
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

A Computation and Storage Trade-off Strategy for
Cost-Efficient Video Transcoding in the Cloud

Fareed Jokhio∗†, Adnan Ashraf∗‡§, Sébastien Lafond∗‡, Johan Lilius∗‡
∗ Department of Information Technologies, Åbo Akademi University, Turku, Finland.

Email: {fjokhio, aashraf, slafond, jolilius}@abo.fi
† Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan.

‡ Turku Centre for Computer Science (TUCS), Turku, Finland.
§ Department of Software Engineering, International Islamic University, Islamabad, Pakistan.

Abstract—Video transcoding refers to the process of converting
a compressed digital video from one format to another. Since it
is a compute-intensive operation, transcoding of a large number
of on-demand videos requires a large scale cluster of transcoding
servers. Moreover, storage of multiple transcoded versions of each
source video requires a large amount of disk space. Infrastructure
as a Service (IaaS) clouds provide virtual machines (VMs) for
creating a dynamically scalable cluster of servers. Likewise, a
cloud storage service may be used to store a large number of
transcoded videos. Moreover, it may be possible to reduce the
total IaaS cost by trading storage for computation, or vice versa.
In this paper, we present a computation and storage trade-off
strategy for cost-efficient video transcoding in the cloud called
cost and popularity score based strategy. The proposed strategy
estimates computation cost, storage cost, and video popularity
of individual transcoded videos and then uses this information
to make decisions on how long a video should be stored or how
frequently it should be re-transcoded from a given source video.
It is demonstrated in a discrete-event simulation and is evaluated
in a series of experiments involving semisynthetic and realistic
load patterns.

Keywords-Video transcoding; computation and storage trade-
off; cost-efficiency; cloud computing

I. INTRODUCTION

With an ever increasing number of digital videos delivered
everyday via the Internet, the number of video formats and
video codecs used for digital video representation are also
increasing rapidly. Moreover, since video streaming of a large
number of videos requires a lot of server-side resources, digital
videos are often stored and transmitted in compressed formats
to conserve storage space and communication bandwidth.
With the emergence of a large number of video compression
techniques and packaging formats, such as MPEG-4 [1] and
H.264 [2], the diversity of digital video content representation
has grown even faster. However, a client-side device may
support only a small subset of the existing video formats.
Therefore, an unsupported format needs to be converted into
one of the supported formats before the video could be played.

Video transcoding refers to the process of converting a
compressed digital video from one format to another. In
addition to format conversion, video contents are sometimes
also altered in terms of bit-rate and resolution to meet the

network bandwidth requirements or capabilities of the client-
side device. Modern client-side devices also use a large variety
of display sizes and resolutions, which has necessitated the
need to simultaneously transcode video streams to different
video formats, spatial resolutions, and bit-rates. Thus, video
transcoding [3], [4], [5], [6], [7], [8], [9], [10] is used for bit-
rate reduction, spatial resolution reduction, temporal resolution
reduction, and video-coding format conversion.

Since video transcoding is a compute-intensive operation,
transcoding of a large number of on-demand videos requires
a large scale cluster of transcoding servers. Moreover, storage
of multiple transcoded versions of each source video requires
a large amount of disk space. Infrastructure as a Service
(IaaS) clouds provide virtual machines (VMs) for creating
a dynamically scalable cluster of servers. Likewise, a cloud
storage service may be used to store a large number of
transcoded videos. Determining the number of VMs and the
amount of storage to provision from an IaaS cloud is an
important problem. The exact number of VMs and the exact
amount of storage needed at a specific time depend upon
the incoming load from service users and their performance
requirements. In our previous work [11], we proposed a
prediction-based dynamic resource allocation approach for
video transcoding in cloud computing. However, finding a
cost-efficient computation and storage trade-off strategy for
video transcoding in cloud computing is still an open problem.
The objective is to reduce the total IaaS cost by trading storage
for computation, or vice versa. In this paper, we investigate the
computation and storage cost trade-off for video transcoding
in the cloud and present a cost-efficient strategy called cost
and popularity score based strategy. The proposed strategy
estimates computation cost, storage cost, and video popularity
of individual transcoded videos and then uses this information
to make decisions on how long a video should be stored or how
frequently it should be re-transcoded from its source video.

We proceed as follows. Section II presents the system
architecture of an on-demand video transcoding service and
sets the context for the proposed computation and storage
trade-off strategy. The proposed strategy is presented in Sec-
tion III. Section IV describes experimental design and setup.
The results of the experimental evaluation are presented in

Section V. In Section VI, we discuss important related works
before concluding in Section VII.

