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Abstract—This paper presents prediction-based dynamic re-
source allocation algorithms to scale video transcoding service
on a given Infrastructure as a Service cloud. The proposed
algorithms provide mechanisms for allocation and deallocation of
virtual machines (VMs) to a cluster of video transcoding servers
in a horizontal fashion. We use a two-step load prediction method,
which allows proactive resource allocation with high prediction
accuracy under real-time constraints. For cost-efficiency, our
work supports transcoding of multiple on-demand video streams
concurrently on a single VM, resulting in a reduced number of
required VMs. We use video segmentation at group of pictures
level, which splits video streams into smaller segments that can
be transcoded independently of one another. The approach is
demonstrated in a discrete-event simulation and an experimental
evaluation involving two different load patterns.

Keywords-Video transcoding; cloud computing; resource allo-
cation; load prediction

I. INTRODUCTION

As technology advances, so does the user expectations and
demand for higher quality digital videos. Currently, a number
of Television channels are broadcasting video contents in
High-Definition (HD). Moreover, everyday, a large number of
videos are uploaded on video hosting sites such as YouTube.
Viewer expectations are always high as they want to download
a video in the shortest possible time and want to watch videos
in high quality.

For efficient use of storage and transmission media, digital
videos are often stored and transmitted in compressed formats.
Currently, there is a large number of video compression for-
mats, such as MPEG-4 [1] and H.264 [2]. However, a device
at the client-side may support only a subset of the existing
formats. Therefore, for video streaming, an unsupported video
format needs to be converted into another format, which
is supported by the target device. Converting a compressed
video into another compressed video is known as video
transcoding [3]. This may change video format, bit rate, frame
resolution, frame rate, or any combination of these.

Video transcoding is a computationally intensive operation,
performed at the server-side. It may be done in real-time
or in batch processing. However, for an on-demand video
streaming service, if the required video is not available in
the desired format, the transcoding needs to be done on-the-
fly in real-time. One of the main challenges of a real-time

video transcoding operation is that it must avoid over and
underflow of the output video buffer, which temporarily stores
the transcoded videos at the server-side. The overflow occurs
if the video transcoding rate exceeds the video play rate and
the capacity of the buffer. Likewise, the buffer underflow may
occur when the play rate exceeds the transcoding rate, while
the buffer does not contain enough frames either to avoid the
underflow situation.

Video transcoding of a large number of video streams
requires a large-scale cluster-based distributed system. More-
over, to handle varying amounts of load in a cost-efficient
manner, the cluster should be dynamically scalable. Cloud
computing provides theoretically infinite computing resources,
which can be provisioned in an on-demand fashion under the
pay-per-use business model [4]. Infrastructure as a Service
(IaaS) clouds currently offer computing resources, such as
virtual machines (VMs), storage, and network bandwidth [5],
which can be used to create a dynamically scalable cluster of
video transcoding servers.

In a cloud environment, a video transcoding operation can
be performed in several different ways. For example, it is
possible to map an entire video stream on a dedicated VM.
However, it requires a large number of VMs to transcode
several simultaneous streams. Moreover, transcoding of high
resolution HD video streams can take more time, which may
violate the client-side quality of service (QoS) requirements
of desired play rate [6]. Another approach is to split the video
streams into smaller segments and then transcode them inde-
pendently of one another [7]. In this approach, one VM can be
used to transcode a large number of video segments belonging
to different video streams. Moreover, video segments of one
particular stream can be transcoded on multiple VMs.

In this paper, we present prediction-based dynamic resource
allocation and deallocation algorithms to scale video transcod-
ing service on a given IaaS cloud in a horizontal fashion.
The proposed algorithms allocate and deallocate VMs to a
dynamically scalable cluster of video transcoding servers. We
use a two-step load prediction method [8], which predicts
a few steps ahead in the future to allow proactive resource
allocation. For cost-efficiency, we share VM resources among
multiple video streams. The sharing of the VM resources is
based on the video segmentation, which splits the streams into



smaller segments that can be transcoded independently of one
another. The proposed approach is evaluated in two simulation-
based experiments involving two different load patterns. The
results show that it provides cost-efficient resource allocation
for a large number of simultaneous streams while avoiding
over and underflow of the output video buffer.

