
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Analysis of Video Transcoding on Multi-core Platform

Fareed Jokhio, Sébastien Lafond, Tewodros Deneke, Johan Lilius
Åbo Akademi University

Department of Information Technologies
Joukahainengatan 3-5, 20520 Turku, Finland

{fjokhio, slafond, tdeneke, jolilius }@abo.fi

ABSTRACT
This paper analysis video segmentation methods for tem-
poral and spatiotemporal video transcoding on a multi-core
platform where video segmentation is performed at a group
of pictures (GOP) level. Three methods of video segmen-
tation are analysed: (1) equal number of group of pictures
(GOP) in each segment (2) equal number of frames in each
segment, (3) equal size segmentation. The existing sin-
gle processor implementation of open source ffmpeg video
transcoder is modified to execute on multiple cores. For
coomunication among different processing cores the Message
Passing Interface is used. We tested our implementation on
a workstation which has two processors having four cores
each with shared memory. The performance of the system
and the relationship between the number of cores used and
speed in computation is measured in terms of speed up of
execution. The Master/ Slave processing model is selected
in order to perform the transcoding operatons on seperate
parts of the source video in parallel.

1. INTRODUCTION
In the past two decades there is significant advancement in
the execution speed of programs due to faster hardware pro-
cessing units. The serial code written for one hardware plat-
form runs faster on another more powerful hardware plat-
form. The programmer does not need to rewrite the program
to get more speed up. But this trend seems to come on end
due to physical limitations of processing unit.

Multi-core architectures are one of the available solutions
to get more speed up in applications. The applications de-
signed to execute on a single processing unit requires some
changes in order to execute on multicore processors hence
bringing a new challenge for programmers.

Video transcoding is a suitable application for multicore
architectures. In video transcoding the compressed video
needs to be processed to produce another compreesed video
with different characteristics. The new video can have dif-
ferent bit rate, frame rate, frame resolution, or any combi-
nation of these. It is also possible to transcode a video in an
entirely different video format. The video transcoder can be
a cascaded pixel domain transcoder in which the entire video
is decoded and then again re-encoded according to new re-
quirements or it can be a pixel domain transcoder in which
the video is partially decoded and where the motion vectors
information are reused in order to reduce the computational
load.

On a single core architecture the transcoding operation can
be considered as a single task and will utilize all avaiable re-
sources where the multicore processor will provide more pro-
cessing resources for exectuing multiple transcoding tasks.

The main contribution of this work is to analyse different
methods of video segmentation to perform temporal resolu-
tion reduction video transcoding and spatiotemporal resolu-
tion reduction video transcoding on multicore architectures.
Three different methods of video segmentation are analysed
(1) equal size segmentation (2) equal number of frames in
each segment (3) equal number of group of pictures (GOP)
in each segment. The performance of the system and the
relationship between the number of cores used and speed in
computation is measured in terms of speed up of execution.

2. BACKGROUND AND RELATED WORK
There exists a number of video transcoding applications
mainly designed to execute on single processor. While transcod-
ing the quality of the output video and the speed of the
transcoding process are very important. The main focus of
the work in [7] was on motion vectors downscaling for spatial
resolution reduction transcoding. In [8], the drift error and
source of drift error for spatial resolution reduction video
transcoding was analyzed. The motion vector re-estimation
in temporal resolution reduction video transcoding is dis-
cussed in [10].

In [6] a distributed video transcoder was designed to transcode
MPEG-2 video into MPEG-4 video. The source MPEG-2
video was fully decoded and a MPEG-4 encoder was used
to get the desired transcoded video. To get more perfor-
mance in terms of speed up a cluster based distributed video
transcoding approach was proposed in [3]. The main con-
tribution of the work was the design of a multimedia web
server for distributed video transcoding. The video contents
were generated in accordance with the bit rate requirement.

The above transcoding architectures are either single proces-
sor or cluster based distributed architectures but our transcod-
ing architecture is applicable for multicore architectures as
well as distributed and cluster based architectures.

3. MASTER/SLAVE MODEL FOR PARAL-
LEL PROCESSING

In the Master/Slave model the master is used to provide
the centralized control and slaves performs the computation
in the distributed environment. The scheduling of different

tasks and the resource allocation is performed by the mas-
ter core. The master core also sends the source video to
the slaves and recieves back the transcoded video. Different
video frames types have different transcoding time, hence
the load balancing is the main challenge in this model.

