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Abstract—The development of modern distributed software
systems poses a significant engineering challenge. The system
architecture should exhibit plasticity and high degree of
reconfigurability to enable an automated adaptation to
continuously changing operating conditions and component
failures. Traditional engineering approaches are inefficient to
cope with complexity of such systems to ensure their
robustness and fault tolerance. Therefore, there is a clear need
for the approaches explicitly addressing the problem of
designing adaptive fault tolerance mechanisms. In this paper,
we propose a systematic approach to the development of
adaptive fault tolerant systems. We discuss the main principles
of architecting such systems to enable plasticity and
reconfigurability. We demonstrate how deployment of the
predictive adaptation allows us to ensure that the system would
be able to continuously deliver its services with the acceptable
quality despite occurrence of component failures.

Keywords-adaptable systems; fault tolerance, predictive
adaptation; reconfiguration.

I. INTRODUCTION

The complexity of modern large-scale systems requires
solutions that ensure that systems autonomously adapt to the
operating environment and internal conditions. Often, such
systems are put into a wide class of autonomic systems --
the software-intensive systems that, besides providing their
intended functionality, are also capable to diagnose and
recover from errors caused either by external faults or
unforeseen state of environment in which the system is
operating [3]. In this paper, we focus on the fault tolerance
aspect of such systems.

Fault tolerance is an ability of a system to deliver its
services in a predictable way despite faults [8]. The generic
principle underlying design of fault tolerant systems is to
detect a discrepancy between a model representing fault free
system behaviour and the observed state, and implement
error recovery [8] .

In this paper, we propose a general pattern for
architecting and developing the adaptive fault tolerant
systems. The proposed pattern supports a layered design
approach [6] that enables separation of concerns and
facilitates structured design of fault tolerance mechanisms.
In our representation of the architectural pattern, we define
the interfaces between the components at different levels of
abstraction to ensure correct propagation of fault tolerance
related data. The high-level coordination of the fault

tolerance mechanisms is implemented by an adaptation
manager – a component that is responsible for implementing
predictive fault tolerance. To specify the adaptation manager,
we propose an algorithm that allows the adaptation manager
to monitor state of the system at the run time and implement
proactive adaptation. Such an approach ensures that the
overall system would continuously deliver the services with
the acceptable quality. We believe that the proposed
approach ensures a systematic development of adaptive fault
tolerant systems.

The paper is structured as follows: in Section II, we
overview the state-of-the-art in designing adaptive fault
tolerant systems. In Section III, we describe general
principles of achieving fault tolerance, and, in particular,
proactive fault tolerance. In Section IV, we present our
proposal for structuring adaptive fault tolerant system. In
Section V, we present our proposal for algorithms that
implement proactive fault tolerance. Finally, in Section VI,
we discuss the proposed approach and future work.

II. RELATED WORK

The need for high performance and continuous service
provisioning demands novel solutions for achieving system
fault tolerance. We are increasingly observing deployment
of proactive fault tolerance techniques that replace
traditional reactive approaches [10]. In modern large-scale
systems, error rate is increasing and reliance on traditional
“error-detection – error-recovery” pattern leads to poor
performance and prolonged system downtime, which is
often unacceptable. The approaches for proactive fault
tolerance are based on preventive treatment of faults aiming
at precluding failures and minimising recovery time [10].
The main mechanism of achieving proactive fault tolerance
is adaptation.

The problem of software adaptation has been extensively
studied at the implementation level, (see e.g., [2] for an
overview). However, there is a lack of approaches that
attempt to derive appropriate adaptation mechanisms from
system-level goals as well as support layered reasoning
needed to efficiently cope with system complexity. A
prominent work on formal modelling of adaptive systems
has been done within the HATS project [2]. In [13][14], an
approach to quantitative assessment of reconfiguration
strategy has been proposed. In our previous work, we also
investigated the impact of faults on dependability, as well as
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structured approach to designing fault tolerant distributed
systems [7][11].

Current engineering practice takes an architecture-
centric perspective on adaptive systems. Among the most
prominent examples are the Rainbow framework proposed
at Carnegie Mellon University [12] and the autonomic
computing initiative by IBM [3]. These frameworks outline
the main abstractions for describing and managing dynamic
system changes. However, currently, the approaches to
proactive fault tolerance are not well-integrated into the
system development process [10]. In this paper, we will
address this problem by proposing a structured approach to
architecting adaptive fault tolerant systems. Our approach
aims at facilitating design space exploration at the early
development stages and enabling explicit representation of
the mechanisms for proactive fault tolerance.