We proceed as follows. In Section II, we describe video bit
stream structure. Section III presents the system architecture.
Section IV describes dynamic resource allocation algorithms.
Our load prediction approach is detailed in Section V. Sec-
tion VI presents simulation results. Section VII discusses
important related works and Section VIII presents conclusion.

II. VIDEO BIT STREAM STRUCTURE

Video transcoding refers to the process of converting a
compressed video stream from one format to another [3].
A compressed video stream consists of several independent
sequences, as shown in Figure 1. A video sequence comprises
a sequence header and one or more Groups of Pictures (GOPs).
A GOP consists of different types of frames such as I (intra),
P (predicted), and B (bi-directional predicted) containing all
necessary information required to decode them. Both I and P
frames can be used as reference frames. However, an I frame
is an independent reference frame that does not require any
other reference frame in the decoding process. A GOP starts
with an I frame, which is followed by a number of P and B
frames. Both P and B frames always require reference frames
in the decoding process [1].

Fig. 1. Structure of a video down to frame level [1]

There are two types of group of pictures: Open-GOP and
closed-GOP. In open-GOPs, a reference frame can be from
any other GOP. Due to inter-dependency among them, the
transcoding process requires frames from both GOPs. In
closed-GOPs, all reference frames belong to the same GOP.
Therfore, it represents an independent unit which can be
transcoded without having any frames of other GOPs. In this
paper, we assume that all video streams have closed-GOPs.

A GOP in MPEG-4 can have from 0 to 3 B frames between
successive P frames. Usually, it is 2. The distance between
successive I frames is N, which includes both P and B frames.
In many cases, the value of N is 12, but it can be any value
between 1 and a few hundreds.

Different kinds of frames also require a different amount
of memory. Typically, I frames require the largest number of
bytes to represent images, for example 300 Kilobytes (KB).

The P frames require less memory, for example 160 KB. The
B frames require even less, for example 40 KB.

III. SYSTEM ARCHITECTURE

The system architecture of the video transcoding service
based on a dynamically scalable cluster of servers consists of
a number of components, as shown in Figure 2. The video re-
quests and responses are routed through the streaming server.
Since the main focus of this paper is on dynamic resource
allocation for the video transcoding service, we assume that
the streaming server is not a bottleneck.

The video streams in certain compressed formats are stored
in the video repository. After each transcoding operation, we
store a copy of the transcoded video into the video repository
for a certain amount of time, typically for two to three weeks.
It allows us to avoid unnecessary repetition of the transcoding
operations for a particular video. The video splitter splits the
video streams into smaller segments called jobs, which are
placed into the job queue. The load balancer routes and load
balances these jobs to the transcoding servers. It maintains a
configuration file, which contains information about transcod-
ing servers that perform the transcoding operations. As a result
of dynamic resource allocation and deallocation operations,
the configuration file is often updated with new information.
The load balancer serves the jobs in FIFO (First In, First Out)
order. The load balancer implements the shortest queue length
policy, which selects a transcoding server with the shortest
queue length.

Fig. 2. System architecture

A transcoding server runs on a dynamically provisioned
VM. Each transcoding server processes one or more simulta-
neous jobs. When a transcoding job arrives at a transcoding
server, it is placed in the server’s queue. The master con-
troller acts as the main controller and resource allocator. It
implements prediction-based dynamic resource allocation and
deallocation algorithms, as described in Section IV. For load
prediction, the master controller uses load predictor, which is



elaborated in Section V. The cloud provisioner refers to the
cloud provisioner in an IaaS cloud, such as the provisioner
in Amazon Elastic Compute Cloud (EC2) [9]. It performs the
actual lower level tasks of starting and terminating VMs. The
video merger merges the transcoded jobs into video streams,
which form video responses.