II. SYSTEM ARCHITECTURE

The system architecture of the cloud-based on-demand
video transcoding service is shown in Figure 1. It consists
of a streaming server, a video splitter, a video merger, a
video repository, a dynamically scalable cluster of transcoding
servers, a load balancer, a master controller, and a load
predictor. The video requests and responses are routed through
the streaming server. Since the main focus of this paper is on
computation and storage trade-off for video transcoding, we
assume that the streaming server is not a bottleneck.

Video

Repository

Streaming Server

Video

Splitter

Video segments

Load

Balancer
Master Controller

Config

Load Predictor

Transcoding

Server 1

.

.

.

Video requests/responses

Video segments

Transcoding

Server N

Video

Merger

Input video streams

Transcoded video streams

Transcoded jobs

Legend

Video data

Control

signals

Fig. 1. System architecture

The video streams in certain compressed formats are stored
in the video repository. The streaming server accepts video
requests from users and checks if the required video is
available in the video repository. If it finds the video in the
desired format and resolution, it starts streaming the video.
However, if it finds that the requested video is stored only in
another format or resolution than the one desired by the user, it
sends the video for segmentation and subsequent transcoding.
Then, as soon as it receives the transcoded video from the
video merger, it starts streaming the video.

After each transcoding operation, the computation and
storage trade-off strategy determines if the transcoded video
should be stored in the video repository or not. Moreover, if
a transcoded video is stored, then the trade-off strategy also
determines the duration for which the video should be stored.
Therefore, it allows us to trade computation for storage or
vice versa in order to reduce the total operational cost and to
improve performance of the transcoding service.

The video splitter splits the video streams into smaller
segments called jobs, which are placed into the job queue. A
compressed video consists of three different types of frames
namely, I-frames (intracoded frames), P-frames (predicted
frames), and B-frames (bi-directional predicted frames). Due
to inter-dependencies among different types of frames, the
video splitting or segmentation is performed at the key frames,

which are always I-frames. An I-frame followed by P and B
frames is termed as a group of pictures (GOP). GOPs represent
atomic units that can be transcoded independently of one
another [11]. Video segmentation at GOP level is discussed
in more detail in [12] and [13].

The load balancer distributes load on the transcoding
servers. In other words, it routes and load balances transcoding
jobs on the transcoding servers. It maintains a configuration
file, which contains information about transcoding servers that
perform the transcoding operations. As a result of dynamic
resource allocation and deallocation operations, the configu-
ration file is often updated with new information. The load
balancer serves the jobs in FIFO (First In, First Out) order.
It implements one or more job scheduling policies, such as,
the shortest queue length policy, which selects a transcoding
server with the shortest queue length and the shortest queue
waiting time policy, which selects a transcoding server with
the least queue waiting time.

The actual transcoding is performed by the transcoding
servers. They get compressed video segments, perform the
required transcoding operations, and return the transcoded
video segments for merging. A transcoding server runs on
a dynamically provisioned VM. Each transcoding server pro-
cesses one or more simultaneous jobs. When a transcoding
job arrives at a transcoding server, it is placed in the server’s
queue from where it is subsequently processed.

The master controller acts as the main controller and
resource allocator. It implements prediction-based dynamic
resource allocation and deallocation algorithms [11] and one
or more computation and storage tarde-off strategies. The re-
source allocation and deallocation is mainly based on the target
play rate of the video streams and the predicted transcod-
ing rate of the transcoding servers. For load prediction, the
master controller uses load predictor [14]. The video merger
merges the transcoded jobs into video streams, which form
video responses. Our resource allocation and load prediction
algorithms are described in detail in [11] and [14]. In this
paper, our primary focus is on a cost-efficient computation
and storage trade-off strategy.

III. PROPOSED STRATEGY

In this section, we present the proposed computation and
storage trade-off strategy. For the sake of clarity, we provide
a summary of the notations in Table I.

The proposed cost and popularity score based strategy
estimates the computation cost, the storage cost, and the
video popularity of individual transcoded videos and then
uses this information to make decisions on how long a video
should be stored or how frequently it should be re-transcoded
from a given source video. In an on-demand video streaming
service, the source videos are usually high quality videos that
comprise the primary datasets. Therefore, irrespective of their
computation and storage costs, they are never deleted from
the video repository. The transcoded videos, on the other
hand, are the derived datasets that can be regenerated on-
demand from their source videos. Therefore, they should only

TABLE I
SUMMARY OF CONCEPTS AND THEIR NOTATION

Notation Description
τi ith transcoded video
NSτi new cost and popularity score of τi
RCT renting cost of a transcoding server per renting hour
Sτi total cumulative cost and popularity score of τi
SCτi storage cost of τi in unit time
SCm monthly storage cost per 1 gigabytes
SDτi storage duration for transcoded video τi
TCτi transcoding cost of τi
TTτi transcoding time of τi
V Smbτi transcoded video τi size in megabytes
GBmb megabytes to gigabytes conversion factor
Hsec hour to seconds conversion factor
RPS month to desired time unit conversion factor

be stored in the video repository when it is cost-efficient to
store them. Thus, the proposed strategy is only applicable to
the transcoded videos. In other words, since the computation
and the storage costs of the source videos are not relevant,
the proposed strategy is based only on the computation and
storage costs of the transcoded videos.