The processing core can have one or more tasks at a time.
The MPI is used for sending messages between cores. The
master core has the tasks of partitioning the source video,
sending the video data, receiving the video data and com-
bining the transcoded video. The slaves have the tasks of
receiving the video data, transcoding the video and sending
the transcoded video data back to the master. The message
passing interface is suitable for multiple instructions multi-
ple data systems [5].

4. VIDEO TRANSCODING
In this paper we focus on block based video transcoding
in which the discrete cosine transform (DCT) and motion
compensation (MC) are used. The video frames are divided
into macroblocks (MBs) of size 16x16. The macroblocks can
be of luminance or chrominance type. Each macroblock is
further divided into 8x8 size blocks. Figure 1 shows frame
rate reduction and frame resolution reduction transcoding.

Figure 1: Frame rate reduction and frame resolution
reduction transcoding

The source video needs to be downscaled to get reduced
resolution frames. Downscaling is possible by decoding the
entire video into raw format and then re-encoding it with
the desired resolution and frame rate. Motion estimation
requires 60% of the execution time [9] in the encoding pro-
cess. It is also possible to reuse the existing motion vectors
information and generate new motion vectors from the ex-
isting one. To generate new motion vectors both motion
vectors downscaling and motion vectors re-estimation will
be required [10]. Figure 2 shows the spatial resolution down
conversion of the macroblocks.

Figure 2: Spatial resolution down conversion

While downscaling a frame several 8x8 DCT blocks are down-
scaled into one 8x8 DCT block. In this paper every four mac-
roblocks of the source video are downscaled into one macro
block in the spatiotemporal video transcoding. Macroblock
and motion vectors downscaling is further discussed in [4].

In temporal video transcoding some frames from the source
video are dropped. Therefore the motion vectors pointing to

the macroblocks in the dropped frames becomes invalid and
motion vector re-estimation is needed. The re-estimation of
a new motion vector can be done by tracing back all mo-
tion vectors of the dropped frames to the desired reference
frame. Bilinear interpolation [10] of the motion vectors of
the dropped frames can be used for this.

Figure 3 shows a case of motion vector re-estimation in
which Frame (n-1) is dropped. the macroblock in Frame (n)
needs a new motion vector from the non skipped frame (n-
2). A new motion vector is predicted from existing motion
vectors. The motion vector produced by re-estimation [10]
will require vector refinement with a smaller search window
to get the appropriate motion vector.

Figure 3: Motion vector reestimation

5. EXPERIMENTAL SETUP
The existing single processor implementation of the open
source ffmpeg [2] video transcoder is modified to execute on
multiple cores. For coomunication among different process-
ing cores the Message Passing Interface is used. We tested
our implementation on a workstation which has two quad-
core Intel(R) Xeon(R) processors (E5430) at 2.66 GHz with
16 GB shared memory. Each core has 6144 KB cache.

The big buck bunny video sequence [1] was used as source
video to perform transcoding operations. The table 1 shows
further details about the video sequence.

Resolution Rate Size Play time Frames GOPs
704 x 576 24fps 77.95 MB 09:56 14315 1279

Table 1: Big buck bunny video sequence

6. VIDEO SEGMENTATION
The source video consists of different types of frames (Intra,
Predicted, Bi-directional predicted). The Intra frames are
independent and do not require any other reference frame
for decoding. To partition the source video into smaller
parts, there must be an intra frame at the beginning of every
segment. An intra frame followed by a sequence of P and B
frames is termed a group of pictures (GOP). We performed
the video segmentation at GOPs level with three different
methods. The methods of video segmentation used are: (1)
equal number of group of pictures (GOP) in each segment
(2) equal number of frames in each segment, (3) equal size
segmentation.

The minimum unit of video segment is a complete group of
pictures (GOP). Tables 2, 3, and 4 shows the size of each
video segment in Mega Bytes, total number of group of pic-
tures in each segment, total number of frames in each seg-
ment for the three methods of video segmentation.

