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Abstract— DVB-H (Digital Video Broadcasting for Handheld
terminals) is a data broadcasting standard based on DVB-T
(Digital Video Broadcasting - Terrestrial) that enables delivery of
various Internet Protocol (IP) based services to mobile receivers.
To combat the effects of mobility, a Forward Error Correction
(FEC) scheme called MPE-FEC is introduced at the link layer.
Different mechanisms for decoding the link layer MPE-FEC
based on Reed-Solomon (RS) code have been suggested, but their
effect on the decoding complexity as compared to the standard
solution has not been analyzed so far. Yet, the complexity is still
a crucial issue in battery powered portable devices. In this paper,
complexities of different RS decoding algorithms together with
their application in DVB-H are analyzed.

I. INTRODUCTION

DVB-H (Digital Video Broadcasting for Handheld termi-
nals) is a relatively new data broadcasting standard [1] that en-
ables delivery of various Internet Protocol (IP) based services
to mobile receivers. The DVB-H standard, which is based on
and is compatible with DVB-T (Digital Video Broadcasting -
Terrestrial), introduces solutions to the problems caused by the
mobility of the handheld terminals receiving digital broadcast.
These solutions were required to lower power consumption
of the terminal, to add flexibility in the network planning,
to provide good enough performance in mobile channels and
to add compatibility with IP networks. Enhancements to con-
ventional DVB-T systems include the addition of time-slicing
and one more stage of error correction called the MPE-FEC
(Multi-Protocol Encapsulation - Forward Error Correction) at
the link layer. Time-slicing means that the transmission is
time division multiplexed, i.e. one service is sent in bursts
separated in time. The power-saving is achieved due to the fact
that the receiver can switch off radio components between the
bursts. The MPE-FEC includes a utilization of Reed-Solomon
(RS) code combined with time interleaving to combat channel
fading.

In this paper the complexities of different implementations
of RS decoder (time and frequency domain) presented in
[2] are be investigated based on number of Galois Field
(GF) operations. Further, the effect of the decoding scheme
presented in [3] called hierarchical decoding on the complexity
of the MPE-FEC decoding is investigated using the frequency
domain RS decoder.

The paper is organized as follows. First, different decoding
algorithms are discussed in section II and their complexities

analyzed in section III. Then the decoding schemes in DVB-H
MPE-FEC and their complexities are discussed in section IV.
Finally, concluding remarks are presented in section V.

II. DECODING ALGORITHMS

In this section, we present two known decoding algorithms
for Reed-Solomon codes. We begin with frequency domain
decoder, which is the main object of study in this paper. Later,
an algorithm in the time domain will also be investigated.
Both decoding algorithms are based on the Berlekamp-Massey
algorithm.

A. Frequency domain decoding

Broadly speaking, decoding in frequency domain means
Fourier transforming the received vector and performing the
decoding tasks on the transformed vector. In the end of
decoding the inverse Fourier transform is taken and some
codeword is obtained. This way of decoding is natural for
Reed-Solomon codes due to their definition.

As usual, by erasure we mean an error, whose location
is known. The number or erasures in a received vector v is
denoted by ρ and the number of undetected errors in the vector
is denoted by ν. As for bounded distance decoding of any
error-correcting code, a received vector is uniquely decodable
if

δ ≥ 2ν + ρ+ 1,

where δ is code minimum distance.
We need one more definition before going to the decoding

algorithm. Assume, that vectors e and f correspond to the
error- and erasure-vector of a received vector v, that is, for
some codeword c

c = v − (e+ f).

Then we say, that the error-erasure-locator polynomial Λ is
the polynomial, which has minimal degree and satisfies the
(cyclic) convolutional equation

Λ ∗ (E + F ) = 0.

Here we identify the vector

Λ = (Λ0, . . . ,Λn−1)

whose components are coefficients of polynomial

Λ(x) = Λ0 + . . .+ Λn−1x
n−1.



The next decoding algorithm is represented as in [2].
Algorithm 2.1 (Frequency domain decoder):

1) Assume, that v is the received vector having ρ < δ
erasures in the locations i1, . . . , iρ, where δ is the
distance of the code. First, fill these erasures with zeros.
Next, determine the erasure-locator polynomial Ψ(x)
from the formula

Ψ(x) =
ρ∏

l=1

(1 − xωil),

where ω is a primitive element of the Galois field
GF (q). Also Fourier transform of v is taken, thus
obtaining the vector V .

2) The Berlekamp-Massey algorithm explained below is
executed on the vector V with Ψ to obtain the error-
erasure-locator polynomial Λ(x).

3) Next, extend recursively the known δ−1 values of E+F
to n values by using the convolutional equation

Λ ∗ (E + F ) = 0

and the known values of Λ.
4) The decoding is completed by taking the inverse Fourier

transform of the vector

C = V − (E + F ).