In cloud computing, the computation cost is essentially the
cost of using VMs, which is usually calculated on an hourly
basis. The storage cost, on the other hand, is often computed
on a monthly basis. The computation cost of a transcoded
video depends on its transcoding time and on how often
the video is re-transcoded. Thus, if a video is frequently re-
transcoded, the computation cost would increase rapidly. On
the other hand, the storage cost of a transcoded video depends
on the length of the storage duration and the video size on
disk. Therefore, it increases gradually with the passage of
time. The longer the duration, the higher the cost. Thus, our
proposed strategy estimates an equilibrium point on the time
axis where the computation cost and the storage cost of a
transcoded video become equal. This estimated equilibrium
point indicates the minimum duration for which the video
should be stored in the video repository. Figure 2 shows
that if a video is transcoded once and stored in the video
repository, then initially the computation cost is higher than
the storage cost. However, with the passage of time, the
storage cost continues to increase until it becomes equal to
the computation cost and then it grows even further unless the
video is removed from the video repository. Thus, if the video
is deleted before its estimated equilibrium point and then it
is subsequently requested, the computation cost will increase
due to the unnecessary re-transcoding. Likewise, if the video
is stored beyond its estimated equilibrium point and then it
does not receive a subsequent request, the storage cost will
increase unnecessarily.

In an on-demand video streaming service, each transcoded
video may be requested and viewed a number of times.
Frequently viewed, popular videos get a lot of requests.
While, sporadically viewed, less popular videos get only a
few requests. For cost-efficient storage, it is essential to use
an estimate of the popularity of the individual transcoded
videos. This information can then be used to determine the

Time

Cost

Transcoding Cost

Storage Cost

The point in time where the storage cost

 becomes higher than the transcoding cost

Fig. 2. The estimated equilibrium point between the storage cost and the
transcoding cost of a transcoded video

exact duration for which a video should be stored in the
video repository. Therefore, the proposed strategy accounts
for the popularity of individual transcoded videos. It uses
the estimated computation cost, the estimated storage cost,
and the video popularity information to calculate a cost and
popularity score Sτi for each transcoded video τi. The higher
the score the longer the video is stored in the video repository.
Thus, with the incorporation of the video cost and popularity
score, it becomes justifiable to store popular transcoded videos
beyond their estimated equilibrium point. In other words, it
differentiates popular videos that should be stored for a longer
duration.

In our proposed strategy, the storage cost SCτi of a
transcoded video τi is calculated as

SCτi =
V Smbτi
GBmb

∗ SCm
RPS

∗ SDτi (1)

where V Smbτi is the size of the transcoded video τi in
megabytes, GBmb is the megabytes to gigabytes conversion
factor, SCm is the monthly storage cost per 1 gigabytes of
storage, RPS is the month to desired time unit conversion
factor, and SDτi is the length of the storage duration for the
transcoded video τi. Similarly, the transcoding cost TCτi of a
transcoded video τi is calculated as

TCτi = TTτi ∗
RCT
Hsec

(2)

where TTτi is the transcoding time of τi, RCT is the renting
cost of a transcoding server per renting hour, and Hsec is the
hour to seconds conversion factor, which is used to normalize
the computation cost to a per second basis.

Whenever a new request for a transcoded video τi arrives
at the streaming server, the video cost and popularity score
Sτi is updated to reflect the new costs and the new popularity
information. The new cost and popularity score NSτi repre-
sents the estimated equilibrium point where the computation
cost and the storage cost of τi become equal. Therefore, it
indicates the minimum duration for which the video should
be stored. The new cost and popularity score NSτi of a video
τi is calculated as the ratio of TCτi and SCτi

NSτi =
TCτi
SCτi

(3)

Finally, the total cost and popularity score Sτi of a video
τi is calculated by accumulating the new cost and popularity

score NSτi of the said video over time. That is, for each new
request of a transcoded video τi, we obtain the previous value
of the total cost and popularity score Sτi of the transcoded
video, calculate NSτi , and then add them together to produce
the new value of the Sτi . Moreover, the total cost and
popularity score of a video that was not stored previously is set
to NSτi . The total cost and popularity score Sτi determines
the exact duration for which a video τi should be stored.