III. FAULT TOLERANCE

The main goal of introducing fault tolerance is to design
a system in such a way that faults of components do not
result in a system failure. A fault cannot be detected by a
system until the manifestation of the fault generates errors in
the component function. The first step in implementing fault
tolerance is error processing [10]. Error processing aims at
removing errors from the computational state.

The first step in error processing is error detection. An
error is a manifestation of a fault. The general mechanism of
error detection is to intercept outputs produced by a system
(or a component) and to check whether those outputs
conform to the specification of fault free behaviour.
Discrepancy between produced outputs and the specification
indicates an occurrence of an error. The next step in error
processing – damage confinement – is concerned with
structuring the system to minimise the spread of errors. Once
the damage is assessed and confined the error recovery can
be performed. Error recovery has two main forms – forward
and backward error recovery. The forward error recovery
mechanisms manipulate the current system state to produce a
new system state, which is presumably error free. The
success of error recovery strongly depends on how precisely
the error is located and how well it is confined. A typical
example of forward recovery is failsafe [1]. If a system has a
safe though non-operational state then it may be possible to
recover from an error by forcing the system permanently to
that safe state (obviously, this strategy is only appropriate
where shut down of the system operation is possible).

By analyzing actions to be undertaken for error
processing, we observe that error processing imposes
additional requirements on the system design. Namely:

- The system should be specified in such a way that
error occurrence conditions are easily deduced and
then explicitly checked;

- The system architecture should enable error
confinement;

- Error recovery procedures should be identified for
every output, which differs from the specified one.

Obviously, an incorporation of error processing in the
system design has a strong impact on all levels of the system
structure. Hence, fault tolerance should be an intrinsic part of
system development and should start from the early stages of
the system design.

To embrace complexity challenge, fault tolerance
community has been proposing new concepts that can be
seen from initiatives and research efforts on autonomic
computing [3] and various forums on self-healing [9] or
self-protection (see, e.g., [1]). These terms span a wide
range of research fields ranging from adaptive memory
management to advanced security mechanisms.

A promising direction among them focuses on
determining how computer systems can proactively handle
failures: if the system knows about a critical situation in
advance, it can try to apply countermeasures in order to
prevent the occurrence of a failure, or it can prepare repair
mechanisms for the upcoming failure, in order to reduce the
time-to-repair.

Such an approach can be called proactive fault
tolerance. It encompasses three main steps:

1. Failure prediction: it aims at identifying failure-
prone situations, i.e., the situations that will
probably evolve into a failure. The result of failure
prediction is an evaluation of whether the current
situation is failure-prone.

2. Proactive reconfiguration: based on the outcome of
failure prediction, a system should make a decision
and implement the countermeasures to be executed
in order to remedy the problem. These decisions
are based on an objective function taking into
account the cost of the actions, the confidence in
the prediction, and the effectiveness and
complexity of the actions to determine the optimal
tradeoff. Challenges for action execution include
online reconfiguration of globally distributed
systems, data synchronization of distributed data
centers, and many more.

3. Recovery: this stage enables graceful degradation
of services while the resources are insufficient for
mitigating the failures. For instance, the predictive
reconfiguration might not be completed as
promptly as expected and the system should
compensate for insufficient resources. Another
example would be a sudden simultaneous failure of
several components due to unexpectedly adverse
situations in the environment.

Each one of these stages is important for an efficient
implementation of the proactive fault tolerance. Hence,
novel architectural solutions, algorithms and development
approaches are needed to attain the goal of building adaptive
fault tolerant systems.
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To build a proactive fault tolerance solution that is able
to boost system dependability, the best techniques from all
fields for the given surrounding conditions have to be
combined.

In this paper, we consider the proactive fault tolerance to
be the main adaptation mechanism to achieve system
dependability. In the next section, we present our approach
to structuring an adaptive fault tolerant system. Then, we
focus on designing the proactive adaptation mechanisms.
Our proposal aims at enhancing self-adaptation system
capabilities. Our goal is to design the mechanisms that allow
a system to autonomously adapt to changing operating
conditions without human intervention. Essentially, our
proposal follows a spirit of the autonomic computing
paradigm.

