
Conferences in Research and Practice in
Information Technology

Volume 160

Computing Education 2015

Australian Computer Science Communications, Volume 37, Number 2

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

Computing Education 2015

Proceedings of the 17th Australasian Computing
Education Conference (ACE 2015),
Sydney, Australia, 27 - 30 January 2015

Daryl D’Souza and Katrina Falkner, Eds.

Volume 160 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Computing Education 2015. Proceedings of the 17th Australasian Computing Education Conference
(ACE 2015), Sydney, Australia, 27 - 30 January 2015

Conferences in Research and Practice in Information Technology, Volume 160.

Copyright c©2015, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Dr Daryl D’Souza
School of Computer Science and Information Technology
RMIT University
GPO Box 2476
Melbourne VIC 3001
Australia
Email: daryl.dsouza@rmit.edu.au

Associate Professor Katrina Falkner
School of Computer Science
University of Adelaide
Adelaide SA 5005
Australia
Email: katrina.falkner@adelaide.edu.au

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW
Email: crpit@scem.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 160.
ISSN 1445-1336.
ISBN 978-1-921770-42-5.

Document engineering, January 2015 by CRPIT
On-line proceedings, January 2015 by the University of Western Sydney
Electronic media production, January 2015 by Laurence Park, University of Western Sydney

The Conferences in Research and Practice in Information Technology series disseminates the results of peer-reviewed
research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the 17th Australasian Computing Education Conference (ACE
2015), Sydney, Australia, 27 - 30 January 2015

Preface . vii

Programme Committee . viii

Organising Committee . ix

Welcome from the Organising Committee . x

CORE - Computing Research & Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xiii

ACSW and ACE 2015 Sponsors . xv

Contributed Papers

Gender differences in experiences of TAFE IT students: A work in progress . 3

Raina Mason, Graham Cooper, Tim Comber, Anne Hellou, Julie Tucker

Designing a modern IT curriculum: Including information analytics as a core knowledge area 11

Magnus Westerlund, Göran Pulkkis

Quality assurance using international curricula and employer feedback . 19

Marta Lárusdóttir, Mats Daniels, Roger McDermott

Breakfast with ICT employers: What do they want to see in our graduates? . 29

Margaret Hamilton, Angela Carbone, Christabel Gonsalvez, Margaret Jollands

Computational thinking, the notional machine, pre-service teachers, and research opportunities 37

Matt Bower, Katrina Falkner

Using cognitive load theory to select an environment for teaching mobile apps development 47

Raina Mason, Graham Cooper, Simon, Barry Wilks

Student perceptions of flipped learning . 57

David Murray, Terry Koziniec, Tanya McGill

Teaching computational thinking in K-6: The CSER digital technologies MOOC 63

Katrina Falkner, Rebecca Vivian, Nickolas Falkner

Why don’t more ICT students do PhDs? . 73

Cally Guerin, Asangi Jayatilaka, Paul Calder, Alistair McCulloch, Damith Ranasinghe

Teaching in first-year ICT education in Australia: Research and practice . 81

Michael Morgan, Judy Sheard, Matthew Butler, Katrina Falkner, Simon, Amali Weerasinghe

Assessment in first-year ICT education in Australia: Research and practice . 91

Judy Sheard, Michael Morgan, Matthew Butler, Katrina Falkner, Simon, Amali Weerasinghe

Understanding the teaching context of first year ICT education in Australia . 101

Matthew Butler, Judy Sheard, Michael Morgan, Katrina Falkner, Simon, Amali Weerasinghe

Considerations in automated marking . 111
Joel Fenwick

What are we doing when we assess programming? . 119
Dale Parsons, Krissi Wood, Patricia Haden

Repository of Wisdom: Automated support for Composing Programming Exams 129
Keith Foster, Daryl D’Souza, Margaret Hamilton, James Harland

How (not) to write an introductory programming exam . 137
Simon, Judy Sheard, Daryl D’Souza, Mike Lopez, Andrew Luxton-Reilly, Iwan Handoyo Putro,
Phil Robbins, Donna Teague, Jaqueline Whalley

Comparing student performance between traditional and technologically enhanced programming course147
Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, Rolf Lindén, Einari Kurvinen, Ville Karavirta,
Tapio Salakoski

Comparative study on programmable robots as programming educational tools 155
Shohei Yamazaki, Kazunori Sakamoto, Kiyoshi Honda, Hironori Washizaki, Yoshiaki Fukazawa

Mired in the web: Vignettes from Charlotte and other novice programmers . 165
Donna Teague, Raymond Lister, Alireza Ahadi

Dynamic evaluation trees for novice C programmers . 175
Matthew Heinsen Egan, Chris McDonald

Author Index . 183

vi

Preface

Welcome to the Seventeenth Australasian Computing Education Conference (ACE2015). This year the
ACE2015 conference, which is part of the Australasian Computer Science Week, is being held at University
of Western Sydney (Parramatta Campus), Sydney, Australia, from 27 to 30 January, 2015.

The Chairs would like to thank the program committee for their excellent efforts in the double-blind
reviewing process which resulted in the selection of 20 full papers from the 42 papers submitted, giving
an acceptance rate of 47%. The number of submissions was slightly more than the 39 submitted in the
previous year, but once again with a strong national and international presence. Accepted papers reflected
a variety of topics, with the paper sessions organized into themes, accordingly as: (1) Gender, Curriculum,
Employment; (2) ICT Education I; (3) ICT Education II; (4) Programming Assessment; (5) Introduc-
tory/Novice Programming. As usual many of the papers present new innovations and demonstrate high
quality research.

The doctoral consortium is chaired by Dr Claudia Szabo from the University of Adelaide, Australia.
As with past ACE conferences, we are continuing to hold workshops. This year two workshops have been
organised, both of these led by Associate Professor David Klappholz, Stevens Institute of Technology (New
Jersey, USA). Details are as follows:

– Tutorial WorkshopReal Projects for Real Clients Capstone Course
– Research WorkshopDeveloping a Concept Inventory for Discrete Mathematics

Best papers are awarded on the basis of the double blind peer reviews of the paper and were selected by
the senior co-chair Dr. Jacqueline Whalley. This year ACE awarded a best paper and best student paper.
The best paper was awarded to:

– What are we doing when we assess programming?
Dale Parsons, Krissi Wood and Patricia Haden

One other paper was also highly commended:

– Teaching Computational Thinking in K-6: The CSER Digital Technologies MOOC
Katrina Falkner, Rebecca Vivian and Nickolas Falkner.

The best student paper was awarded to:

– Comparative Study on Programmable Robots as Programming Educational Tools
Shohei Yamazaki, Kazunori Sakamoto, Kiyoshi Honda, Hironori Washizaki and Yoshiaki Fukazawa

We are grateful to SIGCSE for sponsoring the conference jointly with the ACM. We thank everyone
involved in Australasian Computer Science Week for making this conference and its proceedings publication
possible, and we thank CORE, SGI, our hosts University of Western Sydney, Australia, and the Australasian
Computing Education executive for the opportunity to chair the ACE2015 conference.

Daryl D’Souza
RMIT University

Katrina Falkner
University of Adelaide

ACE 2015 Conference Co-chairs
January 2015

vii

Programme Committee

Chairs

Daryl D’Souza, RMIT University, Australia
Katrina Falkner, The University of Adelaide, Australia

Members

Bradley Alexander, The University of Adelaide, Australia
Matthew Butler, Monash University, Australia
Mats Daniels, Uppsala University, Sweden
Michael De Raadt, Moodle, Australia
Paul Denny, The University of Auckland, New Zealand
Julian Dermoudy, University of Tasmania, Australia
John Hamer, The University of Auckland, New Zealand
Margaret Hamilton, RMIT University, Australia
Chris Johnson, ANU, Australia
Mikko Laakso, University of Turku, Finland
Andrew Luxton-Reilly, University of Auckland, NZ
Raina Mason, Southern Cross University, Australia
Chris McDonald, University of Western Australia, Australia
Michael Morgan, Monash University, Australia
Dale Parsons, Otago Polytechnic, New Zealand
Arnold Pears, Uppsala University, Sweden
Anne Philpott, AUT University, New Zealand
Helen Purchase, The University of Glasgow, UK
Anthony Robins, University of Otago, New Zealand
Judy Sheard, Monash University, Australia
Simon, University of Newcastle, Australia
Claudia Szabo, The University of Adelaide, Australia
Charles Thevathayan, RMIT University
Josh Tenenberg, University of Washington, USA
Errol Thompson, Aston University, United Kingdom

Conference Webmaster

Daryl D’Souza, RMIT University, Australia.

viii

Organising Committee

Chairs

Professor Athula Ginige, University of Western Sydney, Australia
Associate Professor Paul Kennedy, University of Technology, Sydney, Australia

Local Chair

Dr Bahman Javadi, University of Western Sydney, Australia

Publicity Chair

Dr Ante Prodan, University of Western Sydney, Australia

Publication Chair

Dr Laurence Park, University of Western Sydney, Australia

Finance Chair

Michael Walsh, University of Western Sydney, Australia

Sponsorship Chair

Kerry Holling, University of Western Sydney, Australia

Doctoral Consortia Co-chairs

Professor Anthony Maeder, University of Western Sydney, Australia
Dr Siamak Tafavogh, University of Technology, Sydney, Australia

Event Coordinator

Nicolle Fowler, University of Western Sydney, Australia

ix

Welcome from the Organising Committee

On behalf of the Organising Committee, it is our pleasure to welcome you to Sydney and to the 2015
Australasian Computer Science Week (ACSW 2015). This year the conference is hosted by the University
of Western Sydney and it’s School of Computin,g Engineering and Mathematics.

A major highlight of the ACSW 2015 will be the Industry Research Nexus day on 27th January 2015.
The aim is for industry leaders and academic researchers to come together and explore research areas of
mutual interest. Many University research groups and 15 industries have confirmed their participation.

ACSW 2015 consists of 9 sub conferences covering a range of topics in Computer Science and related
areas. These conferences are:

– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Motoshi Saeki and Henning
Köhler)

– Australasian Computer Science Conference (ACSC) (Chaired by Dave Parry)
– Australasian Computing Education Conference (ACE) (Chaired by Daryl D’Souza and Katrina Falkner)
– Australasian Information Security Conference (AISC) (Chaired by Ian Welch and Xun Yi)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Bahman

Javadi and Saurabh Garg)
– Australasian User Interface Conference (AUIC) (Chaired by Stefan Marks and Rachel Blagojevic)
– Australasian Web Conference (AWC) (Chaired by Joseph Davis)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by An-

thony Maeder and Jim Warren)
– Interactive Entertainment (IE) (Chaired by Yusuf Pisan and Keith Nesbitt)

Social events are a very important part of a conference as these provide many networking opportunities.
To foster networking we have included a reception with industry on 27th January 2015, a Welcome reception
on 28th January 2015 and a conference dinner on 29th January 2015.

Organising a multi-conference event such as ACSW is a challenging process even with many hands
helping to distribute the workload, and actively cooperating to bring the events to fruition. This year has
been no exception. We would like to share with you our gratitude towards all members of the organising
committee for their combined efforts and dedication to the success of ACSW2015. We also thank all
conference co-chairs and reviewers, for putting together the conference programs which are the heart of
ACSW, and to the organisers of the sub conferences, workshops, poster sessions and Doctoral Consortium.
Special thanks to John Grundy as chair of CoRE for his support for the innovations we have introduced
this year.

This year we have secured generous support from several sponsors to help defray the costs of the
event and we thank them for their welcome contributions. Last, but not least, we would like to thank all
speakers, participants and attendees, and we look forward to several days of stimulating presentations,
debates, friendly interactions and thoughtful discussions.

Athula Ginige
University of Western Sydney

Paul Kennedy
University of Technology Sydney

ACSW2015 General Co-Chairs
January, 2015

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2015 in Sydney. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The component conferences of ACSW have changed over time with additions and subtractions:
ACSC, ACE, AISC, AUIC, AusPDC, HIKM, ACDC, APCCM, CATS and AWC. Two doctoral consortia
(ACDC and ACE-DC) and an Australasian Early Career Researchers Workshop (AECRW) reflect the
evolving dimensions of ACSW and build on the diversity of the Australasian computing community. A
specific industry day on the 27th January to facilitate academic / industry discussion and networking is a
key feature of ACSW 2015.

In 2015, we are fortunate to have Professor Omer Rana, Associate Professor Pascal Hitzler and Professor
Mark Sagar providing keynote talks to the conference. I thank them for their contributions to ACSW2015.

The efforts of the conference chairs and their program committees have led to strong programs in all
the conferences, thanks very much for all your efforts. Thanks are particularly due to Professor Athula
Ginige, Professor Paul Kennedy and their colleagues for organising what promises to be a vibrant event.
Below I outline some of CORE’s activities in 2013/14.

I welcome feedback on these including other activities you think CORE should be active in.

The major sponsor of Australian Computer Science Week:

– The venue for the annual Heads and Professors meeting
– An opportunity for Australian & NZ computing staff and postgrads to network and help develop their

research and teaching
– Substantial discounts for attendees from member departments
– A doctoral consortium at which postgrads can seek external expertise for their research
– An Early Career Research forum to provide ECRs input into their development

Sponsor of several research, teaching and service awards:

– Chris Wallace award for Distinguished Research Contribution
– CORE Teaching Award
– Australasian Distinguished Doctoral Dissertation
– John Hughes Distinguished Service Award
– Various “Best Student Paper” awards at ACSW

Development, maintenance, and publication of the CORE conference and journal rankings. In 2014 this
includes a heavily-used web portal with a range of holistic venue information and a community update of
the CORE 2013 conference rankings.

Input into a number of community resources and issues of interest:

– Development of an agreed national curriculum defining Computer Science, Software Engineering, and
Information Technology

– A central point for discussion of community issues such as research standards
– Various submissions on behalf of Computer Science Departments and Academics to relevant government

and industry bodies, including recently on Australian Workplace ICT Skills development, the Schools
Technology Curriculum and the Defence Trade Controls Act.

Coordination with other sector groups:

– Work with the ACS on curriculum and accreditation
– Work with groups such as ACDICT, ACPHIS and government on issues such as CS staff performance

metrics and appraisal, and recruitment of students into computing
– A member of CRA (Computing Research Association) and Informatics Europe. These organisations

are the North American and European equivalents of CORE.
– A member of Science & Technology Australia, which provides eligibility for Science Meets Parliament

and opportunity for input into government policy, and involvement with Science Meets Policymakers

The 2014 Executive Committee has been looking at a range of activities that CORE can lead or contribute
to, including more developmental activities for CORE members. This has also included a revamp of the
mailing lists, web site, creation of discussion forums, identification of key issues for commentary and
lobbying, and working with other groups to attract high aptitude students into ICT courses and careers.

Again, I welcome your active input into the direction of CORE in order to give our community improved
visibility and impact. CORE’s existence is due to the support of the member departments in Australia and
New Zealand, and I thank them for their ongoing contributions, in commitment and in financial support.
Finally, I am grateful to all those who gave their time to CORE in 2014, and look forward to the continuing
shaping and development of the Australasian computing community in 2015.

John Grundy

President, CORE
January, 2015

xii

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2016. Volume 38. Host and Venue - Australian National University, Canberra, ACT.