Each transcoded video τi should be stored in the video
repository for as long as it is cost-efficient to store it. However,
when a video loses its popularity, it should be subsequently
deleted to avoid unnecessary storage cost. Therefore, on
certain time intervals, the proposed strategy performs the
following steps for each transcoded video τi. It obtains the
storage cost SCτi , the cost and popularity score Sτi , and the
transcoding cost TCτi . Then, it multiplies Sτi and TCτi and
compares it with SCτi as follows

SCτi > TCτi ∗ Sτi (4)

If the inequality holds, it implies that it is cost-efficient to
delete the transcoded video. Therefore, the video is removed
from the video repository. However, if the inequality does not
hold, it indicates that it is not cost-efficient to delete the video.
Therefore, the video is not removed. Moreover, the cost and
popularity score Sτi is decremented in accordance with the
length of the time interval to reflect the passage of time. In
this way, when a popular video loses its popularity, it starts
losing its cost and popularity score as well until it is removed
from the video repository or it gets some new requests to
regain its popularity.

IV. EXPERIMENTAL DESIGN AND SETUP

Software simulations are often used to test and evaluate
new approaches and strategies involving complex environ-
ments [15], [16]. For our proposed strategy, we have devel-
oped a discrete-event simulation in the Python programming
language. It is based on the SimPy simulation framework [17].
Also, for a comparison of results with the alternative existing
approaches, we have developed a discrete-event simulation
for two intuitive computation and storage trade-off strategies,
which are the store all strategy and the usage based strat-
egy [18]. The store all strategy stores all transcoded videos
irrespective of their computation and storage costs. While the
usage based strategy stores only popular videos and removes
the rest. That is, it does not account for the computation and
storage costs.

We considered two different load patterns in two separate
experiments. Experiment 1 used a semisynthetic load pattern,
while experiment 2 used a realistic load pattern, which was
obtained from the real video access data provided by Bambuser
AB1.

For the computation and the storage costs, we used the
Amazon Elastic Compute Cloud (EC2)2 and the Amazon S33

1http://bambuser.com/
2http://aws.amazon.com/ec2/
3http://aws.amazon.com/s3/

TABLE II
AMAZON S3 STORAGE PRICING

Standard Storage
First 1 TB per month $ 0.095 per GB
Next 49 TB per month $ 0.080 per GB
Next 450 TB per month $ 0.070 per GB
Next 500 TB per month $ 0.065 per GB
Next 4000 TB per month $ 0.060 per GB
Over 5000 TB per month $ 0.055 per GB

cost models. The computation cost in Amazon EC2 is based on
an hourly charge model. Whereas, the storage cost of Amazon
S3 is based on a monthly charge model. In our experiments,
we used only small instances. As of writing of this paper, the
cost of a small instance in Amazon EC2 is $0.06 per hour. The
cost of storage space in Amazon S3 is based on a nonlinear
cost model as shown in Table II.

The experiments used HD, SD (Standard-Definition), and
mobile video streams. Since SD videos currently have a higher
demand than the HD and mobile videos, we considered 20%
HD, 30% mobile, and 50% SD video streams. The GOP size
for different types of videos was different. For HD videos, the
average size of a video segment was 75 frames with a standard
deviation of 7 frames. Likewise, for SD and mobile videos,
the average size of a segment was 250 frames with a standard
deviation of 20 frames.

The transcoding rate depends on the video contents, such
as, frame resolution, type of video format, type of frames,
and contents of blocks. Different transcoding mechanisms
also require different times. In our experiments, the average
transcoding rate for SD videos was assumed to be four times
of its play rate. As mobile videos have low resolution, the
average transcoding rate for mobile videos was eight times
the play rate. Since HD videos require more computation, the
average transcoding rate for an HD video was assumed to be
double of the play rate. In an on-demand video transcoding
service, a source video is usually transcoded in many dif-
ferent formats. Therefore, we assumed that a source video
can be transcoded into a maximum of 30 different formats.
Likewise, since in an on-demand video streaming service,
the number of source videos always continue to grow, we
used a continuously increasing number of source videos in
our experiments. However, since the number of the newly
uploaded source videos is usually only a small fraction of the
total number of downloaded videos, the video upload rate in
our experiments was assumed to be 1% of the total number of
the video download requests. In both experiments, the desired
time unit for storage, as used in the month to desired time unit
conversion factor RPS , was assumed to be one day. Therefore,
RPS was 30. Moreover, the minimum storage duration for a
transcoded video SDτi was also assumed to be one day.

A. Experiment 1: Semisynthetic Load Pattern

The objective of experiment 1 was to evaluate the proposed
strategy for larger videos spanning over multiple hours of play
time. Therefore, the play time of a video in the semisynthetic

load pattern of experiment 1 was approximately from 1 hour to
2.5 hours. The load pattern consists of approximately 10 days
of real video access data from Bambuser AB. However, it was
stretched over a period of three months of the simulated time
to limit the amount of memory required to run the simulations.

