaks
represent epitopes. It could therefore be necessary to
synthetize several peptides and produce several
antibodies, which is costly. Combination with other
epitope prediction methods could possibly increase the
success rate. Recently, in addition to amino acid
propensity scale based methods (eg. 12, 13) some
more advanced machine learning methods have been
released based on eg. neural networks [56], hidden
Markov model [57], and Gibbs sampling [58].

3. Conclusions

We invegtigated the prediction accuracy of
numerous hydropathy scales. A window size of 9
proved to be the best for all the scales. Window size
has a strong effect on the accuracy. The correlations
for the best scales are in the order of -0.26. The overall
correlation is very low. The diding window technique
snoothes the predictions over severa residues.
Therefore the mehod cannot predict correctly
aternating exposed/buried sequence stretches for
example.



Results for different amino acids vary greatly
within each scale, but are more consistent between the
scales. Hydropathy scales have been determined based
on many principles. Experimental scales measuring
the partition between phases are on average the
poorest. This implies that folded protein structures
have many additional features not measured when
investigating just fragments, amino acids or short
peptides.

Previously correation of the hydropathy scales [59]
was investigated for five scales. They obtained
correlation coefficients in the range of 0.40 to 0.45.
The difference in correlations to those measured by us
is due the method they applied. They used an average
sequence for each position build based on multiple
sequence adignment in  addition the average
access bility was calculated from a family of proteins.
This is a good approach when working with a family
of sequences and several structures are available.
However, hydropathy predictions are mostly used
when this kind of data is unavailable and the normal
sliding window approach is the solution. In protein
families with several known structures no need for
predictions exists.

The accuracy of linear epitope predictions have
been assessed for 484 amino acid property scales
including several hydropathy scales [60]. Thisanalysis
concentrated on peak vaues and predictions of
epitopes for 50 proteins. The correlation was very poor
even for the best scales (in the order of 0.15).

In conclusion, hydropathy scales are widely used
without any idea about how rdiable the results are.
We performed the first large scale analysisto correlate
hydropathy scales with surface exposure of residuesin
3-D structures. Hydropathy predictions have numerous
applications and are widdly used by biologists. For
many purposes trends in hydropathy are more
important than actual values. Despite low overall
correlation, hydropathy predictions can still be used
for some applications but only when quditative
analysisis sufficient.

4. Methods

We studied the accuracy of the hydropathy scales
by caculating the Pearson correlations between
predicced amino acid hydropathy and calculated
accessible surface areas for protein 3-D structures
obtained from the PDB [61]. The proteins were taken
from the 25% list of PDBsdect [62]. These structures
are not more than 25% identical at sequence level.
2441 structures were used in the analysis.

The hydropathy predictions were calculated by
using the diding window averaging technique. The
hydrophobicity scale assigns a hydropathy value to
each amino acid and a mean hydropathy value was
calculated within the window. The mean value was
given for the middlemost amino acid in the window
and repeated in steps of one amino acid for the whole
sequence. Window lengths of odd numbers between 5
and 25 amino acids were analyzed. The hydropathy
scales were normalized so that the values vary between
-10 and 10. Glycine was assigned a zero, hydrophobic
amino acids have positive values and hydrophilic
negative values.

The amino acid sequences and accessibility values
were derived with STRIDE [63], which uses both
hydrogen bond energy and main chain dihedral angles
to recognize secondary structural elements. Solvent
accessible surface (SAS) values for each amino acid
caculated with STRIDE were divided by the
maximum value of the amino acid. The amino acid
maximum accessihility values were determined from
an extended conformation where residues were
surrounded by glycines on both sides.

For correations we used Pearson Product Moment
Correlation

2XiYi= 2Xi YilN
(=

(X7 - (DVINF(DY? - SN

where r is Pearson’s correlation coefficient, xi is the
mean hydropathy value within a window, yi is the
maximum value divided SAS value corresponding xi,
and N denotes the number of amino acids. The
anaysis was extended by calculating Pearson
corrdlations  between accesshility values and
hydropathy values for the 56 scales for the 20 amino
acids.
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