2015. Volume 37. Host and Venue - University of Western Sydney, NSW.

2014. Volume 36. Host and Venue - AUT University, Auckland, New Zealand.
2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.
2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.
2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.
2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computing Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AUIC Australasian User Interface Conference
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
AWC Australasian Web Conference
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management
IE Australasian Conference on Interactive Entertainment

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.

xiv

ACSW and ACE 2015 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

Host Sponsors

University of Western Sydney Australian Computer Society Computing Research and Education
www.uws.edu.au www.acs.org.au www.core.edu.au

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

Platinum Sponsor

Dimension Data
www.dimensiondata.com

Gold Sponsors

NTT Australia Pty Ltd Hewlett-Packard Company Intersect Cognizant Technology Solutions
www.au.ntt.com www.hp.com www.intersect.org.au www.cognizant.com

Silver Sponsors

SGI SMS Management and Technology AARNet Macquarie Telecom
www.sgi.com www.smsmt.com www.aarnet.edu.au www.macquarietelecom.com

Bronze Sponsors

Australian Access Federation NEC Australia Pty Ltd Squiz Australia
aaf.edu.au au.nec.com www.squiz.net/au

Talent RISE Espire Infolabs Pty Ltd
www.talentrise.org www.espire.com

xv

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

Contributed Papers

1

CRPIT Volume 160 - Computing Education 2015

2

Gender differences in experiences of TAFE IT students:
a work in progress

Raina Mason
Southern Cross University

raina.mason@scu.edu.au

Graham Cooper
Southern Cross University

graham.cooper@scu.edu.au

Tim Comber
Southern Cross University

tim.comber@scu.edu.au

Anne Hellou
North Coast Institute of TAFE

Anne.Hellou@det.nsw.edu.au

Julie Tucker
Southern Cross University

julie.tucker@scu.edu.au

Abstract
In Australia, one of the sources of loss of females in the
IT education pipeline occurs at the TAFE (college) level.
Female students comprise the majority of early TAFE IT
courses and female completion rates for these courses are
similar to males. Despite this early success, most females
choose to not continue to Diploma level, and through
articulation pathways into university IT courses. A survey
was conducted to determine possible differences in
experiences between male and female TAFE IT students.
It was found that more females than males lived alone or
with dependents. Female students had higher employment
status, higher previous education, and comparable
computer literacy and interest in IT to the male cohort.
Despite these advantages, the female students had lower
confidence in their ability to study, and their abilities in
IT, and many female students did not intend to study or
work in IT. Possible reasons are discussed. .

Keywords: Women in Technology, attrition, self-
efficacy, survey, TAFE, college.

1 Introduction
Since 2008 the Women in Technology (WIT) program at
Southern Cross University has been conducting events
such as games nights, robotics workshops, and social
events to attract female students to study IT, and to
support and retain these students throughout their course.
The WIT program’s purpose is to address the low
proportion of females in IT courses and the IT industry -
currently around 15% in tertiary educational institutions
and around 22% in the IT workforce (Australian
Computer Society 2011). The narrowing of the
educational pipeline of females studying IT is likely to
lead to a greater gender imbalance in the future, and the
lack of participation by females in the production of
technology has an ongoing impact on the shaping and
content of that technology (Logan & Crump 2007).

A recent WIT think-tank - involving university staff,
students, TAFE NSW staff, and representatives of local

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the Seventeenth Australasian Computing
Education Conference (ACE2015), Sydney, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. Daryl D’Souza and Katrina
Falkner, Eds. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

IT industries and employment agencies - identified that
one of the sources of loss of females in the IT education
pipeline occurred at the TAFE (technical college) level.
Specifically, TAFE NSW North Coast Institute
(NCTAFE) offers various Certificate, Diploma and
Advanced Diploma courses and other training packages
in IT, some of which were articulation programs into
undergraduate computing degrees at Southern Cross
University. NCTAFE comprises campuses in Northern
NSW, with approximately 1650 students studying IT
courses (Certificate 1 through to Advanced Diploma)
each year.

Within the TAFE IT courses, a substantial number of
female students who start IT Certificates do not progress
to Diploma or Advanced Diploma courses. For example,
in 2012, across all campuses and study modes, 134
female students (vs 81 male students) enrolled in
Certificate 1 IT courses but this number declined to just 1
female (and 22 male students) in the Advanced Diploma
courses. Surprisingly, there are actually more females
than males in Certificate 1 IT courses but for the
Advanced Diplomas the proportion drops to less than 5%
females (Figure 1).

Figure 1: Percentage of female students in NCTAFE IT

courses (Data provided by NCTAFE 2013)

Females are not leaving further study at TAFE in the
same proportions in other courses. In fact, in certification
levels across all courses in TAFE NSW, females
comprise over 45%, and higher than 50% in Certificate 4
and Diploma (TAFE NSW 2013). This is illustrated in
Figure 2 with the enrolment data for 2012.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

3

Figure 2: Percentages of female students in IT courses vs

All courses (TAFE NSW)

This decrease in number of female students between
Certificate 1 IT courses and Advanced Diplomas should
not be seen as an indication that female students are less
able than males at IT. Completion rates for each course
are similar for males and females (Hellou 2013). At the
end of each course, students are required to make a
conscious decision to pursue further study, and to enrol in
the next course. Fewer female students are making the
choice to continue in IT than are male students.

If this decrease in female students between initial
enrolment and final qualification was happening in a
university undergraduate course, it would present as
withdrawals or failures and would be subject to scrutiny
to find out what was happening to these female students.
The TAFE course configuration allows many exit points
and so this ‘choose not to progress’ attrition has not been
previously identified. The direct result is that the pipeline
of female IT students entering universities through
articulation pathways from TAFE is narrowed. In 2012 at
Southern Cross University, for example, females
comprised merely 9% of the TAFE IT articulation
pathway intake compared to 13.5% in the normal
educational intake (school-leavers and mature-age
students). The reasons for this decrease in female
enrolment percentages from TAFE IT Certificate courses
to Diploma courses are not currently known. Before
programs can be put in place that aim to boost the
numbers of females continuing to study IT at TAFE or
University, the reasons why female IT students choose
not to continue need to be determined.

Many reasons have been proposed for the low
numbers of female IT students, including external factors
such as family obligations and obtaining employment,
and other factors such as lower self-confidence, lower
initial computer literacy, lack of availability of desired
choice of Diploma programs and societal gender
expectations (Cohoon 2001; Katz et al. 2006; Roberts et
al. 2012; West & Ross 2002). A survey was proposed as a
starting point to determine the differences, if any,
between male and female IT students’ experiences, life
circumstances and attitudes.

2 Methodology
In early 2014, all NCTAFE Information Technology
students were invited to participate in an online survey,

with the objective of determining if there were
differences in the profile of male and female students in
IT courses that could impact on their progression. A wide
range of questions were asked in the survey, to identify
any possible differences between male and female
experiences and attitudes.

Some of the areas examined were:
 age group;
 living circumstances (living alone, with family,

share house etc.);
 primary caregiver status (of children or others);
 number of dependents;
 employment status;
 financial pressure experienced;
 current level of emotional well-being;
 prior educational level;
 use of computers;
 previous study in IT;
 reasons for the choice of course;
 attitudes towards study and the course, including

self-efficacy; and
 future intentions in study and employment.

The full set of questions may be accessed at
http://bit.ly/NCITSurveyQuestions.

NCTAFE offers courses in on-campus, distance/online
and ‘mixed’ mode. Online students can commence a
course at any time during the year. For this reason, the
invitation to participate was sent to all new students with
their enrolment package, as well as invitations and
information disseminated to all current IT students.

3 Results

3.1 Responses
The survey was open for 2 weeks, and collected 78
responses in total, which is about 10% of the Semester 1
IT course enrolments. One of these respondents was
under 18 years of age, and this response was discarded, as
approval was not obtained from a parent or guardian.
Several participants did not progress past the first two
questions of the survey - age and gender - and these
responses were not included in the data set.

There were a total of 65 complete or mostly-complete
responses included in the analyses below. Where not all
participants chose to answer a question, this has been
indicated in the results.

3.2 Demographics
Gender: Thirty-seven males (57%) and twenty-eight
females (43%) participated in the survey. It should be
noted that while there were more male than female
participants, the purpose of the survey was to examine the
differences in circumstances and attitudes between
genders, and for this purpose the proportion of male to
female participants is suitable.

Age: The age groups of the survey participants are shown
below in Table 1.

Approximately 66% of the participants were over 40
years of age. Although NCTAFE is a regional institution
which does have a large amount of mature-age students,
the proportion of older students in this sample is higher

CRPIT Volume 160 - Computing Education 2015

4

than expected compared to the general population of
NCTAFE students (NSW Dept of Education and
Communities 2012).

Table 1: Age of survey participants

The age distributions for the participants in this sample,
compared to the general NCTAFE population, should be
kept in mind when considering the results of this survey.

3.3 Current Course of Study
Students may enter a TAFE pathway of study at any
level, if they have satisfied the entry requirements. For
example, some students may be studying a Certificate 4
as their first TAFE IT course, or they may be in
Certificate 2 as their second IT course at TAFE. The
numbers in our sample in each course are shown below in
Table 2. Participation rates are dominated by Certificate 4
students, followed by Diploma students, and these two
combined account for a total of 45 out of the 65
participants (69%) that answered this question.

Table 2: Current TAFE IT course level

Approximately 45% of our sample (50% of males and
41% of females) were enrolled in their first TAFE IT
course. There were 29 students (46%) studying in
online/distance mode, 32 (51%) studying on-campus and
the remainder studying in mixed-mode.

3.4 Living Arrangements
Participants were asked to indicate their current living
arrangements, by selecting from a list of options. The
results are given below in Figure 3. More than one choice
could apply to each student (for example, living with a
partner and living with dependents), so percentages do
not total 100%. Most students live with a partner,
dependants, or with other family, with only 11% living
alone.

Proportionally more females were living alone, and
more females than males lived with dependents. More
males lived with other family - for example they lived
with their parents or siblings.

Figure 3: Living arrangements of male/female students.

The living arrangements of the women who live alone or
with dependents without a partner or other family could
adversely impact on the level of support these students
receive during study, in contrast to the male students who
would presumably be supported by family.

Primary Caregiver Status: 11% of males and 25% of
females indicated that they were the primary caregiver for
between 1 and 4 dependents.

3.5 Employment
Participants were asked if they had paid employment, and
if so, whether this was full-time, part-time, casual or if
they were self-employed. The differences between men
and women were significant (Figure 4). More women had
employment, inclusive of full-time, part-time or other
(Chi Square: p = 0.01; a significance level of 0.05 is used
throughout this paper). Both men and women, if they
were employed part-time or casually or self-employed,
worked an average of 21 hours per week.

Figure 4: Employment of males and females.

We asked those who had indicated they were not working
full-time, whether they were actively seeking
employment. As a proportion of those who were not
employed full-time, significantly more males (39%) than
females (14%) were actively seeking employment whilst
studying (Fisher Exact Probability Test: p = 0.04).

Half (50%) of these job-seeking males expected
employment (if gained) to impact on their further study,
while 66% of job-seeking females expected an impact on
their study if they gained employment. This indicates no
difference between genders for anticipated impact on

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

5

further study if employment was gained (Fisher Exact
Probability Test: p = 0.54).

3.6 Financial Pressure
To determine the level of financial pressure students may
be facing, we asked “If you had to do so in an emergency,
could you find $2000 within 48 hours?” This question is
included on Australian Bureau of Statistics surveys (for
example the ABS General Social Survey - (Australian
Bureau of Statistics 2012a)) as a measure of financial
stress for individuals and households.

As 60% of female students are working full-time,
compared to 30% of males, we may expect that more
males than females would answer “no” - that is, more
males would be experiencing financial pressure. This was
not the case. Around 50% of both males and females
identified that they were experiencing financial pressure,
despite the higher employment status of female students.
The reasons for females experiencing similar levels of
financial stress despite higher levels of employment may
be associated with female students reporting higher
numbers of dependants than male students.

3.7 Kessler 10 (Level of Psychological Distress)
The Kessler 10 (K10) is a standard test of 10 questions
designed to identify levels of psychological distress in
participants (Kessler & Mroczek 1994) . The test asks
participants to indicate how often they have felt various
feelings over the past 30 days. Each measure is then
scored, with “none of the time” = 1, “a little of the time”
= 2, “some of the time” = 3, “most of the time” = 4 and
“all of the time” = 5. For the 10 questions, a minimum
score of 10 and maximum score of 50 is possible
(Andrews & Slade 2001). Scores are then grouped into
four levels of psychological distress (Table 3).

Table 3: ABS K10 categories (Australian Bureau of
Statistics 2012b)

Not all of the participants chose to answer this section of
the survey. The results of the 35 males and 24 females
who answered this question are shown below in Figure 5.

Figure 5: Male and Female K10 scores

There was no difference in psychological distress scores
between males and females (Mann-Whitney U Test: p =
0.3192, UA = 389, z = 0.47).

Of particular interest in these results is that for both
males and females, over half of the participants reported
at least a moderate level of psychological distress. More
research is needed to determine whether this is a
phenomenon particular to IT students, or older IT
students, or whether TAFE students in general are
experiencing significant levels of stress.

3.8 Previous Level of Education
Students were asked to identify the highest level of
education they had completed prior to their current
course. The results of this question for males and females
are shown in Figure 6.

Significantly more females than males had previous
tertiary qualifications, either at TAFE or University (Chi-
Square test, p = 0.016).

Figure 6: Highest level of previous education

3.9 Reasons for choosing to study in this course
It was proposed that as few females were choosing to
continue with higher level TAFE courses, that perhaps
their reasons for studying in IT courses in the first place
were that their preferred course was not available, or that
they were pushed into the course by close friends,
parents, or to satisfy other external agents such as being a
requirement for continuation of receiving unemployment
benefits.

To examine the possible differences in reasons for
choice of course, we provided a list of common reasons
and asked participants to indicate any that applied to their
reasoning for studying their current course. Participants
could choose more than one reason. A range of reasons
were given, and space was also given for other reasons.
The results are displayed for males and females in Figure
7.

There were no significant differences between males
and females for any of these reasons (based upon Fisher
Exact Probability Tests). It is notable that the most
prevalent reason for both males and females was “I have
always been personally interested in IT” with about two
thirds of all students indicating this as a reason. Other
reasons offered for undertaking the course included a
desire for formal recognition of existing skills, changing

CRPIT Volume 160 - Computing Education 2015

6

industry and needing re-skilling, and recognition that IT
skills were broadly applicable to a wide range of careers.

Figure 7: Reasons for choosing current course - males
and females.

3.10 Computing Use and Skills

3.10.1 Computer Literacy
Students were asked about their current skill level in

using a computer as a tool. Values ranged from 1 (“new
to using computers”) to 5 (“can use computers for
advanced tasks and to format professional documents”).
Both males and females generally had high computer
literacy (Figure 8), and there was no difference between
genders (Mann Whitney U Test, p = 0.4562).

Figure 8: Computer literacy of male and female
participants (1 = low, 5 = high).

3.10.2 Computer Use
Time spent on the computer (“computer use”) has long
been correlated with computing self-efficacy and positive
attitudes towards computers (Gardner et al. 1993; Levin
& Gordon 1989). The survey participants were asked how
many hours (approximately) they spent on a computer at
home and (for those who were employed) at work in a

week. Our definition of computer use included sending
emails, socialising, playing games, studying and other
activities.

There was a significant difference between the amount
of computer use at home between males and females
((Mann-Whitney U Test: p = 0.0256, UA = 359.5, z =
1.95) with males using computers for longer times
(Figure 9), but no difference between genders in the
amount of computer use at work (Mann-Whitney U Test:
p = 0.18, UA = 66.5, z = 0.9) (Figure 10). There were,
however, more females employed than males (Section
3.5) and if each person’s total time per week spent on the
computer is taken into account, then there is a trend
towards females having more total time on the computer
each week (Mann-Whitney U Test: p = 0.062 UA =
618.5, Z = 1.54).

Figure 9: Computer Use at Home - Male and Female

Figure 10: Computer Use at Work - Male and Female

3.11 Attitudes towards the course
Self-efficacy in computing and in study has previously
been related to gender (Huffman et al. 2013; Saleem et al.
2011). We asked students to indicate their agreement on a
five point Likert scale with the following statements:

 “I feel confident in my ability to study in this
course.”

 “I feel confident in my ability in information
technology.”

 “I feel excited about studying in my course.”
 “I feel fearful about what might be expected of me

in my course.”
 “I feel confident that the skills I will learn will

benefit me in the future.”

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

7

3.11.1 Self-efficacy in study
With respect to agreement with the statement “I feel
confident in my ability to study in this course”, most
students were reasonably confident in their ability to
study (Table 4 and Figure 11). There was, however, a
significant difference between males and females, with
females reporting lower self-confidence (Mann-Whitney
U Test - p = 0.0197, U = 296, z = 2.06).