B. Experiment 2: Real Load Pattern

The objective of experiment 2 was to evaluate the proposed
strategy for a realistic load pattern. Therefore, it used a real
load pattern, which constitutes real video access data from
Bambuser AB. The load pattern used in experiment 2 consists
of approximately 30 days of real video access data. The total
number of frames in a video stream was in the range of 18000
to 90000, which represents an approximate play time of 10 to
50 minutes with the frame rate of 30 frames per second.

V. RESULTS AND ANALYSIS

In this section, we compare the experimental results of the
proposed strategy with that of the store all strategy and the
usage based strategy. Each result in Figure 3 to Figure 5 and
Figure 7 to Figure 9 consists of seven different plots, which
are number of user requests, number of transcoding servers,
transcoding cost, storage cost, storage size, number of source
videos, and number of transcoded videos. The number of user
requests plot represents the load pattern of the video access
data. In other words, it is the user load on the streaming server.
Due to data confidentiality, the exact volume of the load can
not be revealed. Therefore, we have omitted the scale of this
plot from all the results. The number of transcoding servers
plot shows the total number of transcoding servers being used
at a particular time. The transcoding cost plot represents the
total computation cost of all transcoded videos in US dollars.
Similarly, the storage cost plot shows the storage cost in US
dollars of all transcoded videos, which are stored in the video
repository. The storage size plot represents the total size of the
cloud storage used to store the transcoded videos. The number
of source videos plot shows the total number of source videos
in the video repository. Likewise, the number of transcoded
videos is the total number of transcoded videos in the video
repository.

A. Experiment 1: Semisynthetic Load Pattern

Figure 3 presents the simulation results of the store all strat-
egy from experiment 1. The results span over a period of three
months as represented by the number of user requests plot. The
total number of transcoded videos was 18206, while the total
number of source videos was 4571. The total transcoding cost
was $2882.7, the total storage cost was $3202.56, and the total
storage size was 17.25 terabytes. Since the store all strategy
stores all transcoded videos irrespective of their computation
and storage costs, the storage cost was very high due to a large
number of transcoded videos stored in the video repository.
Therefore, the results indicate that the store all strategy is not
cost-efficient.

Figure 4 presents the results of the usage based strategy
from experiment 1. The total number of transcoded videos

 0

 6000

 12000

 18000

 24000

 0 10 20 30 40 50 60 70 80 90
 0

 6000

 12000

 18000

 24000

time (days)

Number of source videos
Number of transcoded videos

 0

 4

 8

 12

 16

 20

 0

 4

 8

 12

 16

 20Storage size (terabytes)
 0

 1000

 2000

 3000

 4000

 0

 1000

 2000

 3000

 4000Transcoding cost (US dollars)
Storage cost (US dollars)

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Number of transcoding servers

Number of user requests

Fig. 3. Experiment 1: store all strategy

was 17955 for the same number of source videos as used in
the store all strategy. The total transcoding cost was $2735.76,
the total storage cost was $2905.92, and the total storage size
was 14.91 terabytes. Since the usage based strategy stores only
popular videos, the storage cost of the usage based strategy
was slightly less than that of the store all strategy. Therefore,
the results indicate that the usage based strategy is cost-
efficient when compared to the store all strategy. However,
since it does not account for the computation and the storage
costs, it may remove some videos that have a high transcoding
cost.

 0

 6000

 12000

 18000

 24000

 0 10 20 30 40 50 60 70 80 90
 0

 6000

 12000

 18000

 24000

time (days)

Number of source videos
Number of transcoded videos

 0

 4

 8

 12

 16

 20

 0

 4

 8

 12

 16

 20Storage size (terabytes)
 0

 1000

 2000

 3000

 4000

 0

 1000

 2000

 3000

 4000Transcoding cost (US dollars)
Storage cost (US dollars)

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Number of transcoding servers

Number of user requests

Fig. 4. Experiment 1: usage based strategy

Figure 5 presents the results of the proposed strategy from
experiment 1. The total number of transcoded videos was 5226
for the same number of source videos as used in the store all
strategy and the usage based strategy. The total transcoding
cost was $3221.04, the total storage cost was $1592.64, and
the storage size was 7.05 terabytes. Since the proposed strategy
accounts for the computation cost, the storage cost, and the
video popularity information, the storage cost was much less
than that of the store all strategy and the usage based strategy.