Next we study more carefully the step 2 of the algorithm.
The Berlekamp-Massey algorithm may be written in the fol-
lowing form:

Algorithm 2.2 (Berlekamp-Massey in frequency domain [2]):

1) Initialization: Λ(ρ)(x) = B(ρ)(x) = Ψ(x), Lρ = 0, r =
ρ, where Ψ(x) is the erasure-locator polynomial.

2) For r = ρ+ 1, . . . , δ − 1 :

∆r =
Lr−1+ρ∑

j=0

{Λ(r−1)(x)}jVr−1−j ,

Lr = tr(r − ρ− Lr−1) + (1 − tr)Lr−1,(
Λ(r)(x)
B(r)(x)

)
=
(

1 −∆rx
tr∆−1

r (1 − tr)x

)
·

·
(

Λ(r−1)(x)
B(r−1)(x)

)
,

where tr = 1 if both ∆r �= 0 and 2Lr−1 ≤ r − ρ − 1,
otherwise tr = 0.

3) Then Λ(δ−1)(x) is the locator polynomial for both errors
and erasures for the sequence V0, . . . , Vδ−2.

In the step 3 of the algorithm 2.1 we need to solve the
convolutional equation

Λ ∗ (E + F ) = 0. (1)

This is done iteratively by extending the known values of E+
F with the help of the vector Λ from the previous step. The
equation (1) can be written in the following form:

(E +F )((k)) =
ν+ρ∑
j=1

Λ̄j(E +F )((k−j)), k = δ− 1, . . . , n− 1

(2)
Now the right-hand side uses only known values of the

vectorE+F , and hence all of its components can be iteratively
obtained.

B. Time-domain decoding

In time-domain decoding, we operate with the received
vector itself rather than taking the Fourier transform of it in the
very beginning of the algorithm. However, with Reed-Solomon
codes the natural approach is to use the Fourier transform at
least implicitly and as we shall see, the algorithm in time
domain is closely related to the one we already discussed.
The most evident way of decoding in time-domain is to take
the inverse Fourier transform of each step of the algorithm
2.1. The algorithm presented here is derived in this manner in
[2].

Algorithm 2.3 (Time-domain decoder):

1) First, determine the erasure-locator polynomial Ψ(x) as
in step 1) in algorithm 2.1. Next, take the inverse Fourier
transform of the vector Ψ to obtain a time-domain vector
ψ.

2) Execute the Berlekamp-Massey algorithm in time-
domain explained below on the vectors v and ψ. As a
result, a time-domain erasure-error locator λ is obtained.

3) Let us denote u(δ−2) = v. Now, for r = δ−1, . . . , n−1,
let

∆r =
n−1∑
i=0

ωirλiu
(r−1)
i

u
(r)
i = u

(r−1)
i − ∆rω

−ir for all i.

4) The codevector c can now be calculated as c = v −
u(n−1).

Again, it is time to concentrate on the Berlekamp-Massey
algorithm, now in time-domain.

Algorithm 2.4 (Berlekamp-Massey in time-domain [2]):

1) Initialization: λ(ρ) = b(ρ) = ψ,Lρ = 0, r = ρ, where ψ
is as above.

2) For r = ρ+ 1, . . . , δ − 1,

∆r =
n−1∑
j=0

ωj(r−1)λ
(r−1)
j vj

Lr = tr(r − ρ− Lr−1) + (1 − tr)Lr−1(
λ

(r)
i

b
(r)
i

)
=
(

1 −∆rω
−i

tr∆−1
r (1 − tr)ω−i

)(
λ

(r−1)
i

b
(r−1)
i

)

for all i, where tr = 1 if both ∆r �= 0 and 2Lr−1 ≤
r − ρ− 1, otherwise tr = 0.

3) Then λ(δ−1) is the error-erasure locator.



III. COMPLEXITY ANALYSIS OF THE DECODING

ALGORITHMS

In this section, we will study the complexities of the given
decoding algorithms. The complexities will mainly be calcu-
lated with respect to the number of multiplications needed in
the Galois field. Since the frequency domain decoder is based
on Fourier transform, a few words concerning the Fourier
transform’s complexity are in order.

Fast Fourier transform (FFT) is a well-known, time-wise
efficient recursive algorithm. Its complexity is of the order
O(n log n), although this complexity does depend on how the
exponentation of the primitive element is organized. In the
following, we will assume that some look-up table (i.e. a table
of logarithms and anti-logarithms with respect to the primitive
element) is constructed, so that exponentation of the primitive
element ω can be seen as a constant-time operation.

Let us next study the complexity of some polynomial
operations. Assume, that we have two polynomials in Galois
field,

a(x) = a0 + a1x+ . . .+ amx
m and

b(x) = b0 + b1x+ . . .+ bnx
n,

.