Table 4: Self-efficacy in study ability (1 = low, 5 = high)

Figure 11: Self-efficacy in study in the course

3.11.2 Self-efficacy in IT
Most students were relatively confident in their abilities
in IT as well (Table 5 and Figure 12), as presented by
agreement with “I feel confident in my ability in
information technology”. There was a trend towards
females reporting lower self-confidence, compared to
males (Mann-Whitney U Test: p = 0.0808, UA = 339, z =
1.4).

Table 5: Self-efficacy in IT (1 = low, 5 = high)

Figure 12: Self-efficacy in IT

3.11.3 General attitude towards course
There was no difference between males and females in
their general feelings of excitement about studying in
their course (Mann Whitney U Test: p = 0.2148, UA =
379, z = 0.79) - Table 6.

Table 6: Excitement about studying: male and female
(5 = high)

3.11.4 Fear about expectations
There was no difference between males and females in
their level of fear about what might be expected of them
in the course (Table 7) (Mann Whitney U Test: p =
0.3192, UA = 463.5, z = -0.47).

Table 7: Fear about expectations (5 = high)

While there was no difference between genders, it should
be noted that some students were very fearful about what
might be expected of them, and most students had some
level of apprehension.

3.11.5 Confidence in the course outcomes
There was no difference between males and females in
confidence that the skills acquired in their course would
benefit them in the future (Mann Whitney U Test: p =
0.1587, UA = 381.5, z = 1). Most participants rate highly
on this measure, indicating generally positive views
regarding their study, but there were also participants
from both genders who rated this as “low” (Table 8).

Table 8: Perceived benefits (5 = high)

3.12 Future Intentions
Participants were asked what they intended to do when
they completed their current course. Participants could
choose any number of the provided options - seeking
employment in IT, seeking employment in another field,
study further in IT, study further in another field, or
“other reason”. The results of this question are shown in
Figure 13.

Proportionally more women than men were
considering employment or study in a field other than IT,
while all but 1 male intended to work and/or study in IT.
This is clearer when looking at each participant and
determining whether they were only interested in
studying or working in IT (“IT only”), only interested in
studying and working in another field (“Other only”), or

CRPIT Volume 160 - Computing Education 2015

8

if they were more open and considering both (“both”).
The results are in Figure 14 below.

Figure 13: Future Intentions

Figure 14: Future intentions by area (IT or other area).

Significantly more males than females (Fisher Exact Test:
p = 0.022) were considering study or work in only IT, and
had excluded all other possibilities. More females than
males (Fisher Exact Probability Test: p = 0.0198)
considered working or studying in another field, whether
or not they also considered IT. In fact, 20% of females
intended to study or work in another field, and had
excluded IT as a suitable target for work or further study.

4 Discussion
For the Certificate 1 in IT offered by TAFE NSW - North
Coast Institute there are as many female students as male.
There are no apparent difference in completion rates for
courses between men and women at NCTAFE, yet the
proportion of women continuing with further studies in IT
declines compared to males. The female students are
choosing to not pursue further studies in IT at a greater
rate than their male counterparts.

This study reports on an initial stage of research being
undertaken with the objective of determining the reasons
for the gender difference in continuation rates. Although
the participants responding to this survey form a non-
representational sample biased towards older students
compared to the general NCTAFE student population,
and biased towards “later courses” of Certificate 4 and
Diploma compared to early courses of Certificate 1 and
Certificate 2, there are some differences in gender present

that may represent differences in the general NCTAFE
student population.

Despite holding higher levels of previous education
and higher rates of current employment, each indicating a
history of relative success, commencing female IT
students reported lower levels of self-confidence than
men in their capacity to study in their current course. At
this stage we do not know whether this lack of confidence
is due to an innate characteristic of females,
discrimination (as suggested in Valenti 2014), or some
other factor.

Women also reported a broader options-horizon than
their male counterparts with respect to work opportunities
beyond the area of IT. Of all the men studying IT in this
study, only one indicated consideration of future study or
work in an area other than IT, whereas seven (28%) of
females indicated considerations of future employment or
study outside of the IT discipline.

The fact that 20% of females indicated that they now
exclude the possibility of future study or employment in
IT is telling, and consistent with the backdrop to this
study. Women begin their studies in IT with personal
interest rates in the area that are similar to males. Female
students are successful in their studies, with completion
rates that are similar to males yet, for some reason, they
perceive that they lack skills to study in their course, and,
for whatever reason, come to the decision that their future
career aspirations lie somewhere other than IT.

The IT discipline contains a gender bias demonstrating
higher male participation and employment rates. Policies
and programs intended to respond to this by intervening
and supporting female students, for their life and
activities both within and beyond educational institutions,
need to better understand the reasons, rationales and
perceptions that divide male and female students
regarding study and career aspirations in IT. Further
investigation in this area is warranted, and is currently in
progress.

5 Further Work
The current study has reported upon a participant pool
that is skewed towards older students, and towards
Certificate 4 and Diploma level courses compared to
earlier entry courses. Future iterations of this study will
seek a more representational sample with respect to age
of students and course of current study.

A series of interviews is underway with some of the
participants who completed the survey currently reported.
These interviews seek deeper insight into some of the
personal narratives, as case studies, with the intent of
better understanding the dynamics involved in the
decision making process regarding choice of further
study, or employment, in IT and other content domains.

As observed by Abraham Wald (Samaniego &
Francisco 1984) with respect to the location requirements
for placement of armour on warplanes during World War
2, it is not the location of hits upon planes that survive
and return that indicate the needed location for armour
placement, but the absence of planes with certain areas
demonstrating damage, as it is these areas, that indicate
catastrophic vulnerabilities. Of the females participating
in the current study 41% are undertaking their first course
at NCTAFE, and so are presenting information regarding

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

9

their first experiences and perceptions of study in this
area. Further research and analysis is required to drill into
the experiences and perceptions of women who fail to
return to study IT, rather than those who do.

It is important to note that harvesting participants
through open invitations to current students, by
definition, has excluded those past students who have
already chosen, and acted upon, their intentions to not
pursue further studies in IT. A strategy will need to be
devised by which such people may be identified, and
whose participation in completing both questionnaires
and interviews, may be acquired, to enable determination
as to the reasons why these students have become
“missing in action”.

6 Acknowledgements
The authors would like to thank the staff and students of
the TAFE NSW North Coast Institute for their help and
cooperation in this project.

7 References
Andrews, G. & Slade, T., 2001. Interpreting scores on the

Kessler Psychological Distress Scale (K10). Australian
and New Zealand Journal of Public Health, 25(6),
pp.494–497.

Australian Bureau of Statistics, 2012a. 4159.0.55.002 -
General Social Survey: User Guide, Australia, 2010.
Australian Bureau of Statistics. Available at:
http://www.abs.gov.au/ausstats/abs@.nsf/mf/4159.0.55
.002 [Accessed December 10, 2013].

Australian Bureau of Statistics, 2012b. Use of the Kessler
Psychological Distress Scale in ABS Health Surveys,
Australia, 2007-08. Australian Bureau of Statistics.
Available at:
http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4817
.0.55.001Chapter92007-08 [Accessed December 10,
2013].

Australian Computer Society, 2011. Australian ICT
Statistical Compendium 2011. Available at:
http://www.acs.org.au/2011compendium/ [Accessed
February 16, 2012].

Cohoon, J.M., 2001. Toward improving female retention
in the computer science major. Communications of the
ACM, 44(5), pp.108–114.

Gardner, D.G., Dukes, R.L. & Discenza, R., 1993.
Computer use, self-confidence, and attitudes: A causal
analysis. Computers in Human Behavior, 9(4), pp.427–
440.

Hellou, A., 2013. Personal communication.

Huffman, A.H., Whetten, J. & Huffman, W.H., 2013.
Using technology in higher education: The influence of
gender roles on technology self-efficacy. Computers in
Human Behavior, 29(4), pp.1779–1786.

Katz, S. et al., 2006. Gender, achievement, and
persistence in an undergraduate computer science
program. ACM SIGMIS Database, 37(4), pp.42–57.

Kessler, R. & Mroczek, D., 1994. Final versions of our
non-specific psychological distress scale.

Levin, T. & Gordon, C., 1989. Effect of Gender and
Computer Experience on Attitudes Toward Computers.
Journal of Educational Computing Research, 5(1),
pp.69–88.

Logan, K. & Crump, B., 2007. Managing NZ Women in
IT. In P. Yoong & S. Huff, eds. Managing IT
Professionals in the Internet Age. Hershey, PA: Idea
Group Publishing, pp. 1–17.

NSW Dept of Education and Communities, 2012. TAFE
NSW Enrolments: Student Profile (2007-2011), NSW
TAFE. Available at:
https://www.det.nsw.edu.au/media/downloads/about-
us/statistics-and-research/tafe-nsw-statistics-
newsletters/student-profile-2011.pdf [Accessed August
18, 2014].

Roberts, M., McGill, T. & Hyland, P., 2012. Attrition
from Australian ICT degrees: why women leave. In
ACE ’12 Proceedings of the Fourteenth Australasian
Computing Education Conference. Melbourne,
Australia: Australian Computer Society, Inc., pp. 15–
24.

Saleem, H., Beaudry, A. & Croteau, A.-M., 2011.
Antecedents of computer self-efficacy: A study of the
role of personality traits and gender. Computers in
Human Behavior, 27(5), pp.1922–1936.

Samaniego, M.M. & Francisco, J., 1984. Wald’s Work on
Aircraft Survivability. Journal of the American
Statistical Association, 79.386, pp.259–267.

TAFE NSW, 2013. TAFE NSW Statistical Compendium
2012. Technical Paper available from
https://www.tafensw.edu.au/about/assets/pdf/TAFE-
NSW-Statistical-Compendium-2012.pdf [Accessed
October 29, 2014].

Valenti, J., 2014. The female “confidence gap” is a sham.
The Guardian. Available at:
http://www.theguardian.com/commentisfree/2014/apr/2
3/female-confidence-gap-katty-kay-claire-shipman
[Accessed August 20, 2014].

West, M. & Ross, S., 2002. Retaining females in
computer science: a new look at a persistent problem.
Journal of Computing Sciences in Colleges, 17(5),
pp.1–7.

CRPIT Volume 160 - Computing Education 2015

10

Designing a Modern IT Curriculum: Including Information Analytics
as a Core Knowledge Area

Magnus Westerlund
Department of Business Management and Analytics

Arcada University of Applied Sciences
Jan-Magnus Janssonin aukio 1

00560 Helsinki, Finland
magnus.westerlund@arcada.fi

Göran Pulkkis
Department of Business Management and Analytics

Arcada University of Applied Sciences
Jan-Magnus Janssonin aukio 1

00560 Helsinki, Finland
goran.pulkkis@arcada.fi

Abstract
Much has happened in the field of Information Technology
since 2008 when ACM published its curriculum
recommendation for a four year Undergraduate Degree
Program in Information Technology. We show an
alternative path reflecting what we consider presently
requested by the industry and students alike. In this paper
we look at the topics from a holistic point of view, not just
as traditional machine learning Computer Science courses.
We make an argument for widening the scope from
machine learning theory, towards analytical service
development. We give our proposal of a refined IT
curriculum that can be used by other institutions for
refining their curriculums.

Keywords:

IT2008, Model Curriculum, Information Technology
Education, Information Analytics

1. Introduction
Technology development in the IT sector has during the
previous decade, to a large extent, focused on software
service development. This has allowed the industry to open
up previously closed systems toward information sharing
modules. However, during recent years we have seen a new
trend emerge, which seems to become the main driver for
the IT field in the foreseeable future. In their search for
improving customer offerings and increasing productivity,
companies and other organizations today turn towards
analysing data and information by using advanced machine
learning models. The development and usage of these
advanced model types have previously mostly been part of
master and doctoral Computer Science studies, but we
argue that this is about to change. Currently many cloud
service providers are developing mainstream offerings of
machine learning services that can rapidly be implemented
in any software service offering. In consequence, this will
require a different skill set compared to what most IT
engineers have been taught up till today.

The field of Information Technology undergoes rapid
change and requires teaching organizations to continually

redevelop their curricula to reflect the changes in the field.
Current jobs of professionals with an undergraduate degree
in Information Technology (IT, we refer henceforth to the
academic discipline and not to the field) are quite often
more closely related to the business side of an organization
than the jobs of Computer Science (CS) professionals. CS
professionals use their scientific competence to solve
technical problems and to design software, devices, and
systems. An IT professional may, in addition to working
on similar tasks, need to understand and communicate
sometimes complex dependencies or abstractions between
CS professionals’ scope and business oriented clients.

With the advent of Information Analytics and software
services in general (Software as a Service, SaaS), we see
some new trends in the role of IT professionals in the future
technology landscape. In the future an IT engineer must
also be able to communicate technical implementations,
related to information analysis, to business stakeholders.
The volume of data and information is growing rapidly in
the operational environment of business organizations and
other organizations. IT engineers must in the future also
have Big Data processing competences such as
Information Analytics, which requires profound machine
learning skills. We define Information Analytics as a
broader knowledge area than Business Analytics that
primarily considers business information. Information
Analytics deals with all types of information and focuses
on the creation of software solutions and services that
process this information.

The remainder of this paper is structured as follows.
Section 2 contains a literature review of related curriculum
design research. Section 3 defines the knowledge areas and
learning methods of a proposed new IT curriculum. Section
4 describes the competence requirements of the modules in
the proposed new IT curriculum. Concluding remarks are
expressed in section 5. Details of the proposed new IT
curriculum are shown in an Appendix.

2. Related Curriculum Design Research
Current curriculum design research is usually related to
competencies, which the students should achieve. The
following five characteristics

1. inclusive and integrative,

2. combinatorial,

3. developmental,

4. contextual, and

5. evolutionary

Copyright (c) 2015, Australian Computer Society, Inc. This paper
appeared at the 17th Australasian Computing Education
Conference (ACE2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 160. D. D'Souza and K. Falkner, Eds.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

11

are used in (Tardif 2006) to describe the features of
competency.

In Chang (2014) a method called Q-technique is
proposed to obtain the competence requirements of IT
enterprises to serve as a basis for developing an IT
curriculum:

“the purpose of the Q-technique is to consult leading
experts within the IT industry, to obtain statements
and priorities, to form the universal requirements of
IT professional competency.”

As a conclusion is stated that

“IT competencies are structured along the dimensions
of information ability, fault tolerance, execution
ability, problem solving, learning ability, and
innovation ability.“

A process workbook for implementing competence
based education has been prepared for the Clinical and
Translational Science Institute of the University of
Pittsburgh (Dilmore, Moore, and Bjork 2011). Design of a
curriculum in a chosen discipline consists of 13 generic
process steps and 3 generic implementation steps.

Design of a competency based curriculum content
framework of mechanical technology education is
presented in (Sudsomboon 2007). The framework is a set
of requirements for knowledge and understanding, for
skills, and for attitudes.

ACM currently gives curriculum recommendations for
Computer Science (CS), Computer Engineering (CE),
Information Systems (IS), and Software Engineering (SE),
in addition to the recommendation for Information
Technology (IT) (ACM 2008). Examples on using the
ACM IT2008 recommendation (Lunt, et al. 2008) for IT
curriculum design are found in (Koohang, Riley, Smith,
and Floyd 2010, Adegbehingbe and Obono 2012).

Only minor changes were made in the ACM Computer
Science curriculum recommendation for 2008 in
comparison with the recommendation for 2001, while the
changes are significant in the recent recommendation for
2013 (Computer 2013) in comparison with the
recommendation for 2008. Required study time in the
hardware related knowledge areas ‘Architecture and
Organization’ and ‘Networking and Communication’ has
been cut more than 50% and two new knowledge areas,
‘Information Assurance and Security’ and ‘Parallel and
Distributed Computing’ have been added. In ‘Architecture
and Organization’ there is a stronger emphasis on multi-
core parallelism and virtual machine support, and in
‘Networking and Communication’ there is increased
attention to wireless networking. The required study time
in ‘Information Assurance and Security’ is more than 20%
of the total required study time when the distribution of this
knowledge area in other knowledge areas is taken in
consideration.