 0

 6000

 12000

 18000

 24000

 0 10 20 30 40 50 60 70 80 90
 0

 6000

 12000

 18000

 24000

time (days)

Number of source videos
Number of transcoded videos

 0

 4

 8

 12

 16

 20

 0

 4

 8

 12

 16

 20Storage size (terabytes)
 0

 1000

 2000

 3000

 4000

 0

 1000

 2000

 3000

 4000Transcoding cost (US dollars)
Storage cost (US dollars)

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Number of transcoding servers

Number of user requests

Fig. 5. Experiment 1: cost and popularity score based strategy

Figure 6 presents a comparison of the total costs in experi-
ment 1. The total cost consists of the computation cost and the
storage cost. The results show that the store all strategy has the
highest total cost. The usage based strategy has slightly less
total cost than the store all strategy. Moreover, the proposed
storage has the least total cost among all the three strategies.
Therefore, experiment 1 results indicate that the proposed
strategy is cost-efficient when compared to the store all and
the usage based strategies.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80 90

C
o

s
t

(U
S

 d
o

lla
rs

)

time (days)

Store all strategy
Usage based strategy

Cost and popularity score based strategy

Fig. 6. Experiment 1: total cost comparison

B. Experiment 2: Real Load Pattern

Figure 7 presents the simulation results of the store all
strategy from experiment 2. The results span over a period
of one month as represented by the number of user requests
plot. The total number of transcoded videos was 151564,
while the total number of source videos was 15340. The
total transcoding cost was $3314.7, the total storage cost was
$3031.68, and the total storage size was 30.83 terabytes. As in
experiment 1, the storage cost in experiment 2 was also very
high due to a large number of transcoded videos stored in the
video repository. Therefore, experiment 2 results also indicate
that the store all strategy is not cost-efficient.

Figure 8 presents the results of the usage based strategy
from experiment 2. The total number of transcoded videos

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20 25 30
 0

 50000

 100000

 150000

 200000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000

 2000

 3000

 4000

 0

 1000

 2000

 3000

 4000Transcoding cost (US dollars)
Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Fig. 7. Experiment 2: store all strategy

was 147610 for the same number of source videos as used in
the store all strategy. The total transcoding cost was $3155.58,
the total storage cost was $2690.88, and the total storage size
was 27.37 terabytes. As in experiment 1, the storage cost of
the usage based strategy in experiment 2 was also slightly
less than that of the store all strategy. Therefore, experiment
2 results also indicate that the usage based strategy is cost-
efficient when compared to the store all strategy.

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20 25 30
 0

 50000

 100000

 150000

 200000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000

 2000

 3000

 4000

 0

 1000

 2000

 3000

 4000Transcoding cost (US dollars)
Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Fig. 8. Experiment 2: usage based strategy

Figure 9 presents the results of the proposed strategy from
experiment 2. The total number of transcoded videos was
55646 for the same number of source videos as used in
the store all strategy and the usage based strategy. The total
transcoding cost was $3515.82, the total storage cost was
$1584.96, and the total storage size was 12.21 terabytes. Since
the proposed strategy accounts for the computation cost, the
storage cost, and the video popularity information, the storage
cost was much less than that of the store all strategy and the
usage based strategy.

Figure 10 presents a comparison of the total costs in
experiment 2, which consists of the computation cost and the

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20 25 30
 0

 50000

 100000

 150000

 200000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000

 2000

 3000

 4000

 0

 1000

 2000

 3000

 4000Transcoding cost (US dollars)
Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Fig. 9. Experiment 2: cost and popularity score based strategy

storage cost. The results are similar to the results of experiment
1. Again, the store all strategy has the highest total cost. The
usage based strategy has slightly less total cost than the store
all strategy. Moreover, the proposed strategy has the least total
cost among all the three strategies. Therefore, experiment 2
results also indicate that the proposed strategy is cost-efficient
when compared to the store all and the usage based strategies.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30

C
o

s
t

(U
S

 d
o

lla
rs

)

time (days)

Store all strategy
Usage based strategy

Cost and popularity score based strategy

Fig. 10. Experiment 2: cost comparison

VI. RELATED WORK

There are currently only a few works in the area of compu-
tation and storage trade-off analysis for cost-efficient usage of
cloud resources. One of the earlier attempts include Adams et
al. [19], who addressed the problem of maximizing efficiency
by trading storage for computation. They highlighted some
of the important issues and factors involved in constructing a
cost-benefit model, which can be used to analyze the trade-
offs between computation and storage. However, they did
not propose a strategy to find the right balance between
computation and storage resources.

Deelman et al. [20] studied cost and performance trade-
offs for an astronomy application using Amazon EC2 and
Amazon S3 cost models. They also examined the trade-offs
between three different data management models for cloud
storage. The authors concluded that, based on the likelihood

of reuse, storing popular datasets in the cloud can be cost-
effective. However, they did not provide a concrete strategy for
cost-effective computation and storage of scientific datasets in
the cloud.

