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Abstract— Service-oriented computing offers an attractive 
paradigm to designing complex composite services by 
assembling readily-available services. The approach enables 
rapid service development and significantly increases 
productivity of the development. However, it also poses a 
significant challenge in ensuring quality of created services 
and in particular their fault tolerance. In this paper, we 
propose a systematic approach to architecting complex fault 
tolerant services. We demonstrate how to graphically model 
the architecture of composite services and augment it with 
various fault tolerance mechanisms. We propose an 
approach facilitating a systematic analysis of possible 
failures of the services, recovery actions and alternative 
solutions for achieving fault tolerance. Our approach 
supports structured guided reasoning about fault tolerance 
at different levels of abstraction. It allows the designers 
evaluate various architectural solutions at the design stage 
that helps to derive clean architectures and improve fault 
tolerance of developed complex services.   
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composition, service orchestration; failure modes and effect 
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I. INTRODUCTION 
 

Web-services [13] constitute one of the fastest growing 
areas of software engineering. With a strong support for 
compositionality, the process of developing an application 
essentially becomes a process of composing available 
services. Services – the basic building blocks of complex 
applications are platform and network independent 
components implementing computations that can be 
invoked by clients or other services.  

To enable a rapid service composition, services define 
their properties in a standard and machine readable 
format. It enables service discovery, selection and 
binding. Service composition introduces the orchestration 
of the basic services to build applications. However, 
usually research on service orchestration focuses on 
defining the language for service composition that does 
not support reasoning about such essential features as 
fault tolerance. Such reasoning can be supported by 
dependability analysis and architectural modelling [5].  

In this paper, we propose a systematic approach to 
architecting fault tolerant services. We demonstrate how 
to graphically model the architecture of composite 

services and augment it with various fault tolerance 
mechanisms. We propose static and dynamic solutions for 
introducing fault tolerance into the service composition. 
The structural solutions rely on availability of redundant 
service providers that can be requested to provide services 
in case of failures of the main service providers. This 
mechanism allows the designers to mask failures of the 
individual service providers. The dynamic solutions rely 
on re-execution of failed services to recover from the 
transient faults of services. This solution requires 
modifications of the service execution flow.  

To facilitate design of complex fault tolerant services, 
in this paper, we introduce a systematic approach to 
analysing possible failure modes of services and defining 
fault tolerance measures. Our approach is inductive – it 
progressively analyses one component after another in the 
service execution flow, explores possible fault tolerance 
alternatives and systematically introduces them into the 
service architecture.  

We believe that our approach supports structured 
guided reasoning about fault tolerance and enables 
efficient exploration of the design space. It allows the 
designers to evaluate various architectural solutions at the 
design stage that helps to derive clean architectures and 
improve fault tolerance of developed complex services.   

The paper is structured as follows: in Section II, we 
demonstrate how to model a fault tolerant service from a 
service user’s perspective. In Section III, we demonstrate 
how to unfold service architecture, i.e., explicitly 
represent the service composition and the service 
execution flow.  We also propose different fault tolerance 
mechanisms that can be introduced to enhance fault 
tolerance. In Section IV, we introduce a structured 
approach to designing a fault tolerant architecture.  
Finally, in Section V, we overview the related work and 
discuss the presented work.  

 
II. ABSTRACT MODELING OF FAULT-

TOLERANT SERVICES 
 
The main goal of introducing fault tolerance in the service 
architecture is to prevent a propagation of faults to the 
service interface level, i.e., to avoid a service failure [7] [9].  
A fault manifests itself as error – an incorrect service  
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Figure1. Use case representation of a service. 

 
state [9]. Once an error is detected, an error recovery 
should be initiated. Error recovery is an attempt to restore a 
fault-free state or at least to preclude system failure.  

Error recovery aims at masking error occurrence or 
ensuring deterministic failure behaviour if the error cannot 
be masked. In the former case, upon detection of error, 
software executes certain actions to restore a fault-free 
system states and then guarantee normal service 
provisioning. In the latter case, the service provisioning is 
aborted and failure response is returned.  

In this paper, we focus on the architectural graphical 
modelling [12] of fault tolerant services [13]. We 
demonstrate how to explicitly introduce handling of faulty 
behaviour into the service architecture. We follow the 
model-driven development paradigm and start our 
modelling from a high level of abstraction [8]. The 
consecutive model transformations introduce the detailed 
representation of the service architecture.  

The high-level model of a fault tolerant service is given 
in Fig.1. The service is defined via its interactions with 
different service users. Each association connecting an 
external user and a service corresponds to a logical 
interface, as shown in Fig.2. The logical interfaces are 
attached to the class with ports.  At the abstract modelling 
level, we treat a service as a black box with the defined 
logical interfaces.  