The significant changes in the Computer Science
curriculum recommendation for 2013 (Computer 2013), in
comparison with the recommendation for 2008, strongly
motivate large changes in the ACM IT2008 Model
Curricula recommendation in (Lunt, et al. 2008). ACM
Education Board has actually in 2012 established an

exploratory Review Task Group for Information
Technology (RTGIT) to review the IT2008 curriculum
recommendations (Paterson et al. 2013). In Zilora et al.
(2013) a new curriculum proposal for teaching IT and also
the addition of analytics as an overarching theme for the
curriculum is presented.

3. Knowledge Areas and Learning Methods of a
new IT Curriculum
When developing our proposed curriculum we primarily
make our recommendations for change based on the
experiences in research within generative information
infrastructures (Henfridsson and Bygstad 2013), the three
branches of analytics (descriptive, predictive, and
prescriptive analytics, outlined for business analytics in
Delen and Demirkan (2013), but also applies generally for
information analytics), natural computing (Shiffman
2012), software engineering, and modern pedagogy of
integrating natural sciences and programming through an
Active Learning methodology.

3.1 Knowledge Areas
We started our curriculum development by considering
whether we should merely add one or two more pillars to
the existing five pillars of IT, presented in the IT
curriculum recommendation in Lunt, et al. (2008). The IT
field has however changed tremendously over the past six
years. By just adding more pillars we feel that the
curriculum would become too general and would therefore
be insufficient for IT students and for industry
requirements on future IT experts. We concluded that a
clear focus is required in order to ensure the necessary
depth in the education of IT engineering experts. We
propose that an IT professional should acquire
competences in four different knowledge areas, which also
reinforce each other, see Figure 1. However, we should
point out that the current broader competence, based on the
ACM IT2008 Model Curricula (Lunt, et al. 2008), is still
relevant today. With the introduction of cloud computing
services like PaaS (Platform as a Service), SaaS (Software
as a Service) and IaaS (Infrastructure as a Service) over the
past years, we conclude that in the future there will be
fewer jobs requiring hardware knowledge and to some
extent hardware related networking skills. Most new IT
jobs will require software skills related to IT services and
scalability issues. A good example of this development is
the Amazon AWS Elastic Beanstalk (AWS 2014) solution
for implementing Java applications to a publicly available
application server without any in-depth hardware
knowledge. We believe that it is therefore essential to look
towards the future and to do our best as educators to
anticipate coming industry needs.

As the IT curriculum proposal in Zilora et al. (2013),
our IT curriculum proposal also has a focus on analytics. It
consists of the following 8 modules:

 General Studies
 4 Core technical modules

o a basic study module on Web and
Visualization

o professional study modules in Analytical
Methods and Data Science, Service Oriented

CRPIT Volume 160 - Computing Education 2015

12

Architectures and System Design, and
Machine Learning and Decision Support
Development

 an extension study module in Business Processes
 Practical Training
 Thesis Work

Figure 1. Knowledge areas for an IT professional.

Each module corresponds to 30 ECTS (European
Credit Transfer and Accumulation System) (European
2009) and is further divided into course units with a
minimum size of 5 ECTS. The learning outcomes and
achieved competences from each module are discussed in
Section 4 and the course units in each module are listed in
the Appendix.

We take the position in this paper that IT should have a
clearer focus towards being the glue between the four other
ACM disciplines (CS, CE, IS, SE), for which curriculum
recommendations are given (ACM 2008), and a
quantitative analyst. IT should focus equally on both
Information and Technology. The former, Information, is
represented in our knowledge areas as Information
Management and Digital Service Development, see Figure
1. The Technology part is characterized by Software
Engineering and Analytics. We find the current ACM
pillars in Lunt, et al. (2008) too confined as such, e.g. the
web systems pillar indicates only one type of system,
suggesting that mobile or desktop are not as important. The
learning outcomes from the Human Computer Interaction
(HCI) pillar in Lunt, et al. (2008) we find imperative, but
we rather see it from a more general scientific viewpoint of
information visualization than as a separate pillar.
Therefore HCI does not exist as a knowledge area in Figure
1, as it encompasses all knowledge areas in Figure 1.

3.2 Learning Natural Sciences in Programming
Course Units

Natural sciences and programming are integrated using an
Active Learning methodology. The three often referenced
Active Learning methods, Collaborative, Cooperative, and
Problem-based, are deployed. Active Learning in
engineering studies has been shown to improve learning
results significantly (Prince 2004).

The main focus for all natural science topics throughout
the degree is to provide students with a fundamental
mathematical understanding of machine learning and data
science relevant concepts. We realize this through the
perspective of natural computing significant course units.
This, we think, assists the student in the learning processes
by providing a reference model that the student can relate
to, by seeing how nature functions.

During the first year, students will study natural science
course units for a total of 15 ECTS. The studies focus on
applied mathematics, statistics, physics, and introduce
them to mathematical programming from the onset. To
give one example, physics will be taught in the form of
game programming in order to help the student to visualize
essential concepts. The intention is to positively reinforce
the students’ learning process, to focus the students on their
own experience and development. We, as in most Western
European societies, have noticed a decline in natural
science ability and interest among the recent generation of
students. We hypothesize that students will become more
motivated if the focus in natural sciences is not only on
abstract topics, but also involves creative and responsive
elements.

Throughout the second year students learn to
understand the concept of particle systems, as a collection
of independent but interactive objects (Reeves 1983). The
students should be able to implement a system of particles
interacting based on forces, motion, waves, and
oscillations, in order to understand the notion of variations
over time. Concepts such as amplitude, frequency, period,
degrees and radians and their transformations become
familiar, e.g. in programming a pendulum example
(Shiffman 2012). An important part is matrix calculations,
including scalar and matrix operations, transverse matrix,
inverse matrix, determinant and solution of matrix
equations.

4. Competence Requirements for an IT
Engineering Curriculum, Focusing on both
Information and Technology
In this section we start by describing the general
competences we have found to be essential for the future
IT engineer. This is followed by an examination of the core
technical competences required to handle the diverse
responsibilities. During this examination we do not limit
ourselves to Information Analytics, but rather present a
holistic view of the core technical competences that were
identified. In essence we define the future competence
need to be based on equal parts of Information and
Technology studies. The level of competence depth gained
for the degree, i.e. learning outcomes, should follow the
European Qualifications Framework (European 2014)
level 6. Level 6 competences are defined in the context of
responsibility and autonomy as “ Manage complex
technical or professional activities or projects, taking
responsibility for decision making in unpredictable work
or study contexts; take responsibility for managing
professional development of individuals and groups.”

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

13

4.1 General Competences
As the SaaS model has become an important driver for
digital entrepreneurship and business growth, we believe
students need an in-depth understanding of creating such
services. Service innovation is mostly a customer driven
process so customer involvement is important (Hanseth et
al. 2012, Alam and Perry 2002). Understanding and being
able to anticipate the latent needs of customers is a complex
task, but research shows that customer involvement is often
crucial and leads to the development of more innovative
services, regarding both originality and user value
(Matthing et al. 2004). Therefore it stands to reason that
communicational, social, and business skills among IT
engineers are of great importance. We consider that this is
becoming an even more prominent feature of successful IT
professionals in the future. In Lunt, et al. (2008) it is stated
that IT “focuses on preparing graduates who are
concerned with issues related to advocating for users and
meeting their needs within an organizational and societal
context through the selection, creation, application,
integration and administration of computing
technologies”. In our IT curriculum proposal the studies
will therefore contain a significant amount of general
competences in topics such as communication and social
interaction.

In Delen and Demirkan (2013) the need for business
analytics is defined as “At a time when firms in many
industries offer similar products and use comparable
technologies, business processes are among the last
remaining points of differentiation.” The field of analytics
allows the companies to extract “every last drop of value
from those processes”. This requires at least a basic
understanding of how a company functions and how
different business processes can be measured. We therefore
defined an elective module as business processes, were
students can get an introduction into functionality of
companies. We introduce three different core processes:
marketing, logistics and financial management.

We also offer an alternative to this module, an
entrepreneurship focused module for those students that
prefer founding their own companies.

4.2 Overview of Core Technical Competences
In designing the curriculum the outcome goals for the
degree were defined as that graduates have competences to
analyse information and are able to develop software
services for the digital world, here without focusing on any
specific context area. The student should learn to plan and
construct software for web, mobile, and cloud services or
applications. The student should also have the ability to
visualize, analyse, and handle data that exist in various
forms. The final technical goal that was formulated was
that the student should be able to motivate the use of
different types of machine learning models in order to get
answers from various hypotheses or to questions based on
processed data.

We acknowledge that Big Data has become an
important impetus for many technology oriented and
customer driven companies. However, we find the
analytical understanding from an academic perspective to
be the fundamental driver for implementing new services.

In our view the size of data refers more to a tool proficiency
skill than to a pure competence. Scalability and
parallelization as technological competences should
explain the phenomenon of Big Data. Although the
argument from a mathematical point of view often requires
a separation of small and big data, as e.g. the sample size
differ (small n=10´s; big n=all). We consider, however, the
hypothesis creation to be part of a quantitative analyst’s
(data scientist’s) job description, rather than the IT
engineer’s.

The current ACM IT curriculum recommendation
highlights information assurance and security as
comprehending all pillars (Lunt, et al. 2008). These
recommendations for information assurance and security
are relevant also in our IT curriculum proposal, with the
addition of cloud service security and analytics for
implementation of security services.

4.3 Web and Visualization Module
The initial technical module is intended to teach students
the structure of information and interactive programming.
We assume that the students, when they start, have
fundamental skills in handling a computer and common
software. Our previous experience is that new students
often have limited understanding of how to divide a
problem into its essential sub-components and how to re-
assemble the solutions of the sub-components into a
structured result. Therefore, we have set the learning
outcome for the first year studies to achieve proficiency in
web development platforms and programming languages.
The students should be able to develop web applications
and explain the web architecture, in order to demonstrate
their problem solving ability. The student should also be
able to produce visually appealing and easy to use user
interfaces, which includes responsive design i.e. that the
layout changes depending on which client the visitor uses.
Our intention is to teach both imperative and declarative
programming from the start in order to support the
student’s learning experience in understanding both
information structure and interactivity. Research has
shown that visual perception and thinking are linked
through an intrinsic relationship (Arnheim 1980).
Therefore teaching information visualization through the
use of descriptive programming should support an
understanding of both spatial and temporal relationships.
These relationships can be directly related to imperative
programming constructs, and should arguably support the
student in forming the initial mental pictures of abstract
constructs, help them to reflect on their practice, and
inform them about future designs (Walny 2011).

4.4 Analytical Methods and Data Science
Module

The task of handling data is for an IT engineer likely to
become a more important competence than before. The
current ACM curriculum recommendation has Databases
as one of its pillars (Lunt, et al. 2008). The shift in
technology we are currently experiencing, requires us to
broaden the perspective from databases (the process of
storing and extracting data) to include analytical and visual
methods for dealing with data, and also to understand
technically very different types of storing/processing

CRPIT Volume 160 - Computing Education 2015

14

methods in scalable architectures. With the introduction of
Big Data tools such as Hadoop we have gone from mostly
focusing on efficient data structures to designing efficient
algorithms that process seemingly unstructured data.
Hadoop (Welcome to Apache Hadoop 2014, Borthakur
2007) can be described as a distributed database that allows
users to process information directly on the node were the
data resides. Therefore understanding the concept of
parallelization for solving problems becomes essential.

Before a dataset can be processed in a machine learning
model it often requires extensive pre-processing, also
called feature engineering. There are several stages that are
part of pre-processing, e.g. checking data for validity,
coding, dealing with missing values, normalization, and
feature extraction, to name a few. The pre-processing stage
is usually considered to be the most time consuming and
important stage in terms of improving the end result. In
addition to understanding the earlier mentioned stages it
also requires object oriented programming skills in order
to be able to automate data pre-processing. Once a machine
learning model has given an output, this data needs to be
post-processed to create decisions and often some type of
visualization is needed for a human to understand the
output. (Baesens 2014)

Taking this into account we have defined the targeted
competences for the module to be that the student can
manage, organize and visualize data. The student should
also be able to justify how the data should be stored to
comply with technical, legal and contractual provisions,
but also be able to evaluate security risks in data
management and apply data security in computer networks.
Regarding programming competences the student should
be able to plan and produce secure applications based on
object oriented programming. Students learn to develop
essential sequentially coded algorithms and also to
implement these algorithms with parallelized code.
Examples of such algorithms are various sort/process
tasks, which in later modules can be used to explain more
complex programming methods, e.g. the MapReduce
programming model (Dean and Ghemawat 2008).

4.5 Service-Oriented Architectures and System
Design Module

As the software industry has matured over the past two
decades it has meant that we currently emphasize
architectural design more than ever. The focal point for this
development has been the Service Oriented Approach
which represents a baseline for a distributed architecture
with no direct reference to implementation (Erl 2004). The
distributed architecture defines well-formed access points
through Web services, which when made public, open up
the information infrastructure to become a shared,
evolving, and open experience (Hanseth 2002).
Henfridsson and Bygstad (2013) identified three
generative mechanisms at the core of creating successful
information infrastructures: innovation, adoption, and
scaling. These were considered self-reinforcing processes
that spawn new recombinations of resources. As user
adoption increases, more resources are invested and
therefore the usefulness of the infrastructure increases.
True service scaling attracts new partners by offering
incentives for collaboration.

We consider it important that students understand that
creating successful software requires a much broader
understanding than only a programming understanding.
Hence, we will devote a large portion of the third year
towards raising awareness and understanding of how
software architectures can be made scalable by utilizing
cloud infrastructures and software defined networks
(Sommerville 2013). As a basis for an innovative
infrastructure we will focus the attention on how students
obtain a critical understanding of descriptive data mining
or text analytics. From a technical point of view the student
must be able to defend the chosen architecture by referring
to established software patterns.

The objective for the third year is to give an
introduction to machine learning models. The core focus is
on autonomous agents, evolutionary algorithms, and
statistical pattern learning (text analytics). Students learn
to design ranking algorithms that allow them to implement
objective functions for various optimization problems.
Earlier studies have focused on the individual particle, but
during the third year “herd behaviour” is introduced as to
appreciate how the agents’ own decisions influence the
group and vice versa.

As is mentioned in section 4.1, the recommended
general competences include topics such as marketing and
digital marketing to enhance the students’ understanding of
consumers and service adoption.

4.6 Machine Learning and Decision Support
Systems Development Module

In Davenport (2013) it was claimed that we are currently
embarking on the third evolution of analytical services.
Analytics 1.0 was the era of Business Intelligence, 2.0 the
era of Big Data, and 3.0 is the era of data-enriched
offerings. This new era requires new types of technologies,
but also uses many of the open source tools, e.g. Hadoop,
or cloud computing services developed for the previous
eras (Davenport 2014). Therefore we claim that the new IT
engineering challenge will be to combine various tools and
services with appropriate models and data sources, to
deliver new insights to the end user.

Thus, the fourth and final technical module focuses on
Service Oriented Decision Support System (SODSS)
development. These service types are often offered as
distributed collaboration components, produced by many
partners, and consumed by end users for decision making.
Examining the SODSS environment as a process three
major service classifications emerge: data, information,
and analytics. Data-as-a-Service (DaaS) allows any
business process to access data wherever it resides. The
technical implementation is often performed through
Master Data Management (MDM) and/or Customer Data
Integration (CDI). Information-as-a-Service (IaaS)
typically refers to a refinement of data and to making
information available quickly to people, preferably in real-
time. This opens up technical challenges such as real-time
data formatting, in-memory computations, and parallel
transaction and event processing. Analytics-as-a-Service
(AaaS) tends to focus on insights drawn from machine
learning models. These models can be of a descriptive
nature, but are often focusing on predictive and

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

15

prescriptive elements. AaaS consumes information
services in order to deliver different types of Enterprise
Analytics or other end user relevant analytics. Technical
issues include scaling, interface dependencies, in-memory
computing, dealing with machine learning models as black
boxes, and system stability. (Demirkan and Delen 2013)

During the fourth and final year students gain an ability
to utilize more advanced machine learning models for both
predictive and prescriptive analysis. They will learn to
appreciate the inner workings of various learning methods
and solve non-linear problems. The main focus of the
studies will be on the computing side, i.e. that students
learn how to create analytical systems. They will learn
essential heuristic techniques and their mathematical
explanation for problem solving, learning, and discovery.