Nectar system [21] is designed to automate the management
of data and computation in a data center. It initially stores all
the derived datasets when they are generated. However, when
the available disk space falls below a threshold, all obsolete or
least valued datasets are garbage collected to improve resource
utilization. Nectar makes use of the usage history of datasets to
perform cost-benefit analysis, which determines the usefulness
of each dataset. The cost-benefit analysis considers the size of
the dataset, the elapsed time since it was last used, the number
of times it has been used, and its cumulative computation
time. The datasets with the largest cost-to-benefit ratios are
deleted. Although Nectar provides a computation and storage
trade-off strategy, it is not designed to reduce the total cost of
computation and storage in a cloud-based service, which uses
IaaS resources.

Yuan et al. [18] proposed two strategies for cost-effective
storage of scientific datasets in the cloud, which compare
the computation cost and the storage cost of the datasets.
They also presented a Cost Transitive Tournament Shortest
Path (CTT-SP) algorithm to find the best trade-off between
the computation and the storage resources. Their strategies
are called cost rate based storage strategy [22], [23] and
local-optimization based storage strategy [24]. The cost rate
based storage strategy compares computation cost rate and
storage cost rate to decide storage status of a dataset. Whereas,
the local-optimization based storage strategy partitions a data
dependency graph (DDG) of datasets into linear segments
and applies the CTT-SP algorithm to achieve a localized
optimization. The local-optimization based storage strategy
tends to be more cost-effective than the cost rate based storage
strategy. However, due to the overhead introduced by the CTT-
SP algorithm, it is less efficient and less scalable. In contrast
to the cost rate based storage strategy [22], [23], our proposed
trade-off strategy estimates an equilibrium point on the time
axis where the computation cost and the storage cost of a
transcoded video become equal. Moreover, it estimates video
popularity of the individual transcoded videos to differentiate
popular videos. The DDG-based local-optimization based stor-
age strategy of Yuan et al. [24], which provides cost-effective
results for scientific datasets, is not much relevant for video
transcoding because video transcoding does not involve a lot
of data dependencies.

Most of the existing computation and storage trade-off
strategies described above were originally proposed for sci-
entific datasets. To the best of our limited knowledge, there
are currently no existing computation and storage trade-off
strategies for video transcoding. The difference of application
domain may play a vital role when determining cost-efficiency
of the existing strategies. Therefore, some of the existing
strategies may have limited efficacy and little cost-efficiency
for video transcoding.

In addition to the above mentioned works, there are also a

few works on some of the related topics, such as, a hybrid
scheme to determine an optimal threshold between static
transcoding and dynamic transcoding [25], video transcoding
service in cloud computing [26], video segmentation for
distributed video transcoding [12], [13], dynamic resource
allocation for video transcoding [11], and admission control
and scheduling for video transcoding in the cloud [16].

VII. CONCLUSION

In this paper, we proposed a cost-efficient computation
and storage trade-off strategy for video transcoding in the
cloud. The proposed strategy estimates the computation cost,
the storage cost, and the video popularity information of
individual transcoded videos and then uses this information
to make decisions on how long a video should be stored
or how frequently it should be re-transcoded from a given
source video. The objective is to reduce the total IaaS cost by
trading storage for computation, or vice versa. We presented
a discrete-event simulation of the proposed strategy along
with an experimental evaluation involving semisynthetic and
realistic load patterns. Also, for the sake of comparison,
we simulated two intuitive computation and storage trade-off
strategies and compared their results with that of the proposed
strategy. The results indicate that our proposed strategy is
more cost-efficient than the two intuitive strategies. It provided
a good trade-off between the computation resources and the
storage resources for the semisynthetic as well as realistic load
patterns.

ACKNOWLEDGEMENTS

This work was supported by the Cloud Software Finland re-
search project and by an Amazon Web Services research grant.
Fareed Jokhio and Adnan Ashraf were partially supported
by the Foundation of Nokia Corporation and by doctoral
scholarships from the Higher Education Commission (HEC)
of Pakistan. The authors want to thank Bambuser AB for
providing real video access data to perform experiments.

REFERENCES

[1] J. Watkinson, The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4, ser.
Broadcasting and communications. Elsevier/Focal Press, 2004.

[2] T. Wiegand, G. J. Sullivan, and A. Luthra, “Draft ITU-T recommenda-
tion and final draft international standard of joint video specification,”
in Technical Report, 2003.

[3] H. Sun, W. Kwok, and J. Zdepski, “Architectures for mpeg compressed
bitstream scaling,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 6, no. 2, pp. 191 –199, apr 1996.

[4] K.-S. Kan and K.-C. Fan, “Video transcoding architecture with minimum
buffer requirement for compressed mpeg-2 bitstream.” Signal Process-
ing, vol. 67, no. 2, pp. 223–235, 1998.