To obtain their product (in monomial form) c(x) = a(x)b(x),
we clearly need (m+ 1)(n+ 1) multiplications in the Galois
field. This number of multiplications may be decreased if more
sophisticated methods are used. However, here we use the
school algorithm for polynomial multiplications. If a0 = b0 =
1, the number of needed multiplications reduces to mn, since
multiplying by 1 is a trivial operation. Let now α be some
element of the Galois field. To calculate the substitution a(α),
we need m multiplications, which can be seen by writing the
polynomial in different form (Horner scheme),

a(α) = (. . . ((amα+ am−1)α+ am−2)α · · · )α+ a0.

A. Frequency domain decoder

In the first step of the algorithm 2.1 the erasure-locator
polynomial

Ψ(x) =
ρ∏

l=1

(1 − xωil)

is constructed. With the previous considerations we can cal-
culate, that to obtain Ψ(x) in monomial form, we need
(1/2)(ρ− 1)ρ multiplications in the Galois field. In this step,
also Fourier transform is taken hence adding the term n logn
to the overall complexity.

The second step requires calculating the complexity of the
Berlekamp-Massey algorithm. The first observation is, that in
algorithm 2.2 always Lr ≤ r − ρ. For every value of r the
computation of ∆r takes at most

Lr−1 + ρ+ 1 ≤ (r − 1) − ρ+ ρ+ 1 = r

multiplications. No multiplications in the Galois field are
needed for computing Lr, but in the matrix equation we need

at most 2(r + 1) multiplications. Altogether, for every value
of r, we need at most

r + 2(r + 1) = 3r + 2

multiplications in the Galois field. Counting over all values of
r, we get that the number of multiplications is at most

δ−1∑
r=ρ+1

3r + 2 = 2(δ − ρ− 1) + 3
( δ−1∑

r=1

r −
ρ∑

r=1

r
)

= 2
(
δ − ρ− 1

)
+
(
3/2
)(

(δ − 1)δ − ρ(ρ+ 1)
)

= 2(δ − ρ− 1) + (3/2)(δ + ρ)(δ − ρ− 1)
=
(
δ − ρ− 1

)(
(3/2)(δ + ρ) + 2

)
.

The complexity of the third step in the algorithm 2.1 can be
derived from the equation (2). The number of needed iterations
of this equation is

(n− 1) − (δ − 1) + 1 = n− δ + 1.

For every iteration element, we need at most ν + ρ multipli-
cations in the Galois field. Thus, the complexity of the third
step is at most (ν + ρ)(n− δ + 1).

The fourth step of the algorithm introduces another Fourier
transform and hence is of complexity n logn.

The overall complexity of the decoding algorithm 2.1 with
respect to the number of multiplications in the Galois field
GF (q) is at most

C(ν, ρ) = (ρ−1)ρ
2 + 2n logn+(

δ − ρ− 1
)(

(3/2)(δ + ρ) + 2
)

+ (ν + ρ)(n− δ + 1). (3)

Note that one easily verifies that the number of additions
needed in the algorithm 2.1 is of the same magnitude as the
number of multiplications. Hence the overall complexity of the
algorithm is of the order mentioned in the previous equation.

B. Time-domain decoder

Let us then study the complexity of the algorithm 2.3. As
we see, it begins with nearly the same operations as in the
previous case, the overall complexity of the first step being
(1/2)(ρ− 1)ρ+ n logn.

The second step introduces the Berlekamp-Massey algo-
rithm in time-domain. For each step of the iteration, cal-
culating ∆r takes at most 2n multiplications. The matrix
multiplications take additional 4n multiplications, so the over-
all complexity for each iteration step is 6n. Since there are
δ − ρ − 1 of these steps, the complexity of the Berlekamp-
Massey algorithm is at most 6n(δ − ρ− 1).

In the third step of the algorithm 2.3 we need in each
iterations at most 3n multiplications. There are n − δ − 1
iterations in total, and thus the complexity of this third step is
at most 3n(n− δ − 1).

Thus the complexity of the algorithm 2.3 is at most

C(ν, ρ) =
(ρ− 1)ρ

2
+n logn+6n(δ−ρ−1)+3n(n− δ−1).

(4)
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Fig. 1. Link layer operations [5]

This complexity has no dependence on the number of errors.
This is mainly due to two reasons: First of all, the complexity
analysis was rather coarce since the number of multiplications
may be diminished by not counting the trivial multiplications.
Secondly, this algorithm was constructed in such manner, that
most of the calculations are done for all i, that is, for all
components of a vector of size n.