Due to inter-dependencies among different types of frames,
the video segmentation is performed at the key frames. The
key frames are always I frames. Video segmentation at GOP
level is discussed in more detail in [7], [10]. According to [10],
the required time of segmentation for a 220 MB video is 0.75
seconds, while the transcoding time for the spatial resolution
reduction from 16CIF (1408x1152) to CIF (352x288) is 208
seconds. Therefore, when compared to the transcoding time,
the overhead introduced by segmentation is negligible. In this
paper, the video segmentation is performed at the GOP level.
In our splitting method, a GOP is an atomic Unit. We split
a video in such a way that each video segment has at least
one GOP. Once a video is segmented, it consists of different
independent segments that can be transcoded on different
transcoding servers in any order.

Video segmentation of four video streams is shown in
Figure 3. The output of the video splitter consists of a number
of jobs, where each job has at least one GOP. The video splitter
tries to manage segmentation in such a way that each user gets
a smooth video stream from the streaming server. It takes into
account the transcoding time and the play time of the video
segment. Once a video segment is sent for transcoding, the
next segment of the same stream is sent after some delay, based
on the difference between the play time and the transcoding
time.

Fig. 3. Video segmentation

IV. DYNAMIC RESOURCE ALLOCATION ALGORITHMS

In this section, we present the dynamic resource allocation
and deallocation algorithms. For the sake of clarity, the con-
cepts used in the algorithms and their notation are summa-
rized in Table I. The algorithms implement prediction-based
proactive control. They maintain a fixed minimum number of
transcoding servers representing the base capacity NB . Then,
based on the incoming load, they add or remove transcoding
servers from the dynamically scalable cluster.

On discrete-time intervals, the master controller obtains the
target play rate (sum of target play rates of all video streams)
PR(ti) from the video merger and the video transcoding
rate from each transcoding server. Based on the individual

TABLE I
SUMMARY OF CONCEPTS AND THEIR NOTATION

countover(ti) over allocation count at discrete-time ti
S(ti) set of transcoding servers at ti
Sp(ti) set of newly provisioned servers at ti
Sc(ti) servers close to completion of renting period at ti
St(ti) servers selected for termination at ti
PR(ti) sum of target play rates of all streams at time ti
TR(ti) total transcoding rate of all servers at time ti
T̂R(ti) predicted total transcoding rate at time ti
RT (s, ti) remaining time of server s at ti
V (ti) set of video streams at ti
NP (ti) number of servers to provision at ti
NT (ti) number of servers to terminate at ti
getPR() get PR(ti) from video merger
getTR(s) get transcoding rate of server s
getT̂R() get T̂R(ti) from load predictor
calNP () calculate the value of NP (ti)
calNT () calculate the value of NT (ti)
calRT (s, ti) calculate the value of RT (s, ti)
delay() delay function
provision(n) provision n servers
select(n) select n servers for termination
sort(S) sort servers S on remaining time
terminate(S) terminate servers S
CT over allocation count threshold
RTU remaining time upper threshold
RTL remaining time lower threshold
BL buffer size lower threshold in megabytes
BS(ti) size of the output video buffer in megabytes
BU buffer size upper threshold in megabytes
NB number of servers to use as base capacity
startUp server startup delay
jobCompletion job completion delay

server transcoding rates, it calculates the total transcoding
rate TR(ti). Moreover, for proactive resource allocation, it
uses load predictor to predict the total transcoding rate of all
transcoding servers T̂R(ti) a few steps ahead in the future.

The algorithms are designed to be cost-efficient while
minimizing potential oscillations in the number of VMs [11].
This is desirable because, in practice, provisioning of a VM
takes a few minutes [12]. Therefore, oscillations in the number
of VMs may lead to deteriorated performance. Moreover,
since some contemporary IaaS providers, such as Amazon
EC2, charge on hourly basis, oscillations will result in a
higher provisioning cost. Therefore, the algorithms counteract
oscillations by delaying new resource allocation operations
until previous resource allocation operations have been re-
alized [13]. Furthermore, for cost-efficiency, the deallocation
algorithm terminates only those VMs whose renting period
approaches its completion.