Consequently the student should learn to predict events
based on prior data through the use of machine learning.
Machine learning models we refer to here are defined
through the universal approximation theorem stating that
any arbitrary continuous function can be estimated. This is
done through a non-linear mapping of the input vector into
a high-dimensional feature space, which in turn is
connected to an output layer. (Haykin 2013) Students
should thus learn to deal with high-dimensionality
problems that allow them to master the implementation of
advanced models for solving both regression and
classification problems. This also requires the student to
have a fundamental understanding of optimization
techniques that can be used to demonstrate an optimal
solution to a given problem.

Once students have an empirical understanding of
dealing with machine learning models, focus is shifted
towards creating services such as decision support systems
and automated expert systems.

4.7 Thesis Module
In the thesis module the student learns to manage projects
and understands how development is executed in agile
projects. Students can express themselves in their native
language both orally and in writing, as required by
regulation. The student will be able to write a publication
that summarizes the development of a project in a scientific
manner.

5. Conclusions
The Information Technology field is rapidly developing
and at the same time changing other fields it comes into
contact with, everything from healthcare to the automotive
industry. Rometty (2013) (CEO of IBM) commented the
current technological shift towards analytical services as
“…this is a thirty to fifty year, long-term project, which
requires the next generation of computers, i.e. the self-
learning computer”. During this time we will likely see the
IT curriculum change many times and curricula for new
disciplines develop, e.g. currently Business Analytics
degree programs have hastily been developed at many
Business Schools. The coming changes to the ACM IT
curriculum recommendation should take into consideration
Information Analytics in order for IT degree programs to
stay relevant in the future. By tackling machine learning
through development of analytical services and not through

mathematics as is often done in Computer Science, we
believe the area can be opened up to a greater engineering
audience than before.

6. References
ACM: ACM Curricula Recommendations.

http://www.acm.org/education/curricula-
recommendations. Accessed 19 Aug 2014.

Adegbehingbe, O.D. and Eyono Obono, S.D. (2012): A
Framework for Designing Information Technology
Programmes using ACM/IEEE Curriculum Guidelines.
Proc. World Congress on Engineering and Computer
Science WCECS 2012 I.

Alam, I. and Perry, C. (2002): A customer-oriented new
service development process. Journal of Services
Marketing 16(6):515-534.

Arnheim, R. (1980). A plea for visual thinking. Critical
Inquiry 6(3):489-497.

AWS: AWS Elastic Beanstalk.
http://aws.amazon.com/elasticbeanstalk/. Accessed 19
Aug 2014.

Baesens, B. (2014): Analytics in a Big Data World: The
Essential Guide to Data Science and Its Applications.
John Wiley & Sons.

Borthakur, D. (2007): The Hadoop Distributed File
System: Architecture and Design, The Apache
Software Foundation.
http://hadoop.apache.org/common/docs/r0.18.0/hdfs_de
sign.pdf. Accessed 19 Aug 2014.

Chang, C.-C. (2014): Obtaining IT Competencies for
Curricular Development using Q-technique.
International Journal of Academic Research in
Business and Social Sciences 4(3):60-74.

Computer Science Curricula. (2013): The Joint Task
Force on Computing Curricula, Association for
Computing Machinery (ACM) IEEE Computer Society.
http://www.acm.org/education/CS2013-final-report.pdf.
Accessed 19 Aug 2014.

Davenport, T.H. (2013): Analytics 3.0. Harvard Business
Review 91(12), 64-72.

Davenport, T.H. (2014): Big Data at Work: Dispelling the
Myths, Uncovering the Opportunities. Harvard
Business Review Press.

Dean, J. and Ghemawat, S. (2008). MapReduce:
simplified data processing on large clusters.
Communications of the ACM 51(1):107-113.

Delen, D. and Demirkan, H. (2013): Data, Information
and Analytics as Services. Decision Support Systems
55(1):359-363.

Demirkan, H. and Delen, D. (2013): Leveraging the
capabilities of service-oriented decision support
systems: Putting analytics and big data in cloud.
Decision Support Systems 55(1):412-421.

Dilmore, T.C., Moore, D.W. and Bjork, Z.J. (2011):
Implementing Competency-Based Education. A
Process Workbook 2009-2011prepared for the Clinical
and Translational Science Institute in University of
Pittsburgh.

CRPIT Volume 160 - Computing Education 2015

16

http://www.academic.pitt.edu/assessment/pdf/Compete
ncyBasedEducation.pdf. Accessed 19 Aug 2014.

Erl, T. (2004): Service-oriented architecture: a field guide
to integrating XML and web services. Prentice Hall
PTR.

European Commission: Descriptors defining levels in the
European Qualifications Framework (EQF).
http://ec.europa.eu/ploteus/content/descriptors-page.
Accessed 19 Aug 2014.

European Communities (2009): ECTS Users’ Guide.
http://ec.europa.eu/education/tools/docs/ects-
guide_en.pdf. Accessed 19 Aug 2014.

Hanseth, O. (2002): From systems and tools to networks
and infrastructures – from design to cultivation. Toward
a theory of ICT solutions and its design methodology
implications.
http://heim.ifi.uio.no/~oleha/Publications/ib_ISR_3rd_r
esubm2.html. Accessed 19 Aug 2014.

Hanseth, O., Bygstad, B., Ellingsen, G., Johannessen, L.
K. and Larsen, E. (2012): ICT Standardization
Strategies and Service Innovation in Health Care. Proc.
International Conference on Information Systems,
Orlando, USA.

Haykin, S. (2009): Neural Networks and Learning
Machines, 3rd ed. USA, Pearson Prentice Hall.

Henfridsson, O. and Bygstad, B. (2013): The Generative
Mechanisms of Digital Infrastructure Evolution.
Management Information Systems Quarterly 37(3):896-
931.

Koohang, A., Riley, L., Smith, T. and Floyd, K. (2010).
Design of an Information Technology Undergraduate
Program to Produce IT Versatilists. Journal of
Information Technology Education 9:99-113

Lunt, B.M., Ekstrom, J.J., Gorka, S., Hislop, G., Kamali,
R., Lawson, E., LeBlanc, R., Miller, J. and Reichgelt,
H. (2008): Information Technology 2008 Curriculum
Guidelines for Undergraduate Degree Programs in
Information Technology.
http://www.acm.org/education/curricula/IT2008%20Cu
rriculum.pdf. Accessed 18 Aug 2014.

Matthing, J., Sandén, B. and Edvardsson, B. (2004): New
service development: learning from and with
customers. International Journal of Service Industry
Management 15(5):479 – 498.

Paterson, B., Granger, M., Impagliazzo, J., Sobiesk, E.,
Stockman, M. and Ming Zhang, M. (2013): Should
IT2008 be revised? Proc. 14th annual ACM SIGITE
conference on Information technology education, New
York, USA, 53-54, ACM Press.

Prince, M. (2004): Does active learning work? A review
of the research. Journal of engineering education
93(3):223-231.

Reeves, W.T. (1983): Particle systems—a technique for
modeling a class of fuzzy objects. ACM SIGGRAPH
Computer Graphics 17(3):359-375.

Rometty, V. (2013): A Conversation with Ginni
Rometty. http://www.youtube.com/watch?v=SUoCHC-
i7_o. Accessed 19 Aug 2014.

Shiffman, D. (2012): The nature of code:[simulating
natural systems with processing]. Selbstverl.

Sommerville, I. (2013): Teaching cloud computing: a
software engineering perspective. Journal of Systems
and Software 86(9): 2330-2332.

Sudsomboon, W. (2007): Construction of a Competency-
Based Curriculum Content Framework for Mechanical
Technology Education Program on Automotive
Technology Subjects. Proc. ICASE Asian Symposium.
Pattaya, Thailand.

Tardif, J. (2006): L'évaluation des compétences :
Documenter le parcours de développement. Montréal,
QE: Chenelière Éducation

Walny, J., Carpendale, S., Riche, N.H., Venolia, G. and
Fawcett, P. (2011): Visual thinking in action:
Visualizations as used on whiteboards. IEEE
Transactions on Visualization and Computer Graphics
17(12):2508-2517.

Welcome to Apache Hadoop. Retrieved on 6/6/2014 from
http://hadoop.apache.org/. Accessed 19 Aug 2014.

Zilora, S.J., Daniel Bogaard, D. S. and Jim Leone, J.
(2013): The changing face of information technology.
Proc. 14th Annual ACM SIGITE Conference on
Information Technology Education. New York, USA,
29-34, ACM Press.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

17

Appendix
Details of our proposed IT curriculum for an
Undergraduate Degree Program are shown in Figure 2 and
Table 1. Figure 2 illustrates the curriculum structure at our
university. We define the course units to be covered for
each of the modules (with the exception for practical
training) in Table 1.

 Figure 2. Structure of proposed IT Curriculum.

Module Title Level Course Units Covered

General General

Arcada 360; Introduction to Academic studies; Communications and Public
Speaking; Nature of Code 1 - Introduction to Mathematical Programming;
Statistics and Probability; Second Language

Web and
Visualization Basic

Web Development; Front-end Programming; Back-end Programming; Web
services, Databases and CMS; Computer Architecture and Operating Systems;
Nature of Code 2 - Vectors and Forces

Analytical Methods
and Data Science Professional

Information Visualization; Data Structures and Algorithms; IT-Law and Ethics;
Concurrent Programming; Nature of Code 3 - Oscillation and Particle Systems;
Network Protocols and Security;

Service Oriented
Architectures and
System Design Professional

Network Communication and Cloud Technologies; Nature of Code 4 -
Autonomous Agents and Cellular Automata; Nature of Code 5 - Fractals and
Evolution of Code; Descriptive Analytics - Data/Text Mining; Software Defined
Networks; Analysis and Design, UML and Design Patterns

Machine Learning
and Decision Support
System Development Professional

Analytical System Design; Image and Speech Recognition Algorithms;
Decision Support System Development and Verification; Predictive Analytics -
Neural Networks; Prescriptive Analytics – Optimization; Process Optimization

Business Processes Extension

Introduction to Business Administration; Introduction to Marketing; Digital
Advertising; Introduction to Logistics; Intercultural Business; Introduction to
Financial Management

Thesis Work Thesis
Project Management; Academic Writing; Research Methodology and Seminar;
Thesis Work (15 ECTS)

Table 1. Course Units Covered

CRPIT Volume 160 - Computing Education 2015

18

Quality Assurance using International Curricula and Employer
Feedback

Marta Lárusdóttir
Reykjavik University
Reykjavik, Iceland

marta@ru.is

Mats Daniels
Uppsala University
Uppsala, Sweden

mats.daniels@it.uu.se

Roger McDermott
Robert Gordon University
Aberdeen, Scotland

roger.mcdermott@rgu.ac.uk

Abstract1
The focus of this paper is the quality assurance process
for the bachelor program in the School of Computer
Science at Reykjavik University, which is a combination
of outcome- and process-oriented quality assurance.
Faculty members and employers of graduates provided
information for the quality assessment. The results
provide both detailed quantitative data and more
qualitative information that give all stakeholders a variety
of ways to interpret the status of the quality of education.
This type of assessment has raised the awareness of the
faculty members on how abstract topics and learning
outcomes from an international standard can be used
when revising the curricula of a particular course. A
notable feature of this type of analysis is its use of
employer-generated data to examine graduate knowledge
and skills. The contribution of the paper is to provide an
example of how a quality assurance process can be made
more valuable to both faculty and degree stakeholders by
combining outcome- and process-oriented quality
assurance strategies.
Keywords: Quality assurance, Evaluation, Degree
programs

1 Introduction
Quality assurance of education programs is a complex
task and can serve several different functions such as
helping to identify pedagogical strengths and weaknesses
in a program, or, in extreme cases, providing evidence for
its cessation. This complexity is compounded by the fact
that the process itself can be conducted by different
stakeholders, e.g. national agencies or individual
departments within a particular institution. Moreover, the
methodology used - specifically the focus of the quality
assurance process and the type of assurance procedures
used - may significantly affect the conclusions that are
drawn. In most cases attention is directed to either the
features of the educational experience (including
curriculum content, course administration, delivery and
assessment mechanisms...) or to an assessment of the
abilities of the graduating students. In both these cases,

Copyright © 2015, Australian Computing Society, Inc.
This paper appeared at the Seventeenth Australasian
Computing Education Conference (ACE2015), Sydney,
Australia. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 160. Daryl
D’Souza and Katarina Falkner, Eds. Reproduction for
academic, not-for-profit purposes permitted provided this
text is included.

fundamental questions arise about what precisely should
be measured and which set of criteria should be used.
These issues are even more problematic when attempting
to assess areas for which there may be no obvious or
well-established metrics, e.g. professional skills such as
intercultural competence. Furthermore, consideration also
needs to be given to whether the issues to be measured
are known in advanced by those being evaluated, since
this could potentially lead to “cosmetic” adjustments
made to subvert the accuracy of the evaluation process.

The focus of this paper is the quality assurance
process taking place in the computer science bachelor
program at Reykjavik University, Iceland. The process
was partly influenced by the Swedish national quality
assurance process for computer science programs
performed in 2012/2013. The Reykjavik process is of
interest in that it combines an assessment of program
content and delivery with evaluation of graduates’
abilities. Rationale for choices, methods for conducting
the quality assurance, some results as well as conclusions
will be covered in this paper. We highlight two key
features of the Reykjavik process. The first is the use of
the ACM/IEEE computer science curricula 2013
(ACM/IEEE 2013) (henceforth referred to as the “ACM
Curricula 2013”) to bridge the gap between the typically
fairly abstract national degree criteria and the more
tangible aspects of course implementation, and to provide
a rather concrete description for evaluating findings. The
second is the use of employer responses to assess relevant
graduate attributes.

2 Quality Assurance
As stated above, quality assurance is a complex
endeavour in which the details of context are important.
In this current work, the academic department is taken to
be the main stakeholder and performs the quality
assurance process in order to ascertain strengths and
weaknesses so as to improve the program. There are
several ways to ensure the validity of this kind of process.
One is to base any review on the accreditation criteria for
computer science programs (ABET 2010) devised by
internationally recognised accreditation organisations
such as ABET (formerly known as the Accreditation
Board for Engineering and Technology). ABET conducts
assessments, including site visits, outside the US and
have also influenced national quality assurance
programmes, e.g. in Estonia. Another effort to ensure
validity is conducted by the European association for
quality assurance in higher education (ENQA) (ENQA
2013), which is an association within the European Union
evaluating quality assurance processes in its member
countries.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

19

This kind of quality benchmarking is useful,
especially for so-called process-oriented quality assurance
which focuses on what an education program contains
and how it is delivered. An alternative strategy for
conducting the quality assurance process is
outcome-based assurance where the abilities of students
after a course or a degree program are assessed, and this
has recently become more popular. ABET changed their
assessment strategy towards this at the turn of the century
(Lattuca et al. 2006) and Sweden is at the end of four year
national quality assurance cycle for all degree programs
which mainly uses outcome-based procedures (HSV
2012). Process-oriented assurance focuses on the general
process by which education is carried out and there are
many readily available sources of information which may
be used to feed in to this analysis. However, there is often
a lack of attention to the experience of the learner. By
contrast, outcome-based assurance tries to assess the
quality of the program by determining if suitable
outcomes have been achieved. This lends itself to a
student-focused approach but assumes that there is
agreement on what outcomes should be measured and
what constitute the criteria for success. Since both
alternatives have their strengths and concomitant
weaknesses, there is current interest in looking at
approaches which use positive aspects of both practices to
evaluate the quality of a program. One such attempt is
that of Reykjavik University Computer Science
department.

3 The Reykjavik University Setting

3.1 The Computer Science Program
The bachelor program in computer science at Reykjavik
University started in 1998 and the taught content was, at
that time, strongly influenced by the 1991 version of the
ACM/IEEE computer science curriculum (Tucker 1991).
The program had an extensive review in 2008 based on
the 2001 version for the computer science subfield
(ACM/IEEE 2001). During this overhaul, the revision of
the standard from 2008 was also taken into consideration
(ACM/IEEE 2008). The program includes 17 mandatory
course units in computer science and mathematics for a
total of 102 ETCS (one ETCS is 1/60 of a “student year”)
and a mandatory final group work project that is 12 ECTS
for each student. In addition, students can select between
four “emphasis lines” which consist of 30 ECTS in
courses related to their focus subject.