IV. ARCHITECTURE OF ADAPTIVE FAULT TOLERANT

SYSTEMS

In this paper, we propose to structure an adaptive fault
tolerant system in a layered manner [6]. The layered
architecture significantly simplifies the development of
complex software-intensive systems. Each layer becomes
responsible for a certain aspect of the system behaviour. It
facilitates a clear separation of concerns and simplifies the
interfaces between the layers. The main issue is to device a
well-structured clean architecture that does not introduce
tangled interdependencies between layers. In this paper, we
propose to structure the architecture of a fault tolerant
adaptive system in four layers:

• Application layer
• Adaptation layer
• Fault tolerance layer
• Physical layer

The physical layer represents the environment whose
state should be monitored. It might be a complex control
system that uses sensors to monitor the health of its
components. Another example might be an indoor sensor
network that monitors such conditions as temperature,
humidity, the level of CO, etc. Finally, it might also be a
sensor network for monitoring the outdoor environment, e.g.,
such as used for forest fire detection, air pollution etc.

The fault tolerance layer performs the data aggregation
and evaluation of the quality of monitoring. This information
is supplied to the adaptation layer that is responsible for
defining the proactive adaptation policy. The aim of the
application and fault tolerance layer is to continuously
supply the application with the monitoring data of an
acceptable quality. The design of the application is defined
by its purpose – it varies from the complex control functions
to collecting data intelligence. The graphical representation
of the system architecture is given in Fig.1.

The physical layer consists of the component to be
controlled by the application software. In order to implement

proactive fault tolerance, the software should continuously
monitor the state of the controlled components.
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the quality level is set to Level 2. If the number of valid
readings is between 1 and lim1 then the quality level is set to
Level 1. Finally, if none of the sensors have produced valid
results then the quality level is assigned value Level 0.

The adaptation manager and deployment manager
constitute the adaptation layer. The adaptation manager
receives the data from the fault tolerance manager in the
format

<value, level>

where level is an integer between 0 and 3. If the level has
value 3, then, the value has a good quality and the adaptation
manager simply forwards the received value to the
applications. However, if the quality level is below 3 but
greater that 0 then the adaptation manager still forwards the
received data to the application but starts an observation
period.

The aim of the observation period is to establish
whether the decline in the quality of data is temporal or
permanent. Assume that, after receiving a value with the
levels 1 or 2, the adaptation manager observes a continuous
period of receiving data with quality level 3. Then, the
observation period terminates and no reconfiguration is
initiated, i.e., the adaptation manager treats the decline in the
quality of data as a temporal one and considers the system to
be healthy.

If, during the observation period the adaptation
manager continuously receives data with quality level 1 or 2
then after the observation period expires, it initiates
reconfiguration, i.e., considers the quality deterioration to be
the permanent one.

The reconfiguration is triggered by sending a request to
the deployment manager to deploy a new set of sensors. The
deployment can be achieved in several different ways. For
instance, if we consider a wireless sensor network that is
used to monitor the state of the environment then the
deployment is performed via a distribution of a set of fresh
sensors (e.g., from an airplane). If the sensors are used to
monitor an indoor environment then the deployment triggers
a request to the maintenance company. The same principle
applies if the sensor network is used to monitor the
behaviour of a complex control system. In any case, the main
advantage of the proposed approach is a possibility to
preventively react on the deterioration of the quality of
monitoring and avoid the loss of the observability of the
physical layer.

The requested number of new sensors to be deployed
depends on how deeply the level of data quality has
deteriorated. If the quality level has value 1 then the
deployment manager requests n new sensors to be deployed.
If the quality level has the value 2 then m new sensors are to
be deployed, where m<n.

In general, we could design a more sophisticated
deployment mechanism. For instance, if each sensor or a
group of sensors is assigned an id then the failures can be
diagnosed precisely. This would allow the adaptation
manager to communicate the exact requirements for the
deployment of new sensors.

When the new sensors are deployed, the deployment
manager acknowledges the completion of the reconfiguration
and the adaptation manager notifies the fault tolerance
manager about availability of the new sensors. The fault
tolerance manager closes the connection with the failed
sensors and establishes connection with the newly deployed
ones.

An important aspect to be considered is how to define
the behaviour of the adaptation manager when the quality
level keeps fluctuating between the values 2 and 3. On the
one hand, the adaptation manager should not trigger the
reconfiguration prematurely. On the other hand, delaying a
reaction on such an unstable situation might result in an
abrupt deterioration of the quality of data that should be
prevented.

To resolve this issue, we let the adaptation manager to
maintain the observation period as long as no continuous
improvement in quality has been observed. Every time when
the data are received with the quality threshold lower than 3,
the adaptation manager increments the counter of the
observation period. When this counter exceeds the
predefined threshold, the adaptation manager triggers the
reconfiguration. This approach is taken to ensure that the
preventive reconfiguration will be initiated even if the
system keeps fluctuating between quality levels.