[5] P. A. Assuncao and M. Ghanbari, “A frequency-domain video
transcoder for dynamic bit-rate reduction of mpeg-2 bit streams,” IEEE
Trans. Cir. and Sys. for Video Technol., vol. 8, no. 8, pp. 953–967,
Dec. 1998. [Online]. Available: http://dx.doi.org/10.1109/76.736724

[6] G. Keesman, R. Hellinghuizen, F. Hoeksema, and G. Heideman,
“Transcoding of MPEG bitstreams,” Signal Processing: Image Com-
munication, vol. 8, no. 6, pp. 480–500, 1996.

[7] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding
to lower spatio-temporal resolutions and different encoding formats,”
Multimedia, IEEE Transactions on, vol. 2, no. 2, pp. 101 –110, 2000.

[8] Y.-P. Tan and H. Sun, “Fast motion re-estimation for arbitrary down-
sizing video transcoding using h.264/avc standard,” IEEE Trans. on
Consum. Electron., vol. 50, no. 3, pp. 887–894, 2004.

[9] G. Shen, Y. He, W. Cao, and S. Li, “MPEG-2 to WMV transcoder with
adaptive error compensation and dynamic switches,” IEEE Trans. Cir.
and Sys. for Video Technol., vol. 16, no. 12, pp. 1460–1476, Dec. 2006.

[10] H. Kato, Y. Takishima, and Y. Nakajima, “A fast DV to MPEG-4
transcoder integrated with resolution conversion and quantization,” IEEE
Trans. Cir. and Sys. for Video Technol., vol. 17, no. 1, pp. 111–119, Jan.
2007.

[11] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius, “Prediction-
based dynamic resource allocation for video transcoding in cloud com-
puting,” in Parallel, Distributed and Network-Based Processing (PDP),
21st Euromicro International Conference on, 2013, pp. 254–261.

[12] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Bit rate reduction video
transcoding with distributed computing,” in Parallel, Distributed and
Network-Based Processing (PDP), 2012 20th Euromicro International
Conference on, feb. 2012, pp. 206 –212.

[13] F. A. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Analysis of video
segmentation for spatial resolution reduction video transcoding,” in
Intelligent Signal Processing and Communications Systems (ISPACS),
2011 International Symposiuml, Dec 2011, p. 6 pp.

[14] A. Ashraf, B. Byholm, and I. Porres, “A session-based adaptive admis-
sion control approach for virtualized application servers,” in Utility and
Cloud Computing (UCC), 5th IEEE/ACM International Conference on,
2012, pp. 65–72.

[15] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, 2011.

[16] A. Ashraf, F. Jokhio, T. Deneke, S. Lafond, I. Porres, and J. Lilius,
“Stream-based admission control and scheduling for video transcoding
in cloud computing,” in Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pp. 482–489.

[17] N. Matloff, A Discrete-Event Simulation Course Based on the SimPy
Language. University of California at Davis, 2006.

[18] D. Yuan, Y. Yang, X. Liu, and J. Chen, “Computation and storage
trade-off for cost-effectively storing scientific datasets in the cloud,” in
Handbook of Data Intensive Computing, B. Furht and A. Escalante, Eds.
Springer New York, 2011, pp. 129–153.

[19] I. F. Adams, D. D. E. Long, E. L. Miller, S. Pasupathy, and M. W.
Storer, “Maximizing efficiency by trading storage for computation,” in
Proceedings of the 2009 conference on Hot topics in cloud computing,
ser. HotCloud’09. Berkeley, CA, USA: USENIX Association, 2009.

[20] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost
of doing science on the cloud: the montage example,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 50:1–50:12.

[21] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: automatic management of data and computation in datacenters,”
in Proceedings of the 9th USENIX conference on Operating systems
design and implementation, ser. OSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 1–8.

[22] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A cost-effective strategy
for intermediate data storage in scientific cloud workflow systems,”
in Parallel Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, 2010, pp. 1–12.

[23] D. Yuan, Y. Yang, X. Liu, G. Zhang, and J. Chen, “A data dependency
based strategy for intermediate data storage in scientific cloud workflow
systems,” Concurrency and Computation: Practice and Experience,
vol. 24, no. 9, pp. 956–976, 2012.

[24] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A local-optimisation based
strategy for cost-effective datasets storage of scientific applications in
the cloud,” in Cloud Computing (CLOUD), 2011 IEEE International
Conference on, 2011, pp. 179–186.

[25] I. Shin and K. Koh, “Hybrid transcoding for QoS adaptive video-on-
demand services,” IEEE Trans. on Consum. Electron., vol. 50, no. 2,
pp. 732–736, May 2004.

[26] Z. Li, Y. Huang, G. Liu, F. Wang, Z.-L. Zhang, and Y. Dai, “Cloud
transcoder: Bridging the format and resolution gap between internet
videos and mobile devices,” in 22nd ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video, 2012.