The UML2 interfaces I_ToService and I_FromService 
define the request and request parameters of the service 
user. We formally describe the communication between a 
service and its user(s) in the I_Communication state 
machine as illustrated in Fig.3. The request ser_req 
received from the user is always replied: with the ser_cnf in 
case of success, with the  ser_fail_cnf in case of 
unrecoverable failure and with the ser_tfail_cnf in case of a 
recoverable failure. Let us point out, that already at the 
abstract level of modelling, we explicitly introduce 
representation of faulty behaviour and reaction on it. 

To exemplify an abstract modelling of a fault tolerant 
service, let us consider a positioning service. It provides the 
services for calculating the physical location of the service 
user. 
 

 
 
 
 

Figure 2. Abstract architectural diagram. 

 
 

 
 
 
 
 

 
Figure 3. State diagram of communication. 

 

As shown in Fig.4, the abstract model represents an 
interaction of the service with a user. An abstract 
architectural diagram defines an interface for 
communicating with the user. The state diagram formally 
defines the communication between the user and the 
service. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.4. Modelling positioning service 

 
The request to calculate the position is modelled by the 

event pc_req. In case of a normal execution, the positioning 
service returns the reply pc_cnf. Let us observe, that in our 
modelling we explicitly define the possibility of a service 
failure following the pattern proposed above. Indeed, in 
case of the unrecoverable failure, the positioning service 
returns pc_fail_cnf. In case of a recoverable failure, the 
service returns pc_tfail_cnf. Such a fault-tolerance explicit 
approach to modelling ensures that the service execution 
always terminates, i.e., the service never becomes 
unresponsive. 
 

III. ARCHITECTURAL DECOMPOSITION 
 

Our abstract modelling has defined the service from the 
service user’s point of view. The model transformation 
presented next focuses on defining the composition that 
constitutes the overall service.   

An execution of a composite service consists of 
executing several subservices. Coordination of a service 
execution is performed by a service manager (sometimes 
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called service composer). It is a dedicated software 
component that  on  the  one  hand,  communicates  with  a  
service user and on the other hand, orchestrates the service 
execution flow. 

To coordinate service execution, the service manager 
keeps the information about subservices and their execution 
order. It requests the corresponding service components to 
provide the required subservices and monitors the results of 
their execution. 

Let us note, that any subservice might also be composed 
of several subservices, i.e., in its turn, the subservice 
execution might be orchestrated by its (sub)service 
manager. Hence, in general, a composite service might 
have several layers of hierarchy [5]. 

To model a composite service, we introduce the 
providers of the subservices into the abstract architectural 
service model. The model includes the external service  

 
 

 
 

Figure 5. Architecture of a positioning service. 

 
providers communicating with the aggregated service via 
their service director. For each association between the 
main service and the corresponding subservice, we define a 
logical interface. The logical interfaces are attached to the 
corresponding classes via the corresponding ports. This 
enables a structured representation of the modular structure 
of the composite service. The functional architecture is 
defined in terms of the service components, which 
encapsulate the functionality related to a single execution 
stage of another logical piece of functionality.  

The architectural diagram of the position calculation [5] 
[14] – the composite service example described above is 
presented in Fig. 5. The service manager role is two-fold: it 
orchestrates service execution flow and handles 
communication with the service user. The dynamics of the 
execution flow is refined by introducing the corresponding 
sub-states in the service state as shown in Fig. 6. 

 
Figure 6. Unfolded dynamic behaviour. 

Now, let us discuss the fault tolerant aspect of the 
composite services. Execution of any subservice can fail.  
To ensure fault tolerance of composite services, we propose 
a two-fold approach. On the one hand, we define a set of 
patterns [11] that allow us to introduce structural means for 
fault tolerance using various forms of redundancy. On the 
other hand, we propose to extend the responsibilities of a 
service manager, to implement dynamic error recovery. 
Next, we propose the architectural patterns for introducing 
structural fault tolerance and define the corresponding 
modeling artifacts.  

 
 

Figure 7. Duplication scheme. 

 
Duplication pattern. The duplication is a simplest 

arrangement for structural fault tolerance. It can be 
introduced if there are two service components available 
that provide the same functionality. In this case, the 
services can be executed in parallel. A successful execution 
of a service by any out of two service components suffices 
for the successful service provisioning.  

An architectural diagram of the duplication arrangement 
is given in Fig. 7.  We introduce a dedicated service 
manager to take care of the execution of the duplicated 
service.  The dynamical behavior of the duplication pattern 
is shown in Fig. 8. An alternative architectural approach 
would be to allow the main service manager to orchestrate 
this arrangement.  

 

 
Figure 8. Dynamic behavior of duplication pattern. 