Finally, if the adaptation manager receives data with
the quality level equal to 0, then it immediately initiates
reconfiguration of the data flow. In this case, it starts to send
to the application data received at the previous cycle. It
continues to send the last data with an acceptable quality
value until the reconfiguration is completed and the fault
tolerance manager starts to send the data with an acceptable
quality level.

In the next section, we define the main behavioural
patterns of adaptation manager and fault tolerance manager.

V. ALGORITMS FOR PROACTIVE FAULT TOLERANCE

Let us focus first on defining the module specifying the
fault tolerance manager.

The module should implement the procedures of

• Reading the sensor data,
• Checking validity of sensor data with respect to

time and feasibility
• Calculating the average of the received valid data

and the quality level.

In our definition of the fault tolerance manager, we used two
abstract functions fresh and valid. The function fresh relies
on the specific parameters to determine whether the
produced data is fresh. Since the clocks of the sensors might
fluctuate, the function checks whether the timestamp is
within certain boundaries.

The function valid checks feasibility of the data
produced by a sensor. It returns the Boolean value True if the
data is valid and False otherwise.
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Module Fault Tolerance Manager
Global Variables

in_buffers: array of <float, INT>
out_buffer: seq of <float, INT>

Local Variables
count: INT /*counter of healthy sensors
sum : float /*sum of readings
avg: float /*average value
level: [0..3]

Initialisation:
count:= 0;
sum:= 0;
avg:= 0;
level:= 0

Begin

for i = 1 to k do
read (data, time_stamp, in_buffer[i]);
if

fresh (time_stamp) = True & valid(data)= True
then count:= count +1; sum := sum +data

end;

if counter > 0 then avg:= sum/count;

case count = 0 then level:= 0
elseif count>0 & count<lim1 then level:=1
elseif count>lim1 & count<lim2 then level:=2
else level:=3;

out_buf:= out_buf^<avg,level>;
count:= 0;
sum:= 0;
avg:= 0

End

Figure 2. Fault Tolerance Manager.

Reliance of the abstract functions allows us to
parameterise the definition of the module and reuse the
proposed definition in different contexts.

In our definition of the module, we have abstracted
away from the implementation details of the communication
between the fault tolerance manager and the sensors. We
assume that they communicate by shared variables -- data
and time stamps that are stored in the in_buf array of pairs.

The proposed algorithm implements the procedure of
reading the sensor data, checking their validity with respect
to time and feasibility and calculates the average of the
received valid data.

By keeping track of the number of valid readings, the
fault tolerance manager calculates the quality level. It
compares this number with two constants – lim1 and lim2.
The pair of calculated data and the quality level is appended
to the output buffer that is read by the Adaptation Manager.
The specification of the Fault Tolerance Manager module is
given in Fig. 2 and the Adaptation Manager in Fig. 3.

Module Adaptation Manager

Global Variables
a_out_buf: float

Local variables:
observ : Bool
cur_level : INT
cur_data:float
fault_count : INT
suc_count : INT
mode: {Normal, Adapt, Adapt_Compl, Adapt_activ}

Initialisation:
observ :=0;
cur_level :=0;
fault_count :=0;
suc_count :=0;

Begin

cur_level, cur_data := head(out_buf);

if observ= False & cur_level= 3 then out_buf:= cur_data

if observ= False & cur_level= 2 & fault_count<thr
then fault_count:= fault_count+1; out_buf:= cur_data;

if observ= False & cur_level<3 & cur_level>0 &
fault_count>thr-1

then mode := adapt_active, adapt_req:= True;

if observ= False & cur_level=3 & fault_count>0 &
fault_count<thr-1

then observ:= True; suc_count := suc_count +1;
observ:= 0;

if observ= True & cur_level=3 & fault_count>0 &
fault_count<thr-1 & suc_count<thr_s

then suc_count:= suc_count+1;
observ_s_iter:= observ_s_iter:=+1;

if observ= True & cur_level=3 & fault_count>0 &
fault_count<thr-1 & suc_count>thr_s-1 &
suc_count =observ_s_iter

then observ:= False ; suc_count:= 0; fault_count:= 0;
observ_s_iter:= 0;

if observ= True & cur_level<3 & fault_count>0 &
fault_count<thr-1 & suc_count<thr_s

then suc_count:= suc_count+1;
observ_s_iter:= observ_s_iter+1;

if mode= adapt_activ then adapt_req ;

if adapt_conf then mode:= normal
End

Figure 3. Adaptation Manager.