3.2 Quality Assurance Method
In 2013, the program was the subject of a quality
assurance evaluation as part of an ongoing national cycle
of Higher Education review based on the Quality
Enhancement Framework (Rannis 2011). The main aim
of this framework is to support the quality assurance
efforts of Icelandic Higher Education institutions by
providing guidance on the objectives, requirements and
operational procedures for evaluating quality at both the
institutional and departmental level. In terms of
compliance with QA regulation, the main source of
documentation, the Quality Enhancement Handbook for
Icelandic Higher Education, specifies that “all institutions
will be required to conduct regular internal reviews

covering each of their subject areas” and the subject-level
review was scheduled for the School of Computer
Science within the 2013 calendar year.

An important question for such reviews is the basis
on which the quality assurance process should progress.
As mentioned in section 2 in this paper, there are two
basic approaches generally termed process-oriented and
outcomes-oriented. The former tends to examine the
structural elements of the educational process (e.g.
content, curriculum, learning objectives, teaching styles)
and map it against some set of trans-institutional
standards which act as a benchmark for best practice in
the area. The second approach looks at the output of the
educational process and tries to determine whether the
students that have undergone the experience do indeed
possess the knowledge, skills (and attitudes to learning)
that the program seeks to deliver. A number of difficulties
present themselves in this situation. For example, a
choice needs to be made on what constitutes an
appropriate criteria of success, how the assessment of
these measures should take place, and who provides the
data for making such a decision. One influential input to
the discussions for the Reykjavik review was the recent
(2012/2013) national quality assurance process for
computer science in Sweden, which took a strongly
outcome-based approach.

The obvious starting point for any examination of
educational quality in an Icelandic degree program is the
national degree criteria (Rannis 2011). Unfortunately,
while providing a useful framework to discuss general
aspects of learning at the subject level, these criteria were
found to be too abstract to serve directly as the basis for
constructing learning objectives for the various course
units. Following historical precedent, therefore, it was
decided to use the 2013 Ironman draft of the ACM
Computer Science curriculum as a bridging document
linking the high-level pedagogical objectives of the
national criteria to specific learning objectives within
particular course units (ACM/IEEE 2013).

An attempt was made to map the general objectives
of the national degree criteria to the more specific
statement of skills contained in chapter 3 of the
ACM/IEEE curriculum document. For example, it was
possible to map the statement from the national criteria
that a student graduating from a bachelor of science
program should be “capable of interpreting and
presenting scientific issues and research findings”,
(Education ministry 2011) to the ACM Curriculum
guidelines on communication and organizational skills:
“Graduates should have the ability to make effective
presentations to a range of audiences about technical
problems and their solutions. This may involve
face-to-face, written, or electronic communication. They
should be prepared to work effectively as members of
teams. Graduates should be able to manage their own
learning and development, including managing time,
priorities, and progress.” [ACM/IEEE 2013, p.22].

The example given above illustrates two things.
Firstly the ACM document articulated a description of the
various knowledge and skills elements to be found within
the generic computer science curriculum areas at a much
finer level of granularity than the national document itself
and this enabled clearer discussion of the criteria for

CRPIT Volume 160 - Computing Education 2015

20

success. Secondly the ACM document served a normative
function by acting as a benchmark for comparing the
disposition of knowledge and skill elements within the
courses of the Reykjavik program with those that the
ACM curriculum deemed to be necessary elements of a
computer science bachelor program. This gives the
process-oriented element of the quality assurance process
but it does not address the problem of how to assess
outcome-based criteria such as the ability to demonstrate
appropriate capabilities in a graduate working
environment. In order to evaluate this aspect of the
program, information on the performance of
newly-graduated students was sought from employers.

3.3 The ACM/IEEE Curricula
The ACM/IEEE document identifies two main
pedagogical elements of the curriculum: Knowledge areas
and Characteristics of graduates. The former specifies
the content areas of the subject whereas the latter
identifies the more general, interdisciplinary skills and
competencies that a student should develop through
engagement with the educational program.

3.3.1 Knowledge Areas
The knowledge areas are part of the “Body of
knowledge” section of the curricular document
(ACM/IEEE 2013) and define the topical areas of
computer science as seen by ACM and IEEE. There are
18 knowledge areas in the 2013 standard, see table 1 in
section 5.1, and two of them are new to this version, i.e.
“Information assurance and security” and “Parallel and
distributed computing”.

Each knowledge area is described by a list of
sub-areas with associated topics and learning outcomes,
and the document also specifies a number of “curricular
hours” assigned to each sub-area. The sub-areas are
identified as either “core” or “elective” and the core parts
are in their turn subdivided into “tier-1” and “tier-2”, each
with an associated number of “curricular hours”. This
classification builds on a view that all computer science
programs should ensure that all of the tier-1 and most
(preferably 90-100%, but at least 80%) of the tier-2 is
mastered by all their students. A complete computer
science program should also offer a significant part of the
elective material.

3.3.2 Characteristics of Computer Science
Graduates
The characteristics of computer science graduates define
the competencies these students should have at
graduation. The idea behind these definitions is to capture
overarching characteristics that typically span several of
the knowledge areas and which are important for graduate
success in the computer science profession. There are
eleven characteristics identified in the ACM curricula
2013 (ACM/IEEE 2013), see table 2 in section 5.2. The
expectation is that at least an elementary level of all
should be achieved at graduation by all students.

4 Analysis of Educational Setting and
Delivery
The analysis of the educational setting and delivery is
done in two parts, a process-oriented part and an outcome

oriented part. The process-oriented part of the quality
assurance evaluation at University A was targeted on the
educational setting, both on the course content and the
course learning outcomes. The learning outcomes for
course units are also relevant for the outcome-oriented
part of the evaluation, but to a lesser degree since the
evaluation of these are focused more on the competencies
students have gained at the time of completing the course
and not on the holistic competences graduates have when
completing the bachelor degree.

The educational setting is analyzed by two separate
methods. The first was to compare how many of the
topics and learning outcomes suggested in the ACM
curricula 2013 were situated in mandatory courses at
Reykjavik University. All faculty member teaching
mandatory courses took part in this evaluation (n=10),
including 2 professors, 2 associate professors and 6
assistant professors. Each faculty members checked how
many of the topics suggested in the ACM standard are
covered in their course and the degree to which the
learning outcomes articulated in the course unit
documentation matched that found in the ACM
document. This comparison was structured by the
knowledge areas from the ACM curricula 2013.

The second method was to estimate how much focus
was placed on each of the characteristics of computer
science graduates in the mandatory courses. A guideline
document was developed to assist the faculty members in
conducting this comparison. There was an initial
workshop for the faculty when the quality assurance
evaluation was introduced and the chosen process
explained. The process involved several stages in order to
guide faculty members in how to conclude their part of
the assessment and was concluded with a joint workshop
analyzing the results from both methods.

4.1 Analysing Educational Setting - Coverage
of Topics and Learning Outcomes
For the first method of analysing the educational setting,
a spreadsheet with topics and learning outcomes for tier-1
and tier-2 of the knowledge areas was composed. The
faculty were asked to fill in the coverage for each topic
and learning outcome associated with the knowledge
areas related to the courses they teach using the guideline
document.

The spreadsheet contained the topics for each
knowledge area in each course and the extent to which the
topics were covered. The coverage of the learning
outcomes for each knowledge area was captured in terms
of the ACM/IEEE levels of achievement (termed
familiarity, usage, or assessment) as well as describing
assessment method, i.e. (written) exam, oral (exam),
group (project), (individual) assignment, and other. All of
this was also subdivided into tier-1 and tier-2.

In the analysis phase, the coverage for each
knowledge area was computed as a percentage and the
level of learning outcome was compared to the expected
level in the ACM curricula 2013.

4.2 Analysing Educational Setting - Emphasis
on Characteristics of Graduates
A spreadsheet with the mandatory courses and the
specified characteristics of computer science graduates

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

21

(with the exception of the first, which was assumed to be
covered by the analysis of knowledge areas covered) was
composed. Faculty were then asked to fill in the level at
which each characteristic is supported. This was encoded
as a “0”, “1” or “2”, i.e. not covered or only marginally
mentioned (0), part of the course (1), and central to the
course (2). In addition, faculty were asked to comment on
their evaluation.

In the analysis phase, the number of 0’s, 1’s and 2’s
were computed for each mandatory course. The number
of courses with 0’s, 1’s and 2’s for each characteristic
was also computed.

4.3 Analysing Educational Delivery – The
Employers’ Assessment of Graduate Skills
The main target of the second part of the evaluation was
employer perception of graduate skills. Ten companies
were chosen and semi-structured interviews were
conducted, each lasting for about one hour. The
interviewees work in different domains: two at big
software companies (more than 100 employees), two at
middle size companies (around 40 employees), two at
web development companies, two at telecommunication
companies, one at a software development department in
a bank and one at a gaming company. Three of the
interviewees were female and seven males. Typical roles
of the interviewees were: Director of the company,
director of IT department and chief development officer
so they all had a managerial role and had been involved in
hiring people for the last three to 13 years. All except one
had hired graduates from SCS at RU, and the percentage
of hirings from RU was typically 50-70% of all the
hirings.

The interviews were all conducted at the workplace
of the interviewees, typically in a meeting room. Two
faculty members from SCS at RU attended each interview
and, roughly speaking, one of them led the interview
whereas the other one took notes. The interviews lasted
from 45 minutes up to one hour. The interviews were
semi-structured and the major topics covered in the
interviews were background information about hirings
and the company, their opinion of graduates from SCS at
RU, their comparison of graduates from RU to graduates
from other universities and their thoughts about possible
new study programs or courses. Near the end of the
interview we asked the interviewees if they had some
general comments or questions. All interviews were audio
recorded for further references. Interviewees were asked
to fill in a web based questionnaire based on the
characteristics of graduates described in the ACM
Curricula 2013 (ACM/IEEE 2013) that was sent to them
after the interview.

4.3.1 Interviews with Employers
The interviewees were asked about their background at
the companies and if they had been involved in hiring
graduates from Reykjavik University. They were also
asked to provide numbers of hirings of BS graduates in
Computer Science from Reykjavik University. The main
focus of the interviews was to ask about the employees’

opinion of the performance of the graduates from
Reykjavik University, and especially to get their views of
the strengths and weaknesses of the graduates’ education.
In addition, interviewees were asked if they thought that
some knowledge or skill was missing, and whether there
was a need for new courses, or lines of emphasis, which
would satisfy their own need to recruit better qualified
graduates.

All interviewees were willing to discuss these issues
and gave good comments and feedback on these
questions.

4.3.2 Questionnaire to Employers
A web-based questionnaire was constructed based on
eleven characteristics of computer science graduates from
the ACM Curricula 2013. Employers were then asked to
rate how well graduates from Reykjavik University
performed on each of these, based on a 5 point Likert
scale, e.g. employers were asked to rate if they agreed
that: “Graduates from Reykjavik University have good
project experience skills”. They were also asked to rate
the importance of each of the characteristics (e.g. “Project
experience skills are important for my company”).

As the data sought by the questionnaire was much
more detailed than that provided by the interviews, it was
decided to send this afterwards in the expectation that this
would maximize the quantity and quality of the data
returns. Only seven interviewees concluded the
questionnaire. One interviewee had not hired any
graduates from RU, so this person was naturally
dismissed concluding the survey, but despite several
emails, the two missing responses were not forthcoming.
The questionnaire was anonymised, so it was impossible
to find out which people did not respond.

5 Findings
The results of the analysis of the educational setting are
summarized below. Table 1 presents the knowledge area
topics and the learning outcomes for those knowledge
areas, and table 2 presents the characteristics of computer
science graduates. The summary of results from the
employer survey is given in table 3.

5.1 Coverage of Knowledge Areas
According to the ACM/IEEE curricula, all of tier-1
should be covered for all computer science programs.
Analysis of table 1 regarding the coverage of knowledge
areas (KAs) reveals that this is not the case for the
mandatory courses at Reykjavik University, which is,
perhaps, not surprising since the program was being
compared to a cutting edge standard. Coverage of six
KAs are fully covered or almost so, meaning that close to
half of the tier-1 KAs are satisfied. However six are either
not covered at all or only covered to a small extent and
three are covered to some degree, which together with a
total coverage of 65% of tier-1 indicates a need for
change if striving to follow the ACM curricula 2013.

CRPIT Volume 160 - Computing Education 2015

22

Table 1: Coverage of knowledge areas - topics and learning outcomes

Looking at tier-2, which is recommended to be
covered at above 80%, we see that 59% of this is covered
and thus does not conform to the ACM benchmark. The
KAs covered well at the tier-1 level are also catered for at
tier-2 and a few of the KAs not covered at the tier-1 level
are covered to a better degree at the tier-2 level. The
problematic ones are those deemed to be covered at
neither level.

The information assurance and security and the
parallel and distributed computation KAs are among
these, which is not surprising since these were only
introduced in the 2013 version of the curriculum
recommendation. The social issues and professional
practice topic is the third KA not covered at the required
level in either tier-1 or tier-2. This probably reflects the
observation that faculty as well as program coordinators
have a focus on the technical aspects of computer science.
This assumption is further investigated in a forthcoming
article (Daniels et al 2015). Two other KAs worth noting
are intelligent systems and computational science, both of
which are peripheral to the intentions of the program and
consequently it is not unexpected that these scores are
low.

Some of the areas are covered in elective courses, but
this is deemed to not be of interest here, since the intent is
to investigate the areas that all students should learn.

The data for learning outcomes show slightly worse
results than the preceding investigation of topics covered.
The KAs with poor coverage reappear when looking at
the learning outcomes, which is perhaps not surprising.
The two new areas are just slightly worse with regard to
assessing learning objectives, but a significant low score
is presented by the social issues and professional practice
KA. This KA is barely covered at all when it comes to
assessment, which is probably related to faculty being
unsure about how to assess such competencies in general.
Previous work on assessing professional competencies
(Daniels 2011, Cajander et al. 2012) can provide support
so as to improve this situation.

5.2 Coverage of Characteristics of Graduates
Investigation of table 2 regarding the focus on
characteristics of computer science graduates, called
competencies in the following, reveals that just over a
third of the mandatory courses cover all of the
competencies. However, a more interesting question is
whether there are aspects of developing competencies that
come up in few courses and at a superficial level, since
those cases could indicate a lack of provision for allowing
development of the competencies in question.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

23

Table 2: Coverage of characteristics of computer science graduates

None of the faculty members emphasise the

“Commitment to professional responsibility” as a core
competency in their course. During discussions about this
result among faculty members, two alternatives were
proposed for improvements. The first was to embed
elements of this topic in a variety of course units within
the program. The second alternative was to include this
material in the course unit called “Introduction to
computer science” in their first semester. While the
“Project experience” competence may appear to be
underrepresented within the program, being only covered
in seven courses, in four of these it is the major
pedagogical component. Many courses also include
project work as a problem solving experience, so students
are often developing this competence by working in
groups to solve smaller projects.

This type of activity provides a process-oriented
analysis of the Reykjavik program and illustrates the
benefits that can be gained by comparing the current
curriculum with an international standard. However, it
does not address the question of how effective such a
curriculum is for student-learning. For this, it is more
natural to use an analysis which looks at output data, that
is done in the next section.

5.3 Outcome Oriented Assessment
For an outcome-oriented assessment of curricular
content/knowledge areas, one source of information are
the standard, published output measures such as exam
result data which can be correlated with a range of
comparable programs in similar institutions. However, it
is much more difficult to assess outcomes for the
specified graduate characteristics in that way. In addition,
exam result data and degree classifications do not
necessarily give a complete picture of the range of skills
and competencies developed by students throughout their
period of study; this may only become apparent when
they are asked to demonstrate such capabilities over a

sustained period within a professional working
environment. It is important therefore to examine the
views of stakeholders such as employers who can provide
a more contextualised analysis of such competencies.

In order to do this, employers were asked to estimate
how well newly-qualified graduates from RU fulfilled
these characteristics and how important each
characteristic is to their company. Responses were given
using a Likert scale from 1 to 5, see results in table 3.