1 2 3 4 5 6 7
size 77.95

GOP 1279
Frame 14315

size 28.41 49.54
GOP 656 623
Frame 7167 7148

size 19.35 20.36 38.24
GOP 440 426 413
Frame 4774 4781 4760

size 15.01 13.4 18.62 30.92
GOP 335 321 320 303
Frame 3590 3577 3578 3570

size 12.46 10.14 13.19 14.31 27.85
GOP 273 253 257 255 241
Frame 2867 2868 2863 2859 2858

size 10.70 8.65 9.06 11.30 11.53 26.71
GOP 231 209 216 210 213 200
Frame 2386 2388 2393 2388 2380 2380

size 9.95 6.75 7.88 8.64 10.13 9.59 25.01
GOP 202 177 184 186 179 180 171
Frame 2051 2042 2047 2050 2042 2051 2032

Table 2: Equal number of frames in each segment

1 2 3 4 5 6 7
size 77.95

GOP 1279
Frame 14315

size 38.98 38.97
GOP 841 438
Frame 9280 5035

size 26.03 25.94 25.98
GOP 600 495 184
Frame 6536 5591 2188

size 19.49 19.48 19.7 19.28
GOP 445 396 321 117
Frame 4832 4448 3651 1384

size 15.61 15.6 15.62 15.6 15.52
GOP 347 356 268 201 107
Frame 3734 3951 3000 2366 1264

size 13.0 13.03 12.95 12.99 13.05 12.93
GOP 284 316 241 254 84 100
Frame 2987 3549 2744 2847 1008 1180

size 11.15 11.14 11.13 11.14 11.16 11.16 11.07
GOP 244 270 239 189 205 37 95
Frame 2530 3061 2647 2137 2376 444 1120

Table 3: Equal size segmentation

7. RESULTS
We performed the video transcoding operation using multi-
ple cores starting with a single master and a single slave core
to a single master and seven slave cores. Each slave core re-
cieves part of source video for transcoding. The transcoding
time for temporal resoluation reduction with different num-
ber of core is shown in Figure 4. The source video has 4CIF
(704x576) resoluatoin, 24 fps and it is transcoded at 16fps
and 8fps.

The transcoding time for spatiotemporal resoluation reduc-
tion with different number of core is shown in Figure 5. The

1 2 3 4 5 6 7
size 77.95

GOP 1279
Frame 14315

size 27.65 50.3
GOP 639 640
Frame 6977 7338

size 18.76 20.55 38.64
GOP 426 427 426
Frame 4624 4791 4900

size 14.42 13.27 18.14 32.12
GOP 319 320 320 320
Frame 3405 3572 3587 3751

size 11.51 10.68 12.4 15.04 28.32
GOP 255 256 256 256 256
Frame 2662 2904 2840 2892 3017

size 10.24 8.59 8.92 11.62 11.61 26.97
GOP 213 214 214 214 214 210
Frame 2178 2458 2365 2431 2383 2500

size 8.78 7.48 7.78 8.68 8.88 10.5 25.85
GOP 182 183 183 183 183 183 182
Frame 1813 2130 2045 2021 2072 2070 2164

Table 4: Equal number of GOPs in each segment

Figure 4: TemporalTranscodingTime

source video has 4CIF (704x576) resoluatoin, 24 fps and it is
transcoded down to CIF (352x288) resolution at 24fps and
16fps.

The increase in number of cores gives speedup in the transcod-
ing processes. To analyse different methods of video seg-
mentation, the speedup obtained with multiple cores is con-
sidered. The speed up obtained with different segmenta-
tion methods for temporal resolution reduction transcoding
is shown in Tables 5, 6 and for spatiotemporal resolution
reduction in Tables 7, 8.

The results in tables 5, 6, 7, and 8 indicates that the video
segmentation performed at equal number of frames provides
better speed up. The video segmentation with equal number
of group of pictures (GOP) in each segment gives almost sim-
ilar speed up as we get with equal number of frames in each

Figure 5: Video Transcoding time with different
number of cores and frame rates

No of slave cores 2 3 4 5 6 7
equal size 1.54 2.12 2.52 2.96 3.24 3.58

equal No of GOP 1.73 2.44 3 3.47 3.75 4.13
equal No of frames 1.83 2.54 3 3.47 3.88 4.13