In the specification of the Adaptation manager, the
variable observ indicates whether the observation period has
started. The variable obtains the value True when the first
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data with the quality level below 3 is received. The variable
is reset to True if the quality has recovered or a new period
of observation is initiated.

The variables cur_level and cur_data designate the data
and the quality level received from the fault tolerance
manager. The variable fault_count is used to keep track of
the number of iterations, in which the data with the quality
level lower than 3 have been received. When the value of
fault_count exceeds the predefined threshold thr, the
reconfiguration is triggered.

The variable suc_count is used to keep track of the
iterations that produced data with the quality level 3 after the
observation period has been initiated. When the value of
suc_count exceeds the predefined threshold thr_s the
adaptation manager has continuously received the data with
the quality level 3 for sufficiently long period of time.
Therefore, the quality level has recovered and the
observation period can be deactivated.

The adaptation manager provides the application with the
latest data by updating the global variable a_out_buf. It
forwards the data received from the fault tolerance manager
if the quality level is higher than zero. Otherwise, it simply
does not update the variable.

The adaptation manager triggers the reconfiguration by
issuing the adaptation request adapt_req that is received by
the deployment manager. When the new sensors are
deployed the deployment manager confirms the
reconfiguration by issuing the signal adapt_conf.

After triggering the reconfiguration, the adaptation
manager enters the mode Adapt. After the reconfiguration is
completed, the adaptation manager enters the mode
Adapt_Compl. In this mode [4] [5], it notifies the fault
tolerance manager about availability of new healthy sensors.
As a response to this, the fault tolerance manager shuts down
the connection with the failed sensors and establishes a new
connection with the newly deployed sensors. After this
procedure is completed, the fault tolerance manager notifies
the adaptation manager. It enables transition to the mode
Normal.

The general scheme of an implementation of the mode
transition is given in Fig. 4. The main principle that underlies
the mode transition is as follows: the mode is stable and
unchanged until a fluctuation in the quality level is
registered. We show the snippet implementing this principle
as a generic mode changing procedure.

The proposed architecture ensures a separation of
concerns and clear allocation of responsibilities between the
components. Indeed, the fault tolerance manager is
responsible for collecting data and validating them. It
encapsulates the failures of sensors and gives only the high-
level indication of the current health of the system by
annotating the data with the quality level. The adaptation
manager is responsible for diagnosing the situation and
executing the preventive reconfiguration – requesting the
new sensors to be deployed before the quality of data
deteriorates below the acceptable level. At the same time, it
also ensures remedial actions when no data is produced – it
outputs to the application the last healthy value. Such
behaviour ensures graceful degradation of quality of service.

Procedure ModeTransition

Variables
last_mode: {Normal, Adapt, Adapt_Compl, Adapt_activ}
next_target: {Normal, Adapt, Adapt_Compl, Adapt_activ}

prev_target: {Normal, Adapt, Adapt_Compl, Adapt_activ}
level: int

Begin

if adaptation completed
then initiate a forward transition

to next_target according to
the predefined scenario;

if level dropped
then initiate a backward transition to next_target

adaptation mode
The choice of target mode depends on severity
of level decrease;

if the conditions for entering the target
mode are satisfied

then complete a transition to next_target mode
and become stable ;

if neither the conditions for entering
the next global mode are satisfied nor the level dropped

then maintain the current mode

End

Figure 4. Mode transition procedure.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a systematic approach to
architecting adaptive fault tolerant systems. We have
demonstrated how to structure the system to facilitate layered
design of proactive fault tolerant mechanisms. We defined
the information flow between the layers of the system
architecture that enables adaptation and guarantees a
continuous delivery of services with an acceptable quality
level.

Proactive fault tolerance is a promising research direction
that aims at providing systems with capabilities of executing
preventive reconfiguration to preclude occurrence of failure
and disruption in service provision. In our paper, the main
mechanism of achieving proactive fault tolerance relies on
several levels of error detection and monitoring of system
health.

As a future work, we are planning to investigate
alternative approaches to preventive reconfiguration as well
as conduct quantitative assessment of various system
characteristics, e.g., correlation between frequency of the
network rejuvenation with new sensors and quality of data,
proportion between periods of low quality data and different
thresholds etc. Such a work, would allow us to define
heuristics for designing proactive fault tolerance.
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