 

Stand-by spare.  This arrangement relies on availability 
of a spare service component implementing the desirable 
service. The spare is used only if the execution of the 
service by the main component fails. If the main service 
component succeeds in executing a service, the spare 
service component remains inactive. However, if the main 
service component fails to execute a service then the spare 
service component is requested to provide the service.  

The stand-by spare arrangement can be implemented 
with and without an introduction of the dedicated service 



director. The design decision depends on the complexity of 
the composite service, i.e., whether the design of the main 
service manager would become too complex with the 
introduction of this additional responsibility.  

The architecture of the stand-by-spare implemented with 
the dedicated service manager coincides with the 
duplication pattern. However, the dynamic behavior is 
different as shown in Fig.9. 

 

 
 

 
 
 
 
 

Figure 9. Dynamic behavior of stand-by spare. 
 

Triple modular redundancy pattern. A more complicated 
scheme for structural redundancy – triple modular 
redundancy is shown in Fig.10.  The precondition for 
implementing it is that we have three service components 
available that provide identical services with the same 
functionality. All three service components receive the 
same service request and work in parallel. The results of 
the service execution are sent to a voting element.  

The voting element is a dedicated software component 
that performs comparison of the results and produces the 
final result. The voting element takes a majority view over 
the produced results of the successfully executed services 
and outputs it as the final result of the service execution. 

 In the context of the service-oriented computing, the 
voting component might be implemented in two different 
ways: it might output the results after receiving the first two 
replies or it might start to act only after the certain deadline 
when all non-failed services have replied.  

Let us discuss a difference between triple modular 
redundancy scheme adopted in hardware and services. In 
hardware context, the scheme can mask failure of a single 
component by adopting the majority view. In the service-
oriented context, it gives more fault tolerance options. 
Indeed, if two out of three services failed to reply within 
the timeout, the voter component can be design to simply 
output the result of the non-failed service. Obviously, in  
case of a failure of a single service, it gives better fault 
tolerance guarantees, because it can compare the results of 
two non-failed services and take the one, which is more 
accurate as the output.  

Since the triple modular redundancy scheme has a rather 
complex architecture by itself, we propose to introduce a 
dedicated service manager to integrate the arrangement in 
the architecture of a composite service. The proposal is 
depicted in Fig. 10. 

The dynamic behavior of the triple modular arrangement 
is depicted in Fig.11. Here, the dedicated service manager 
performs voting before outputting the service result. 

The static redundancy schemes require availability of 
redundant   service   components   and   hence,  sometimes,  

 

 
 

Figure 10. Architecture of triple modular redundancy. 

 
might be non-implementable. However, they provide an 
efficient means to cope with permanent service failure. In 
contrast, dynamic fault tolerance relies on service re-execu- 
 

 
 

Figure 11. Dynamic behaviour of triple modular redundancy. 

 
tion to increase the chances of the successful service 
execution and does not require an availability of the 
redundant service components. Obviously, the dynamic 
fault tolerance solutions can cope with transient failures.  

To leverage fault tolerance of a composite service, the 
service manager might alter the normal flow of service 
execution to dynamically cope with failures. For instance, it 
might repeat service execution, roll-back or abort service 
execution.  

If service execution failed, but the returned exception 
indicates that the error is transient then by re-executing the 
failed subservice, the service manager might recover from 
the error.  The service execution flow is shown in Fig.12. 

 

 
Figure 12. Service execution flow. 

 

If service execution failed but the returned exception 
indicates that the error is unrecoverable and there are no 
alternative services available, then the service manager can 
abort the entire service execution and return failure 
response.  

Obviously, designing fault tolerant composite services is 
a non-trivial task that requires a systematic support. In the 
next section, we propose an approach to systematic 
development of fault tolerant architecture by a structured 
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analysis of failure modes of the services and fault tolerance 
schemes.  

 
IV. DEVELOPMENT OF A FAULT TOLERANT 

SERVICE ARCHITECTURE 
 
The main motivation behind our approach is to facilitate 

a structured disciplined derivation of fault tolerant service 
architecture. Essentially, we define the guidelines for 
analyzing faulty behavior of the services and deciding on 
the mechanisms for fault tolerance. 

 Our approach is inspired by the Failure Modes and 
Effect Analysis (FMEA) technique. FMEA [16] is an 
inductive analysis method, which allows designers to 
systematically study the causes of components faults, their 
effects and means to cope with these faults. FMEA is used 
to assess the effects of each failure mode of a component 
on the various functions of the system as well as to identify 
the failure modes significantly affecting dependability of 
the system.  

FMEA step-by-step selects the individual components of 
the system, identifies possible causes of each failure mode, 
assesses consequences and suggests remedial actions.  The 
results of FMEA are usually represented in the tabular form 
that contains the following fields: component name, failure 
mode, possible cause, local effect, system effect, detection, 
and remedial action.  