Table 5: speedup: temporal transcoding 16fps

No of slave cores 2 3 4 5 6 7
equal size 1.5 1.96 2.5 3 3.46 3.75

equal No of GOP 1.69 2.2 2.75 3.14 3.67 4.4
equal No of frames 1.93 2.37 2.81 3.46 3.75 4.5

Table 6: speedup: temporal transcoding 8fps

No of slave cores 2 3 4 5 6 7
equal size 1.52 2.28 2.93 3.28 3.72 4.82

equal No of GOP 1.9 2.92 3.45 4.22 4.75 5.06
equal No of frames 1.9 2.92 3.45 4 4.75 5.43

Table 7: speedup: spatiotemporal transcoding 24fps

No of slave cores 2 3 4 5 6 7
equal size 1.61 2.31 3.08 3.52 3.89 4.62

equal No of GOP 1.84 2.8 3.33 4.11 4.66 5
equal No of frames 1.94 2.69 3.18 4.11 5 5.38

Table 8: speedup: spatiotemporal transcoding 16fps

segment, hence both methods are better than the equal size
segmentation. While transcoding a video, different frames
require different time, the intra (I) frames require more com-
putational power than predicted (P) and bi-directional pre-
dicted (B) frames. For different video sequences the equal
size segmentation will not partition the video in eqaul com-
putational load hence it is prefered to use either equal num-
ber of frames or equal number of GOPs methods for spa-
tiotemporal video transcoding. The equal number of frames
will be better than equal number of GOPs for temporal video
transcoding.

8. CONCLUSION AND FUTURE WORK
In this paper the implementation of video transcoding sys-
tem on multi-core platform using the Master/ Slave model
for parallel processing is discussed. For video segmenation
three methods are used: (1) equal number of frames in
each segment (2) equal size segmentation (3) equal num-
ber of group of pictures (GOP) in each segment. The com-
munication among different processing units is perofrmed
with standard Message Passing interface and data is sent by
send and recieve messages. The masters core segments the
source video and sends it’s parts to slaves (workers) cores for
transcoding and after recieveing back the transcoded video
parts it performs the merging task. It is observed that with
seven worker cores the transcoding operation is five times
faster as compared with single worker node.

The segmentation method with equal number of frames in
each segment provides better speed up as compared with
the other two methods. More analysis can be performed
with different types of video transcoding (bit rate resolution
and spatial resolution reduction) on multicore architectures
using these segmentation methods. It is also possible to have
segmentation with equal number of slices or equal number
macroblocks in each segment by keeping the GOP as the
smallest segmenation unit for multicore architectures.

9. REFERENCES
[1] Big buck bunny video sequence,

http://www.bigbuckbunny.org/index.php/download/.

[2] Ffmpeg project, http://www.ffmpeg.org/.

[3] J. Guo, F. Chen, L. Bhuyan, and R. Kumar. A
cluster-based active router architecture supporting
video/audio stream transcoding service. In Parallel
and Distributed Processing Symposium, 2003.
Proceedings. International, page 8 pp., april 2003.

[4] Z. Lei and N. D. Georganas. H.263 video transcoding
for spatial resolution downscaling. In ITCC, pages
425–430. IEEE Computer Society, 2002.

[5] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard. University of
Tennessee, Knoxville, TN, June 1995.

[6] Y. Sambe, S. Watanabe, D. Yu, T. Nakamura, and
N. Wakamiya. High-speed distributed video
transcoding for multiple rates and formats. IEICE
Transactions, 88-D(8):1923–1931, 2005.

[7] D. Shen, I. K. Sethi, and B. Vasudev. Adaptive
motion-vector resampling for compressed video
downscaling. IEEE Trans. Circuits and Systems for
Video Technology, 9(6):929, Sept. 1999.

[8] P. Yin, A. Vetro, B. Liu, and H. Sun. Drift
compensation for reduced spatial resolution
transcoding. Circuits and Systems for Video
Technology, IEEE Transactions on, 12(11):1009 –
1020, nov 2002.

[9] P. Yin, M. Wu, and B. Liu. Video transcoding by
reducing spatial resolution. In ICIP, 2000.

[10] J. Youn, M.-T. Sun, and C.-W. Lin. Motion vector
refinement for high-performance transcoding. IEEE
Transactions on Multimedia, 1(1):30–40, 1999.