A. Resource Allocation Algorithm

The resource allocation algorithm is given as Algorithm 1.
The first two steps deal with the calculation of the target
play rate PR(ti) of all streams and the total transcoding rate
TR(ti) of all transcoding servers. The algorithm then obtains
the predicted total transcoding rate T̂R(ti) from the load
predictor. Moreover, to avoid underflow of the output video
buffer that temporarily stores transcoded jobs at the server-
side, it considers the size of the output video buffer BS(ti).
If the target play rate exceeds the predicted transcoding rate



while the buffer size BS(ti) falls below its lower threshold BL,
the algorithm chooses to allocate resources by provisioning
one or more VMs. The number of VMs to provision NP (ti)
is calculated as follows

NP (ti) =

PR(ti)− T̂R(ti)TR(ti)
|S(ti)|

 (1)

The algorithm then provisions NP (ti) VMs, which are
added to the cluster of transcoding servers. To minimize
potential oscillations due to unnecessary resource allocations,
the algorithm adds a delay for the VM startup time. Moreover,
to avoid the unnecessary provisioning of VMs, it ensures
that the total number of VMs |S(ti)| does not exceed the
total number of video streams |V (ti)|. The algorithm adjusts
the number of VMs to provision NP (ti) if |S(ti)| + NP (ti)
exceeds |V (ti)|. This is desirable because the transcoding rate
of a video on a single VM is usually higher than the required
play rate.

Algorithm 1 Resource allocation algorithm
1: while true do
2: PR(ti) := getPR()
3: TR(ti) := 0
4: for sεS(ti) do
5: TR(ti) := TR(ti) + getTR(s)
6: end for
7: T̂R(ti) := getT̂R(TR(ti))
8: if T̂R(ti) < PR(ti) ∧BS(ti) < BL then
9: NP (ti) := calNP ()

10: if |S(ti)|+NP (ti) > |V (ti)| then
11: NP (ti) := |V (ti)| − |S(ti)|
12: end if
13: if NP (ti) ≥ 1 then
14: Sp(ti) := provision(NP (ti))
15: S(ti) := S(ti) ∪ Sp(ti)
16: delay(startUp)
17: end if
18: end if
19: end while

B. Resource Deallocation Algorithm

The resource deallocation algorithm is presented in Algo-
rithm 2. The main objective of the algorithm is to minimize
VM provisioning cost, which is a function of the number of
VMs and time. Thus, it terminates any redundant VMs as
soon as possible. Moreover, to avoid overflow of the output
video buffer, it considers the size of the output video buffer
BS(ti). After obtaining the target play rate PR(ti) and the
predicted total transcoding rate T̂R(ti), the algorithm makes
a comparison. If T̂R(ti) exceeds PR(ti) while the buffer
size BS(ti) exceeds its upper threshold BU , it may choose
to deallocate resources by terminating one or more VMs.
However, to minimize unnecessary oscillations, it deallocates

resources only when the buffer overflow situation persists for
a predetermined minimum amount of time.

In the next step, the algorithm calculates the remaining
time of each transcoding server RT (s, ti) with respect to the
completion of the renting period. It then checks if there are
any transcoding servers whose remaining time is less than
the predetermined upper threshold of remaining time RTU
and more than the lower threshold of remaining time RTL.
The objective is to terminate only those servers whose renting
period is close to completion, while excluding any servers that
are extremely close to the completion of their renting period
and therefore it is difficult to terminate them before the start of
the next renting period. If the algorithm finds at least one such
server Sc(ti), it calculates the number of servers to terminate
NT (ti) as

NT (ti) =

 T̂R(ti)− PR(ti)TR(ti)
|S(ti)|

−NB (2)