Item Applies to RU

graduates
Important for

company
Technical understanding 4.00 4.86
Familiarity with common
themes and principles

3.71 4.86

Appreciation of the interplay
between theory and practice

3.57 4.00

System-level perspective 3.86 4.43
Problem solving skills 3.86 4.86
Project experience 3.86 4.29
Commitment to life-long
learning

3.71 4.86

Commitment to professional
responsibility

3.43 4.57

Communication and
organizational skills

3.86 4.29

Awareness of the broad
applicability of computing

3.14 3.71

Appreciation of
domain-specific knowledge

4.00 4.29

Table 3: Summary of the results from the

employer survey

CRPIT Volume 160 - Computing Education 2015

24

There were five characteristics that the employers
rated as very important to their company, having an
average above 4.5 in importance. These were:
“Familiarity with common themes and principles”,
“Problem solving skills”, “Commitment to life-long
learning”, “Commitment to professional responsibility”
and “Technical understanding”. For the first four of those
the difference between the importance rating and how
well that competence applies to RU graduates is 1.0 or
more (marked in red in the table) indicating that these
characteristics should be a particular focus for curriculum
development when changing the program in the future.

It should be noted that “Commitment to professional
responsibility” was not emphasised as a core subject in
any of the mandatory courses in the curriculum, so that
particular result is not unexpected. “Familiarity with
common themes and principles” and “Commitment to
life-long learning” are each only emphasised as a core
subject within one course unit, so again, the difference
between the needs of employers and graduate
performance may not be surprising. However, problem
solving skills are emphasised in six compulsory courses,
so the difference between the two ratings is disappointing
and indicates an important gap for that competence that
needs to be addressed through curricular enhancement. In
this particular case, further investigation suggested that
the difference could be related to some respondents’
perception of a recent, local decline in programming
skills.

5.4 Further Results from the Employers
The feedback from the employer survey indicated that
there were no major concerns about the levels of
competence of the RU graduates and in general, the view
was positive. Four interviewees mentioned that RU
prepares graduates well for working in the industry after
their studies, and that RU students were proficient with
the tools and processes used in the industry, particularly
the agile methodology. Three of the employers had
groups working in parallel in other countries (Ukraine,
Serbia and Britain), which allowed them to discuss the
relative strengths of the RU graduates with those they
have worked with from other countries. The respondent
working with a team in Ukraine stated that in his/her
opinion, the Ukrainian employees are better programmers
and want to discuss methods, understand and have
opinions on solutions. The respondent having a team in
Serbia described that those team members have more
theoretical education and not as much practical
experience as graduates from RU. Finally, the respondent
working with a team in Britain noted that it is harder to
get a permanent job in Britain than in Iceland, so the
British graduates are more focused and more concerned
about doing a good job than employees here in Iceland in
his opinion.

When asked about RU graduates weaknesses, there
were various answers. Some employers mentioned that
RU graduates should develop more professional
behaviour and show better discipline in their work. Two
respondents mentioned that the programming skills of RU
graduates should be improved, and one informant
mentioned that RU graduates could have better skills in
designing from scratch using design patterns. Two

informants mentioned that RU graduates could improve
their testing skills and one mentioned in particular that
automatic testing should be emphasised more in the RU
programs. One respondent mentioned that their company
has one tester per every four programmers and it has been
hard to find good testers on the market.

When asked about, if there were some courses or
topics missing in our curriculum, the answers were really
spread, mentioning web programming, front end
programming, testing and management of IT systems.
The employers were asked specially about the structure of
the studies. One employer mentioned that he would like
us to have four lines: one for “hard core” programming;
one for web programming; one system administration
(system administrators are mostly not educated at a
university level), and one testing line. Additionally one
informant wanted to divide our studies in two lines; one
programming line and one front-end programming line.

The employers in general want better work ethics,
emphasis on testing and more commitment to quality. It is
also important to keep in mind that the employers felt
more individual differences between their employees,
rather than thinking of them as RU graduates, graduates
from other universities in Iceland or abroad. Therefore
probably many of their comments can be interpreted as
holding for CS graduates in general rather than only for
the RU graduates. However, their comments are useful to
improve the studies at RU in order to prepare RU
graduates better for their future jobs in industry.

6 Discussion
In this section we will first discuss the validity of the
findings and then summarise and discuss the lessons
learned.

6.1 Validity of the Findings
The validity of the findings is subject for discussion.
While some element of confirmation bias will be present
due to the evaluation being done by faculty with a vested
interest in a good outcome, the classification system for
inclusion is fairly transparent and standard moderation
practices would mitigate against this. There is also a
question of consistency both in terms of how well the
faculty entered numbers into the spreadsheets, and more
importantly, their understanding of what the terms meant.
However, faculty information events prepared academic
staff for the process and this would also serve to reduce
these kinds of errors.

The evaluation process itself did involve revisiting
decisions on the allocation of scores and the concluding
session, in which faculty discussed the data provided
some degree of confidence in the robustness of decisions
about scores and agreement on the meaning of the
classification criteria. It should be stressed that the
objective of the assessment was to see if there are
extensive gaps in the coverage of the knowledge areas
suggested in the ACM standard in the curriculum for
computer science at Reykjavik University. Consequently
the objective was not measure exactly the coverage, but to
gather information on whether there were some
knowledge areas where the curriculum differed greatly
from the topics and learning outcomes suggested by the
ACM standard. In the absence of a systematic error, this

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

25

objective would be reached even if some faculty members
were too positive/negative about the details of their own
course units.

One further source of concern is the likelihood that
the technical aspects of the curriculum are better
understood by the faculty involved in the evaluation than
those that relate to competencies. That results and the
generally poorer outcome for the competencies in the
process-oriented analysis, indicate that further work is
required to establish a common understanding of what
competencies are and how they can be developed and
assessed. This point also applies to other stakeholders,
such as employers, who appear to be even less
accustomed to vocabulary related to competencies than
faculty.

6.2 Lessons learned
It was generally felt by faculty that combining the
process-oriented evaluation based on the ACM standard
with outcome-oriented evaluation, based on interviews
with employers of graduates, provided a good
methodology for obtaining a more complete picture of the
quality of the program. The process generated both
detailed quantitative data and more qualitative
information that gave stakeholders a good mixture of
results to interpret the status of the quality of the
education. This assessment has raised the awareness of
the faculty members of what topics and learning
outcomes should be included in their courses, when
revising the curricula of the courses. Already a half a year
after the exercise, some of the faculty members have used
the results of the assessment to iterate their course content
and learning outcomes for the course.

In future iterations of similar comparisons between
the topics and learning outcomes in the RU curricula to
the ACM standard, it would be beneficial to ask the
faculty member responsible for each course to estimate
how much of the course is used on topics and learning
outcomes that are covered in the standard and then how
much time is used on other topics and learning outcomes.
This would help to estimate how much is taught beyond a
given standard and will therefore give more holistic
picture of the curricula. Another lesson is that faculty
members were asked to mark how each learning outcome
is tested, e.g., individual or group assignment, is it on the
test, etc., but that data was not analysed, so that
information is not needed in future comparisons.

Conducting the interviews with employers of
graduates from RU was a positive experience. All the
respondents appeared to be open minded and willing to
give feedback, both on the skills of the RU graduates and,
in more general terms, on how the CS education could be
improved to better satisfy the needs of their company. We
asked them to estimate how many employees they had
hired from RU the last five years, but unfortunately did
not manage to give adequate notice before requiring this
information. Our experience was that they would have
needed a longer time to answer that question properly.
Asking them to fill in a questionnaire after the interviews
was good, because the interviews dealt with general
issues and so the response to the questionnaire was on a
more detailed level. However, it was hard to obtain the
data in which we were interested, so one alternative

would be to ask the informants to fill in the questionnaire
on paper during the interview. The downsides of this
alternative are that filling in the questionnaire would take
time from the interview itself and it might affect the
interviewees' responses by observing them. Additionally
filling in the questionnaire during the interview would
probably change the focus of the interviewees to talking
about the questions they had answered in the
questionnaire.

7 Conclusions
Going through a quality assurance process can be quite
frustrating and consume a great deal of time and energy.
There were much controversy around the Swedish
national process especially about the lack of feedback to
the degree granting institutions about how to enhance
their educational setting as a result of the experience. The
Reykjavik process was, on the other hand, received quite
positively after some initial complaints about having to
go through with the work. It therefore provided an
excellent opportunity to discuss the results and move
towards improving the computer science program.

The ACM/IEEE computer science curricula 2013 [1]
is an important contributor to the positive reaction in
Reykjavik. It served well as a replacement for local
learning objectives in the computer science program,
since those were rather outdated and were instead a target
for improvement after the quality assurance process. The
good fit of the ACM curricula [1] with the national
degree criteria in Iceland [13] was important for those
responsible for reporting to the national project.

The Reykjavik quality assurance process illustrates
how the ACM curricula 2013 [1] can be used to provide a
well-founded base for further discussions about
development of an education program. While we believe
that there is no clear resolution to the question of how
compliant a program should be with regard to the ACM
tier-1 and tier-2 criteria or how much conscious deviation
from the standard should be allowed, we nevertheless
believe that it is of high value to bring it up to the table
for discussion.

It is also a welcome finding that the ACM curricula
could be used to capture traditionally abstract learning
objectives regarding general competencies. The ACM
curricula turned out to be an excellent base for conducting
semi-structured interviews and constructing a survey in
order to get information from employers of students from
the education programme. Satisfaction of learning
objectives regarding general competencies is in our
opinion often quite questionable in computer science
programs of today and we hope this work will encourage
others to look seriously into how to achieve this.

8 Acknowledgements
We would like to thank professor Anna Ingolfsdottir and
assistant professor Henning Ulfarsson for their
contribution in the subject level review while planning,
analyzing and reporting the findings described here.
Furthermore we would like to thank all the faculty
members that took part in the review for their
contribution.

CRPIT Volume 160 - Computing Education 2015

26

9 References
ABET (2010) Criteria for accrediting computing

programs, ABET, Inc, Baltimore
ACM/IEEE (2013) Computer Science Curricula 2013,

Ironman draft, February 2013,
http://ai.stanford.edu/users/sahami/CS2013/ironman-dr
aft/cs2013-ironman-v1.0.pdf, assessed December 19,
2013

ACM/IEEE (2001). Joint Task Force on Computing
Curricula. Computing Curricula 2001 Computer
Science. Journal of Educational Resources in
Computing (JERIC), 1 (3es), Fall 2001. Retrieved
from:
http://www.acm.org/education/education/education/curr
ic_vols/cc2001.pdf

ACM/IEEE (2008). Joint Task Force on Computing
Curricula: Computer Science Curriculum 2008: An
Interim Revision of CS 2001. Report from the Interim
Review Task Force, Association for Computing
Machinery, IEEE Computer Society.
http://www.acm.org//education/curricula/ComputerScie
nce2008.pdf

Cajander, Å., Daniels, M., and McDermott, R. (2012) “On
Valuing Peers – Theories of Learning and Intercultural
Competence”, Computer Science Education, vol 22, pp
319-342

Daniels, M. (2011) Developing and Assessing
Professional Competencies: a Pipe Dream? Experiences
from an Open-Ended Group Project Learning
Environment, Digital Comprehensive Summaries of
Uppsala Dissertations from the Faculty of Science and
Technology, nr 808, Acta Universitatis Upsaliensis,
Uppsala.

Daniels, M., Cajander, Å., Clear, T., and McDermott, R.
(20015) Collaborative Technologies in Global
Engineering: New Competencies and Challenges,
International Journal of Engineering Education
(accepted for publication)

Education ministry (2011) National qualification
framework for higher education,
http://www.stjornartidindi.is/DocumentActions.aspx?A
ctionType=Open&documentID=afd35930-4c5a-4de4-b
d7e-2134da404446, assessed August 28, 2013

ENQA (2013), Guidelines for external reviews of quality
assurance agencies in the European higher education
area, ENQA, Occasional papers, 19

HSV (2012) Högskoleverkets system för
kvalitetsutvärdering 2011–2014, Rapport 2012:15 R,
Högskoleverket, Stockholm, Sweden

Icelandic Center for Research - Rannis, (2011) “Quality
Enhancement Handbook for Icelandic Higher
Education”, retrieved on the 10th of January 2014 at:
http://www.rannis.is/files/handbook_complete_155876
7620.pdf

Lattuca, L. R., Terenzini, P. T., & Volkwein, J. F. (2006).
Engineering Change: A Study of the Impact of
EC2000: Executive Summary. ABET, Incorporated.

Tucker, A. B. (1991). Computing curricula 1991.
Communications of the ACM, 34(6), 68-84

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

27

CRPIT Volume 160 - Computing Education 2015

28

Breakfast with ICT Employers:

What do they want to see in our graduates?

Margaret Hamilton
School of Computer

Science and Information

Technology

RMIT University

PO Box 2476 Melbourne

Victoria 3001 Australia

margaret.hamilton@

rmit.edu.au

Angela Carbone
Office of the Vice-Provost

(Learning and Teaching)

Monash University

PO Box 197 Caulfield East

Victoria 3145 Australia

angela.carbone@

monash.edu

Christabel Gonsalvez
Faculty of Information

Technology

Monash University

Wellington Road, Clayton

Victoria 3800 Australia

chris.gonsalvez@

monash.edu

Margaret Jollands
School of Civil,

Environment and

Chemical Engineering

RMIT University

PO Box 2476 Melbourne

Victoria 3001 Australia

margaret.jollands@

rmit.edu.au

Abstract

In an increasingly globalised and competitive economy,

there is a need to ensure that graduates have the skills,

knowledge and attitudes to be not only work ready for

today but work ready PLUS for tomorrow. Data from the

Graduate Destination Survey (2012) show that 75% of

ICT students get a job once they complete their degree.

Although employment outcomes are influenced by

external market conditions, students, employers and other

stakeholders expect universities to help students maximise

their potential to find suitable work, that is, maximise

their employability.

Employability is achieved by developing students’

technical and generic skills. The development of

technical skills is difficult in the computing sector where

it has been argued that the ICT fundamentals have

changed so much and continue to change rapidly. This

project aims to understand what employability skills ICT

employers expect to see in our graduates. Data for this

study was collected from ICT employers, invited to

participate in an industry breakfast to discuss the

employability skills they are looking for when employing

graduates.

A qualitative thematic analysis has been used to analyse

the data, and the findings suggest that employers want

ICT graduates to have effective teamwork and

communication skills, with flexible and adaptive attitudes,

without being arrogant. This study is part of a larger

nationally funded project by the Australian Government

Department of Education, aimed at developing

employability skills in disciplines with low employment

outcomes.
 .

Copyright © 2015, Australian Computer Society, Inc. This

paper appeared at the Seventeenth Australasian Computing

Education Conference (ACE2015), Sydney, Australia.

Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 160. Daryl D'Souza and Katrina

Falkner, Eds. Reproduction for academic, not-for-profit

purposes permitted provided this text is included.

Keywords: ICT Graduate Employability; SFIA skills

framework; Computer Science Education.

1 Introduction

In an increasingly globalised and competitive economy,

there is a demand to ensure that graduates have the skills,

knowledge and attitudes not only to be work ready for

today but work ready PLUS for tomorrow (Fullan and

Scott, 2014). Graduates need to be able to successfully

navigate the messy realities of the workplace. From the

perspective of students, employers, governments and

other stakeholders, it is the responsibility of universities

to best equip students to maximise their potential, to

enable them to find suitable work and excel in the

workplace - that is, to maximise their employability. It is

usually a combination of technical and generic skills that

makes students employable. Yorke (2006) defines

employability as a set of achievements, which include

skills, understandings and personal attributes. It is these

achievements that make graduates more likely to gain

employment, and then be successful in their chosen

career. Employment outcome, however, refers to a

measure of the number of graduates that actually secure

full-time jobs, which in addition to a student’s

employability, is often influenced by external market

conditions.