IV. DECODING SCHEMES IN DVB-H

In DVB-H MPE-FEC, different options exist to obtain the
erasure information for the RS decoder. It is suggested in [4]
that the erasure information could be obtained from the CRC
error detection mechanism embedded in MPE(-FEC) sections
in the encapsulation process. Another option is to use the error
information contained in the TS (Transport Stream) packet
headers. In [3] two decoding methods for MPE-FEC based
on correcting both errors and erasures were proposed. In the
proposed methods also possibly erroneous data is inserted into
the MPE-FEC frame, in contradiction to the method suggested
in the standard, where all unreliable data is erased and possibly
many correct bytes are lost. It is also possible to ignore
available erasure information, and use pure error RS decoding.
Regardless of the source of erasure information (CRC or TS
packet header) the RS erasure decoding procedure may be
performed basing on the widely known algebraic algorithms
like the ones described in section II.

MPE-FEC frame can be thought as a matrix, where data
from the application layer is inserted columnwise. RS en-
coding is done in the rowwise manner introducing time
interleaving for the codewords, since the data is again trans-
mitted columnwise. In the receiver the MPE-FEC frame is
reassembled and erasure information created. Then all the rows
of the MPE-FEC frame are decoded with RS decoder that
can utilize the erasure information. The link layer operations
and the structure of the MPE-FEC frame is show in Fig. 1.
The MPE-FEC frame and its transmission is more thoroughly
presented in [4]. From the complexity point of view the thing
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Fig. 2. Dependence of complexity on number of errors and erasures for
RS(255,191), δ = 65 code

that makes the change when the code and decoding algorithm
are fixed, is the numbers of undetected errors and erasures
hitting RS codewords. The dependence of the complexity on
numbers of errors and erasures for frequency and time domain
decoders for the MPE-FEC RS(255,191) code is given in Fig.
2. As examples of possible scenarios, errors only, erasures
only and combination of both are presented. The complexities
are calculated from the expressions (3) and (4) presented in
section III.

A. Complexities of the MPE-FEC decoding schemes

From the complexity analysis of the RS decoding algorithms
and from Fig. 2 we deduce that the more efficient algorithm
is the one operating in frequency domain. Its complexity is
given in equation (3). Let us analyse the expression. First of
all, we notice that the rightmost component of the sum,

(ν + ρ)(n− δ + 1), (5)

is linear with respect to the sum of ν and ρ. Let us now
denote the actual number of erroneus symbols in the received
codevector by κ. Then always

κ ≤ ν + ρ,

equality holding when no correct symbols are erased. Thus to
minimize the linear term, we would like to have no erasures
corresponding to correct symbols in the codevector.

Let us next study the term

(ρ− 1)ρ
2

+
(
δ − ρ− 1

)(
(3/2)(δ + ρ) + 2

)
. (6)

Let us denote it by g(ρ) and then minimize it. Calculating the
first derivative of this function, we get

g′(ρ) =
2ρ− 1

2
− 3(δ + ρ) + 4

2
+

3(δ − ρ− 1)
2

=
−4ρ− 8

2
= 0,



when ρ = −2. From this, and the form of expression (6) we
see, that g(ρ) is a decreasing function for ρ ≥ 0. Thus to
minimize the term (6), we would like to have as many erased
symbols as possible. This reduces the overall complexity of
the frequency domain decoder, since it reduces the complexity
of Berlekamp-Massey algorithm in frequency domain. In fact,
if we know that we can decode using only erasures, we do not
have to execute the Berlekamp-Massey algorithm at all, since
we already know the locations of the errors.

Next we need to find the minimizing scheme for the whole
algorithm 2.1. For this we need to compare the expressions
(5) and (6). Comparing the first derivatives of these terms with
respect to the variable ρ we find that

(n− δ + 1) + g′(ρ) = n− δ + 1 − 2ρ− 4
≥ n− δ + 1 − 2(δ − 1) − 4
= n− 3δ − 1 ≥ 0

when 3δ ≤ n − 1. This is the case for n = 255 and
δ = 65, which are the parameters in DVB-H Link Layer
Reed-Solomon code. From this we deduce that for this code,
taking extra erasures will only increase the complexity of
the frequency domain decoding if those erasures correspond
to correct symbols. Hence, to minimize the complexity of
the decoding using frequency domain RS decoding, the most
beneficial way is to have as reliable erasure information as
possible.

This is the main idea of the decoding scheme (hierarchical
decoding) suggested in [3]. The analysis in [5] shows that it is

the best of the discussed decoding schemes with respect to the
probability of successful decoding. Here we saw, that it also
minimizes the complexity of the frequency domain decoder.

V. CONCLUSIONS

In this paper the complexities of frequency and time do-
main Reed-Solomon decoding algorithms together with their
application at the DVB-H link-layer were analyzed. From
the compared Reed-Solomon decoding algorithms, the one
operating in frequency domain is better from the complexity
point of view. The significant result is that the MPE-FEC
decoding methods suggested in [3] that have better error
correction capabilities also minimize the amount of operations
necessary in the Reed-Solomon decoding.
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