Then, it sorts the transcoding servers in Sc(ti) on the basis of
their remaining time, and selects the servers with the lowest
remaining time for termination. The rationale of sorting of
servers is to ensure cost-efficiency by selecting the servers
closer to completion of their renting period. A VM that has
been selected for termination might have some pending jobs
in its queue. Therefore, it is necessary to ensure that the
termination of a VM does not abandon any jobs in its queue.
One way to do this is to migrate all pending jobs to other VMs
and then terminate the VM [12]. However, since transcoding
of video segments takes relatively less time to complete, it
is more reasonable to let the jobs complete their execution
without requiring them to migrate and then terminate a VM
when there are no more running and pending jobs on it.
Therefore, the deallocation algorithm terminates a VM only
when the VM renting period approaches its completion and
all jobs on the server complete their execution. Finally, the
selected servers are terminated and removed from the cluster.

V. LOAD PREDICTION

The existing load prediction models for web-based systems,
such as [8], [14], [15], can be adapted to predict transcoding
rate of the transcoding servers a few steps ahead in the future.
Andreolini and Casolari [8] proposed a two-step approach to
predict future load behavior under real-time constraints. The
approach involves load trackers that provide a representative
view of the load behavior to the load predictors, thus achieving
two steps.

A load tracker (LT) filters out noise in the raw data to
yield a more regular view of the load behavior [8]. It is a
function LT (

−→
Sn(ti)) : Rn → R, which inputs a measure

si monitored at time ti, and a set of previously collected
n measures, that is

−→
Sn(ti) = (si−n, ..., si), and provides a

representation of the load behavior li at time ti [8]. A sequence
of LT values yields a regular view of the load behavior. There
are different classes of LTs, such as simple moving average
(SMA), exponential moving average (EMA), and cubic spline



Algorithm 2 Resource deallocation algorithm
1: while true do
2: PR(ti) := getPR()
3: TR(ti) := 0
4: for sεS(ti) do
5: TR(ti) := TR(ti) + getTR(s)
6: end for
7: T̂R(ti) := getT̂R(TR(ti))
8: if T̂R(ti) > PR(ti)∧BS(ti) > BU ∧ countover(ti) >

CT then
9: for sεS(ti) do

10: RT (s, ti) := calRT (s, ti)
11: end for
12: Sc(ti) := {∀sεS(ti)|RT (s, ti) < RTU ∧RT (s, ti) >

RTL}
13: if |Sc(ti)| ≥ 1 then
14: NT (ti) := calNT ()
15: NT (ti) := min(NT (ti), |Sc(ti)|)
16: if NT (ti) ≥ 1 then
17: sort(Sc(ti))
18: St(ti) := select(NT (ti))
19: S(ti) := S(ti) \ St(ti)
20: delay(jobCompletion)
21: terminate(St(ti))
22: end if
23: end if
24: end if
25: end while

(CS) [14]. More sophisticated (time-series) models often re-
quire training periods to compute the parameters and/or off-
line analyses [8]. Likewise, the linear (auto) regressive models,
such as ARMA and ARIMA, may require frequent updates to
their parameters [8], [15]. Therefore, in our approach, the load
predictor implements an LT based on the EMA model, which
limits the computation delay without incurring oscillations and
computes an LT value for each measure with high prediction
accuracy.

EMA is the weighted mean of the n measures in the vector−→
Sn(ti), computed at time ti where i > n, where the weights
decrease exponentially [8]. An EMA-based LT is defined as

EMA(
−→
Sn(ti)) = α · si + (1− α) · EMA(

−→
Sn(ti−1)) (3)

where α = 2
n+1 . The initial value of EMA, that is

EMA(
−→
Sn(tn)), is computed as the arithmetic mean of the

first n measures [8].
The load predictor (LP) is a function LPh(

−→
Lq(ti)) : Rq →

R, which inputs a sequence of LT values
−→
Lq(ti) = li−q, ..., li

and outputs a predicted future value at time ti+h, where
h > 0 [8]. The LP is characterized by the prediction window
h and the past time window q. Andreolini and Casolari [8]
and Saripalli et al. [15] used linear regression of only two LT
values, which are the first li−q and the last li values in the past
time window. Ashraf et al. [16] used simple linear regression

model [17], which takes into account all LT values
−→
Lq(ti) in

the past time window. The LP of the LT in this approach is
based on a straight line defined as

l = γ0 + γ1t (4)

where γ0 and γ1 are called regression coefficients, which can
be estimated at runtime based on the LT values [16], [17].