Let us exemplify the proposed approach. Assume that a 
service S1 is a part of the composite service S. The services 
S11 and S12 have identical functionality. Assume that the 
service S1 might experience transient silent failures, i.e., 
become temporally irresponsive. Such failures can be 
detected by timeout. Then we can arrange services into a 
triple modular redundancy scheme. The structured analysis 
of the fault tolerance arrangement around the service S1 
according to the proposed approach is shown in Table I.  

 

TABLE I.  TRANSIENT FAILURE ANALYSIS 
 

Service S1  
Failure mode Transient silent failure 

Detection Timeout 

Available 
redundancy 

S11, S12 

Structural 
redundancy 

Triple modular redundancy 
arrangement. Result is produced upon 
timeout   

Recovery 

Masking failure by use of  triple 
modular redundancy arrangement. In 
case of simultaneous failure of  S1, 
S11 and S12 repeat execution 

 

Let us now assume that a service S2 is also part of the 
composite service S. Assume that the service S2 might 
experience transient failures that are identified by receiving 
the response S2_tfail_cnf from it. Since no redundant 
service components are available for this case and the 

service failure is detectable with the corresponding 
notification, we can rely on dynamic redundancy to cope 
with failures of S2. The structured analysis of the fault 
tolerance arrangement around the service S2 according to 
the proposed approach presented in Table II.  

 

TABLE II.  FAILURE MODE ANALYSIS 
  

Service S2  
Failure mode Transient detectable failure 

Detection S2_tfail_cnf response 
Available 

redundancy 
No 

Structural 
redundancy 

No   

Recovery 
Re-execute service. Maximal allowed 
number of retries is 3.  

 

It easy to observe that reliance on the proposed approach 
facilitates structured derivation of fault tolerance 
architecture for both structured and dynamic fault tolerance 
schemes.  

As a result of introducing various means for fault 
tolerance, we also should modify the design of the service 
manager. Fig 13 depicts the modified flow with a retry.  

 
Figure 13. Execution flow with retry. 

 

The process of introducing fault tolerance mechanisms 
can be iteratively applied to unfold all the architectural 
layers. As a result of this process, we obtain a hierarchical 
structure of service managers augmented with fault 
tolerance properties.  

 
V. RELATED WORK AND CONCLUSIONS 

 
While the topic of service orchestration and composition 
has received significant research attention, the fault 
tolerance aspect is not so well addressed. Liang [10] 
proposes a fault-tolerant web service on SOAP (called 
FT-SOAP) using the service approach. It extends the 
standard WSDL by proposing a new element to describe 
the replicated web services. The client side SOAP engine 
searches for the next available backup from the group 
WSDL and redirects the request to the replica if the 
primary server failed. It is a rather complex mechanism 
that hinders interoperability.  

Artix [2] is IONA's Web services integration product. 
It provides a WSDL-based naming service by Artix 
Locator. Multiple instances of the same service can be 
registered under the same name with an Artix Locator. 



When service consumers request a service, the Artix 
Locator selects the service instance based on a load-
balancing algorithm from the pool of service instances. It 
provides useable services for the service consumers. An 
active UDDI mechanism [4] enables an extension of 
UDDI’s invocation API to enable fault-tolerant and 
dynamic service invocation. Its function is similar to the 
Artix Locator. A dependable Web services framework is 
proposed in [1]. Once a failure for one specific service 
occurs, the proxy raises a “WebServiceNotFound” 
exception and downloads its handler from DeW. The 
exception handling chooses another location that hosts the 
same service and re-invoks the method automatically. The 
main goal of DeW is to realize physical-location-
independence. Providing fault-tolerance capability for 
composite Web service has also been discussed in [3]. 

A formal approach [15] [17] to introducing fault 
tolerance to the service architecture has been proposed in 
[5] [6]. This work extends the set of architectural patterns 
that can be introduced to achieve fault tolerance as well as 
propose a systematic support for deriving fault tolerance 
solutions.  

In this paper, we have proposed a systematic approach 
to architecting fault tolerant services. We demonstrated 
how to graphically model the architecture of composite 
services and augment it with various fault tolerance 
mechanisms. We defined a set of static and dynamic 
solutions for introducing fault tolerance into the service 
composition. The proposed mechanisms can cope with 
different types of failures to increase reliability of 
complex composite services.  

To facilitate design of fault tolerance mechanisms, we 
proposed an approach to a structured analysis of possible 
failure modes of services and introducing fault tolerance 
measures. The proposed approach is inductive – it 
progressively analyses services in the execution flow, 
explores possible fault tolerance alternatives and 
systematically introduces them into the service 
architecture.  

We believe that our approach supports structured 
guided reasoning about fault tolerance and enables 
efficient exploration of the design space while 
architecting complex composite services.  
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