The results of the two-step approach depend upon selection
of right values for the LT and LP parameters. The selected
value of n should represent a good tradeoff between a reduced
delay and a reduced degree of oscillations [8]. Likewise, q and
h should be selected carefully.

VI. SIMULATION RESULTS

Software simulations are often used to test and evaluate
new algorithms involving complex environments [18]. We
have developed a discrete-event simulation for the proposed
resource allocation approach. The simulation is written in the
Python programming language and is based on the SimPy
simulation framework [19].

A. Experimental Design and Setup

We considered two different synthetic load patterns in two
separate experiments. Load pattern 1 in experiment 1 consists
of two load peaks, while load pattern 2 in experiment 2 has six
load peaks. For simplicity, the renting period was assumed to
be 600 seconds. The remaining time upper threshold RTU was
60 seconds, while the remaining time lower threshold RTL
was 12 seconds. The LT and LP parameters were as follows:
n = 15, q = 30, and h = 120.

The experiments used both SD (Standard-Definition) and
HD video streams. At present, 10% of YouTube’s videos are
available in HD, while YouTube has more HD content than any
other video hosting site [20]. However, the ratio of HD versus
SD is expected to increase in the near future. Therefore, the
load generation assumed 70% SD and 30% HD video streams.
The video segmentation was performed at the GOPs level.
The segmentation produced video segments, which were sent
to the transcoding servers for execution. For HD videos, the
average size of a video segment was 75 frames with a standard
deviation of 7 frames. Likewise, for SD videos, the average
size of a segment was 250 frames with a standard deviation
of 20 frames. The total number of frames in a video stream
was in the range of 15000 to 18000.

The desired play rate for a video stream is often fixed: 30
frames per seconds (fps) for SD videos and 24 fps for HD
videos. Whereas, the transcoding rate depends on the video
contents, such as, frame resolution, type of video format,
type of frames, and contents of blocks. Different transcoding
mechanisms also require different times.

In our experiments, the maximum transcoding rate for SD
videos was assumed to be four times of its play rate. We
further assumed that the transcoding rate is always higher than
the the play rate of all video streams. Similarly, the minimum
transcoding rate for SD videos was assumed to be double of
its play rate. Since HD videos require more computation, the



maximum transcoding rate for an HD video was assumed to
be double of the play rate, with the minimum transcoding rate
at 1.5 times the play rate.

1) Experiment 1: Relatively Normal Load: The objective
of experiment 1 was to simulate a relatively normal load. It
was designed to generate a load representing a maximum of
200 simultaneous video streams in two different load peaks.
In the first peak, the streams were ramped-up from 0 to 200,
while adding a new stream every 20 seconds. After the ramp-
up phase, the number of streams was maintained constant for
1 hour and then ramped-down to 100 streams.

The second peak ramped-up from 100 streams to 200
streams, while adding a new stream every 30 seconds. The
ramp-up phase was followed by a similar constant phase as in
the first peak. Then, the ramp-down phase removed all streams
from the system.

2) Experiment 2: Highly Variable Load: Experiment 2 was
designed to simulate a load pattern of a highly variable video
demand. It generated a load representing a maximum of 290
simultaneous video streams consisting of six different load
peaks. In the first peak, the streams were ramped-up from 0 to
170. Then, in the second peak from 110 to 290. Likewise, 210
to 280, 215 to 250, 120 to 200, and 100 to 170, respectively, in
the third, fourth, fifth, and sixth peak. The stream ramp-up rate
was 1 new stream per 30 seconds. Each ramp-up phase was
followed by a ramp-down phase. Finally, the last ramp-down
phase removed all streams from the system.

B. Results and Analysis

In both Figures 4 and 5, the number of servers plot shows
dynamic resource allocation for the cluster of transcoding
servers. The transcoding jobs plot represents the total number
of jobs in the system at a particular time instance. It includes
the jobs in execution at the transcoding servers and the jobs
that were waiting in the queues. The target play rate plot shows
the sum of target play rates of all video streams in the system.
Likewise, the actual transcoding rate plot represents the total
transcoding rate of all servers, while the predicted transcoding
rate plot shows results of the load prediction. As described
in Section IV, the resource allocation decisions were mainly
based on the target play rate and the predicted transcoding
rate.

1) Experiment 1: Relatively Normal Load: Figure 4
presents results from experiment 1. Experiment 1 used a
maximum of 93 transcoding servers for a maximum of 200
simultaneous streams. There were a maximum of 9890 jobs
in the system at a particular time. Moreover, a total of 4596
streams consisting of approximately 5×105 transcoding oper-
ations and 7×107 video frames were completed in 4 hours and
38 minutes. Therefore, the results indicate that the prediction-
based resource allocation with the sharing of the VM resources
among multiple streams resulted in a reduced number of total
servers, which minimizes VM provisioning cost. Moreover, the
proposed algorithms did not produce unnecessary oscillations
in the number of VMs, which was also desirable for cost-
efficiency.

The results show that the actual transcoding rate was always
close to the target play rate. This was desirable to avoid over
and underflow of the output video buffer in the system, as
discussed in Section IV. Although the actual transcoding rate
was sometimes slightly above or below the target play rate,
the proactive resource allocation helped to ensure that the
cumulative number of transcoded frames was always greater
than the cumulative number of played frames.

Fig. 4. Experiment 1 results

2) Experiment 2: Highly Variable Load: Figure 5 presents
results from experiment 2. It used a maximum of 120 transcod-
ing servers for a maximum of 290 simultaneous streams.
There were a maximum of 14632 jobs in the system at a
particular time. Moreover, a total of 7241 streams consisting
of approximately 8× 105 transcoding operations and 1× 108

video frames were completed in 6 hours and 54 minutes.
Although the number of streams was fluctuating rapidly, the
algorithms provided a sustainable service with fewer VMs,
while minimizing oscillations in the number of servers and
avoiding the over and underflow of the output video buffer.

VII. RELATED WORK

Distributed video transcoding with video segmentation was
proposed in [7] and [10]. In these works, video segmentation
was performed at the GOPs level. Jokhio et al. [7] presented
bit rate reduction video transcoding using multiple processing
units. The paper discussed computation, parallelization and
data distribution among computing units. In [10], different
video segmentation methods were analyzed to perform spatial
resolution reduction video transcoding. The paper compared
three possible methods of video segmentation. In both papers,
video transcoding was not performed in the cloud and the
resource allocation problem was not addressed. In contrast,
the main focus of this paper is on resource allocation and
deallocation algorithms.

Huang et al. [21] presented a cloud-based video proxy to
deliver transcoded videos for streaming. The main contribution



Fig. 5. Experiment 2 results

of their work is a multilevel transcoding parallelization frame-
work. They used Hallsh-based and Lateness-first mapping to
optimize transcoding speed and to reduce transcoding jitters.
The performance evaluation was done on a campus cloud
testbed and communication latency between cloud and video
proxy was neglected. Li et al. [22] proposed cloud transcoder,
which uses a compute cloud as an intermediate platform to
provide transcoding service. Both papers do not discuss the
resource allocation problem for video transcoding in cloud
computing.

The existing works on dynamic resource allocation can be
classified into two main categories: Plan-based approaches
and control theoretic approaches. Plan-based approaches can
be further classified into workload prediction approaches and
performance dynamics model approaches. One example of
the workload prediction approaches is Ardagna et al. [23],
while TwoSpot [11], Hu et al. [24], Chieu et al. [25], Iqbal et
al. [13] and Han et al. [26] use a performance dynamics model.
Similarly, Dutreilh et al. [27], Pan et al. [28], Patikirikorala et
al. [29], and Roy et al. [30] are control theoretic approaches.
One common difference between all of these works and our
proposed approach is that they are not designed specifically
for video transcoding in cloud computing. In contrast, our
proposed approach is based on the important resource allo-
cation metrics for video transcoding service. Moreover, the
proposed approach is cost-efficient as it uses fewer VMs for
a large number of video streams and it counteracts possible
oscillations in the number of VMs that may result in higher
provisioning costs.

Ardagna et al. [23] proposed a distributed algorithm for
managing Software as a Service (SaaS) cloud systems that
addresses capacity allocation for multiple heterogeneous ap-
plications. The resource allocation algorithm takes into consid-
eration a predicted future load for each application class and a
predicted future performance of each VM, while determining
possible SLA violations for each application type. The main
challenge in the prediction-based approaches is in making

good prediction models that should provide high prediction
accuracy under real-time constraints. For this, we use a two-
step prediction approach, which limits the computation delay
without incurring oscillations, while providing high prediction
accuracy.

TwoSpot [11] aims to combine existing open source tech-
nologies to support web applications written in different
programming languages. It supports hosting of multiple web
applications, which are automatically scaled up and down in a
horizontal fashion. However, the scaling down is decentralized,
which may lead to severe random drops in performance. For
example, when all controllers independently choose to scale
down at the same time. Hu et al. [24] proposed a heuristic
algorithm that determines the server allocation strategy and job
scheduling discipline which results in the minimum number of
servers. They also presented an algorithm for determining the
minimum number of required servers, based on the expected
arrival rate, service rate, and SLA. Chieu et al. [25] presented
an approach that scales servers for a particular web application
based on the number of active user sessions. The main problem
with this approach is in determining suitable threshold values
on the number of user sessions. Iqbal et al. [13] proposed an
approach for adaptive resource provisioning for read intensive
multi-tier web applications. Based on response time and CPU
utilization metrics, the approach determines the bottleneck tier
and then scales it up by provisioning a new VM. Scaling
down is supported by checking for any over-provisioned
resources from time to time. Han et al. [26] proposed a
reactive resource allocation approach to integrate VM-level
scaling with a more fine-grained resource-level scaling. In
contrast, the proposed approach provides proactive resource
allocation, where the resource allocation decisions are based
on the important video transcoding metrics, such as video play
rate and server transcoding rate.

Dutreilh et al. [27] and Pan et al. [28] used control theoretic
models for designing resource allocation solutions for cloud
computing. Dutreilh et al. presented a comparison of static
threshold-based and reinforcement learning techniques. Pan et
al. used proportional integral (PI) controllers to provide QoS
guarantees. Patikirikorala et al. [29] proposed a multi-model
framework for implementing self-managing control systems
for QoS management. Roy et al. [30] presented a look-ahead
resource allocation algorithm based on the model predictive
control. A common characteristic of the control theretic ap-
proaches is that they depend upon performance and dynamics
of the underlying system. In contrast, the proposed approach
does not require any knowledge about the performance and
dynamics of the transcoding servers.

VIII. CONCLUSION

In this paper, we presented prediction-based dynamic re-
source allocation algorithms to scale video transcoding service
in a cloud environment. The proposed algorithms provide
a mechanism for creating a dynamically scalable cluster of
video transcoding servers by provisioning VMs from an IaaS
cloud. The prediction of the future user load is based on



a two-step load prediction method, which allows proactive
resource allocation with high prediction accuracy under real-
time constraints. For cost-efficiency, we used segmentation of
video streams, which splits a stream into smaller segments
that can be transcoded independently of one another. This
helped us to perform video transcoding of multiple streams
on a single server. The proposed approach is demonstrated
in a discrete-event simulation. The evaluation and analysis
considered two different synthetic load patterns in two separate
experiments. Experiment 1 used a relatively normal load, while
experiment 2 used a highly variable load. The results show
that the proposed approach provides cost-efficient resource
allocation for transcoding a large number of video streams,
while minimizing oscillations in the number of servers and
avoiding over and underflow of the output video buffer.
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