In the discipline of ICT, there is perceived gap between

what employers would like to see in ICT graduates and

what skills the graduates actually have. Data from the

Graduate Destination Survey (2012) shows that

approximately 75% of ICT students find a job once they

complete their degree. There are many challenges faced

by students who enter the IT sector, and one of the main

challenges as suggested by John Craven from DB Results

(Craven, 2014) at a presentation to the Australian Council

of Deans of ICT (on 8th May 2014) is that the ICT

fundamentals have changed. Technically, the field has

moved from a strong focus on application software to a

range of business platforms, from pure requirements

gathering to outcomes and continuous improvement of

systems, and the industry continues to struggle with

suitable methodologies for successful systems

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

29

development, with a strong move from the waterfall

approach to agile methods (Wilton, 2011, Okay-

Somerville & Scholarios, 2013, Curtis & McKenzie,

2001). Organisations are excited by the opportunities and

challenges provided by big data and the continuous

technological advances. It is recognised that the technical

skills are dynamic, shaped by new technologies and

market demands, but in addition to the changing technical

landscape, generic skills are equally as important.

Consequently, there is an expanding dialogue between

universities, industry and governments around “graduate

attributes” and “employability”.

This paper reports on a component of a broader national

study. The national study focuses on developing

employability skills in our graduates across a variety of

disciplines, with the specific aim of aligning the

expectations of employers, professional bodies, academic

staff, graduates and students. It seeks to identify good

practice curricula that promote graduate employability.

This large study is funded by the Australian Government

Department of Education. The focus of this paper,

however, is to understand more deeply contemporary

employability skills and attributes ICT employers expect

to see in our graduates. Section 2 outlines models for

understanding employability. Section 3 outlines the data

collection process from the ICT employers across

Australia participating in the study. This sample reflects

the diversity of ICT employers in Australia today, and the

range of ICT disciplines. A detailed description of the

employability skills that employers are looking for is

provided in Section 4 of the paper, followed by a

discussion of the findings in Section 5. The conclusion

highlights the themes emerging from the data and future

work from the study is foreshadowed.

2 Background

A review of the current literature generally differentiates

between two general categories of employability skills:

technical (job-specific, functional or discipline-specific

skills) and generic (core or non-technical skills).

(Bhaerman & Spill, 1988; Department of Industry, 2013;

Lowden et al., 2011; Yorke, 2006).

While it is essential that individuals possess the technical

skills necessary for their chosen profession in order to be

considered employable in the industry, these skills seem

to be “taken for granted” by employers (Yorke, 2006, p.

4). This is because it is generally assumed that graduates

will have already acquired and developed these skills

through their qualifications, hence possessing the

technical skills simply becomes a “tick in the box”

(Brown, Hesketh, & Williams, 2002, p. 19). This has

resulted in the generic skills becoming a more important

determinant of employability and the subject of much of

the research literature.

2.1 Generic Skills

Generic skills or soft skills are understood to be the range

of skills that encapsulate physical abilities, cognitive

abilities and interpersonal skills that “enable people to

succeed in a wide range of different tasks and jobs”

(Yorke, 2006, p. 12). These skills are frequently cited as

being an essential component of employability, highly

valued by employers (Finch et al., 2013), and often

encompass capabilities such as: written and oral

communication, listening skills; professionalism, and

teamwork and leadership. Alongside these skills,

cognitive abilities such as problem solving, strategic and

critical thinking and creativity are also considered to be

essential components of employability (Lowden et al.,

2011). In addition, Muhamad (2012) understands these

skills as the ability to process complex information,

question and reason and put new knowledge into practice.

Furthermore, self-management, punctuality and time

management, as well as the ability to adhere to workplace

expectations are also important factors (UKCES, 2009).

These generic skills are often termed “transferable skills”

as they are applicable across a range of contexts and

disciplines (Muhamad, 2012). In recent decades there has

been an increasing demand for generic skills in the

workplace.

2.2 Employability Skills

There is a significant body of work that focuses on

employability being linked to skills gained, and there

have been many attempts to define and categorise the

skills that employers consider to be valuable in the

workplace, across a broad range of professions. In an

effort to holistically define and categorise the

aforementioned generic skills, the Department of Industry

(2013), in collaboration with several Australian

government departments, developed the Core Skills for

Work Developmental Framework. This framework

groups these skills into three clusters:

• Navigating the world of work, including being able

to manage career and work life and navigate rights

and protocols at work;

• Interacting with others, encompassing

communication, listening and interpersonal skills;

• Getting the work done, incorporating the ability to

plan and organise, make decisions, identify and

solve problems and create and innovate.

Another straightforward, practical model, the

CareerEDGE model, developed by Pool & Sewell (2007)

enables employability to be understood by students,

parents and careers advisers and includes the following

five key components of employability: career

development and learning; work and life experience;

degree subject knowledge; understanding and skills;

generic skills and emotional intelligence.

More recently, Fullan and Scott (2014) define core

learning outcomes as the six C’s of deep learning, that

will give graduates the PLUS factor which will allow

them to manage the complex realities of the workplace.

These core skills which involve academic and

personal/interpersonal qualities and capabilities, include:

Character such as grit, tenancies and perseverance;

global Citizenship - considering global issues based on

deep understanding of diverse values; Collaboration -

working in teams with strong interpersonal skills; spoken,

CRPIT Volume 160 - Computing Education 2015

30

written and digital Communication skills; Creativity -

having an entrepreneurial eye for economic and social

opportunities and Critical thinking - being able to

evaluate knowledge and apply it in the real world.

In the ICT profession, the Skills Framework for the

Information Age (SFIA), a framework for describing and

managing the skills needed by IT professionals, was

developed by people experienced in the management of

skills in IT. SFIA has become a de facto standard around

the world, with over 2,500 corporate users in 195

countries (http://www.sfia-online.org/).

SFIA maps out 96 professional IT skills, organised in the

following six categories - strategy and architecture;

business change; solution development and

implementation; service management; procurement and

management support; and client interface. It also defines

seven levels of attainment - follow; assist; apply; enable;

ensure and advise; initiate and influence; and set strategy,

inspire and mobilise, each of which is described in

generic, non-technical terms. Each skill has an overall

definition, and an “at-level” definition for each of the

levels at which it can be recognised. “IT professional

capability comes from a combination of professional

skills, behavioural skills and knowledge. Experience and

qualifications validate and support that basic capability”

SFIA (2014).

SFIA has been adopted by the Australian Computer

Society (ACS), as well as other professional societies and

organisations. It provides a foundation for the

professional grades, accreditation and programs of the

ACS, as well as a common framework which allows an

international understanding of what an ICT role actually

involves. One aspect of the ACS accreditation process

aimed at encouraging the development of generic skills, is

the mandatory requirement that every undergraduate and

postgraduate program include a final year capstone

project. This project should aim to draw together all the

technical skills the graduate has learned throughout their

degree, together with a strong focus on the development

of generic skills.

2.3 The Gap

It has been suggested that the employability skills

acquired at university may not match the skills needed in

employment (Wilton, 2011, Riebe & Jackson, 2013).

Many employers are not satisfied with the skills graduates

bring to the workplace. Research undertaken for the

Council for Industry and Higher Education by Archer and

Davison, (2008); explains that almost a third of

employers have problems with graduates’ generic

employability skills such as working in a team,

communication, problem solving and self-management.

A quarter of them are also disappointed with graduates’

attitude to work, while close to half of the employer are

looking for business awareness and foreign language

skills. Their report highlights the findings from a pilot

survey of 233 employers and shows that there is a need

for action by universities, employers, students and

government to address both the reality and perception of

the skills deficit in our graduates (Archer & Davison,

2008). This is a reality felt by both students and

employers, and should be the impetus for policy makers

and the Higher Education sector to address this gap.

Finch et al (2013), recognise that there needs to be a

stronger relationship between education and

employability, driven by an understanding of the factors

that influence an undergraduate student’s “successful

transition into the labour market” (p.682). Jollands et al

(2012) also argue that employment outcomes can be

enhanced by educational approaches which integrate

generic skills related to employability into the curriculum.

This study aims to develop a closer alignment between

what employability skills ICT employers want, and what

employability skills ICT academics need to develop in

their students. The first step is to develop a contemporary

understanding of the skills employers are looking for.

3 Method

3.1 Data Collection

Employers and staff of professional bodies were invited

to participate in an Industry Breakfast Forum in June

2014. These were drawn from local employers from the

project team member networks, program advisory

committees from our respective Schools, and professional

bodies for each discipline. Invitations were sent to staff in

enterprises with a range of sizes, including small, medium

and large companies.

ABCD University drew on employers from a wide range

organisations that participate in their Industry Based

Learning (IBL) program, which includes six month

industry placements as part of students’ undergraduate

degree programs. A vital part of the program is regular

engagement with the IBL industry partners. Structured

engagement is facilitated through 4 steering committee

meetings held to help manage the IBL program and

discuss IT graduate employment issues. The initial call

to partners to attend the event was made at an IBL

steering committee meeting, where partners were

informed of the national project. A similar process was

followed for employers of XYZ ICT graduates.

The Forum commenced with a breakfast, in a large

meeting room, where employers from five disciplines

were introduced to each other and members of the

research team for each discipline. There were researchers

and employers from Engineering, Psychology, Media

Communications, Applied Science as well as from the

ICT industry. The project leader addressed the whole

group giving details of the project to all the employers.

The agenda was semi-structured. The five teams then

separated into smaller industry-based focus group

sessions. Each focus group moved to a nearby separate

room and the session was recorded.

The ICT focus group was facilitated by two project team

members. Participants filled in a short demographic

questionnaire, and signed their consent form. They were

then asked to introduce themselves and then asked to

consider the following three questions regarding graduate

employment. The three key questions discussed were:

1 What are the key skills you are looking for in

prospective employees?

2 What are the key attitudes you would like graduates

to display?

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

31

3 What would you not like to see in the prospective

graduates?

Employers were first asked to jot down on Post-it notes

the key skills employers looked for in graduates. They

then discussed how they might assess these skills in

graduates during selection interviews. Employers

provided short written responses on Post-it notes, which

were then sorted on butchers paper on the wall.

In a second round of discussion, each employer jotted on

Post-it notes, their ideas about what attitudes they looked

for in graduates. They then discussed how they might

identify these attitudes in graduates, and which ones were

often lacking.

Similarly the third question above was answered by

employers jotting ideas on Post-it notes, which were once

again sorted onto butchers paper on the wall.

3.2 Data Analysis

A total of 11 employers attended the industry breakfast.

The industries represented in the focus group included

primarily medium to large multinational and local

organisations from the professional services, insurance,

financial, technology and retail sectors.

The employers provided written responses on sticky notes

to each question. These were clustered according to

emerging themes and analysed quantitatively. A

summary of the Post-it note analysis is provided in Tables

1 - 4 in the results section 4.1 of this paper. The

discussions during the focus groups were recorded and

were transcribed verbatim. The transcriptions were

entered into NVivo and analysed thematically with a

qualitative open coding approach based on themes drawn

from the Dacre Pool and Sewell employability framework

(2007).

4 Results and Discussion

4.1 Results Classification

Employers’ comments were sorted and similar attitudes

and skills were grouped. The top two skills and attitudes

identified by employers on the Post-it notes (as shown in

Table 1 below) were Communication skills followed by

Teamwork. Nine of the eleven employers identified

communication skills as the top “employability” skill.

The top two attitudes were “motivated and driven” and

“flexible and adaptable”. Employers did not want to

employ graduates who were unwilling to be flexible,

which is understandable in an ever changing ICT

environment.

Post-it

Note

Summary

Most Common # Second #

Skill Communication

skills

9 Teamwork 5

Attitude Motivated &

driven

6 Flexible

and

adaptable

6

Table 1: The top two skills and attitudes ICT

employers look for in prospective graduate employees

Classified lists of the skills and attitudes that employers

want to see in graduates, and what employers do not want

to see in graduates are presented in Tables 2 - 4. In each

of these areas, Post-it notes were sorted by the research

team based on similarity, and a classification scheme was

created which is represented in the first column. The

number of comments in each classification is specified in

the second column, and the employers’ comments (with

duplicates removed) are provided in the third column.

Skill

classification

No. of

comments

List of comments on

post-it notes

Communication

skills

9 - Strong written skills

- Presentation/oral skills

- Communication (verbal

and written)

Teamwork 5 - Team player

- Interacting with others

- Team work

Problem

solving

4 - Structured problem

solving ability

- Critical thinking

- Analysing and problem

solving

Business

acumen

4 - Must have business

acumen

- Commercial awareness

- Link technology to

business (impact)

Technical

ability

4 - Demonstrate IT

aptitude

- Relevant technical

abilities ie. R, C++

- Comp Sci /

Programming skills

Leadership 3 - Demonstrate leadership

skills

- Influences others

- Influencing skills

Work

experience

3 - Any work experience,

can be part-time, doesn’t

have to be relevant

- Industry based learning

is a clear advantage

- Industry knowledge

Project

management

2 - Time management

- Prioritising

Relationships 2 - Client focused

- Good networker

Company

knowledge

1 - Research into company

and specific role

Table 2: Skills ICT employers are looking for in

graduates

CRPIT Volume 160 - Computing Education 2015

32

 Table 2 presents the top skills as identified by the

employers from their Post-it notes, while Table 3 gives

the key attitudes they are looking for in prospective

graduates.

Attitude

classification

No. of

comments

List of unique comments

on post-it notes

Flexibility 6 - Adaptability

- Long term thinking

- Reliance and adaptability

- Demonstrate ability to

adapt to difficult

individuals/ circumstances

Motivation 6 - Personal drive

- Self motivated

- Passion and drive to

succeed

- "can do" attitude (not all

about themselves and what

they can get out for

themselves)

Initiative 3 - Innovative thinking

- Demonstrate taking

initiative

Self

awareness

3 - Confident (willing to

contribute)

- Personality

- Self aware

- Works well under

pressure

Learning

ability

3 - Willingness to learn

- Willing to learn / develop

Work

experience

2 - Any extra curricula /

work

- Experience outside of

papers

- It's not all about getting

the top grades: looking for

an individual with extra

curricular activities

Table 3: Attitudes ICT employers are looking for in

graduates

While discussing the skills and attitudes employers were

seeking from graduate employees, they discussed some of

the downsides of identifying these during interviews.

They addressed the pros and cons of large and smaller

sized group interviews. They were then asked to itemise

the qualities they would not like do see graduates display

in these interviews and these are presented in Table 4

below.

Attitude

classification

No. of

comments

List of unique

comments on post-it

notes

Inflexibility 5 - Unwilling to be

flexible

- Inflexible, unwilling

to compromise

Unprofessionalism 2 - Lack of

professionalism

(business sense);

includes tardiness,

dress attire,

inappropriate

conversation

- Poor workplace

behaviour - not in line

with values

Poor

Communication

2 - Poor communication

- eye contact, ask

questions

- Inability to

listen/absorb

Under-preparation 2 - Lack of preparation -

not doing their

research prior to

coming through

process

- Lack of career

direction or

organisational

knowledge

Arrogance 2 - Arrogance, too cocky

- Arrogance

(expectation that

everything will be

handed on a plate)

Lack of Initiative 2 - Don't wait for

instructions - be

inquisitive

- Lack of self

awareness

Lack of

Confidence

2 - Apprehensive, fear to

speak up

Lack of Trust 1 - Ability to trust the

individual - do they

have their own

agenda?

Table 4: What ICT employers do not want to see in

prospective ICT graduates

4.2 Round Table Focus Group Discussion

Analysis

The themes that employers deem important which

emerged from analysis of the focus group discussion are

teamwork, communication skills in particular listening,

business acumen, flexibility and adaptability, confidence

(not arrogance). We discuss these in more detail below.

4.2.1 Communication Skills

A key skill all employers agreed was essential for a future

employee was ‘communication skills’, and in particular

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

33

they singled out ‘listening’ when asked to identify the

most important one. They would like employees to listen

to what is being asked of them by the employer, and not to

tell them what needs to be done. They want someone who

will not say the wrong thing at meetings and client

interviews, but listen actively and contribute

appropriately. Some illustrative quotes from employers

include:

• We look for the written communication skills

[P1,p1]

• I think being a part of the good communicators

[P8,p8]

• and often people fail an interview stage because

they don’t listen to the question and answer it

completely different question to what you’ve

asked… [P9,p8]

• Showing that empathy having that ability to sit

down, listen, and talk, is something you want to

see valued more often than not. Call it

exuberance or enthusiasm or you know call it I’m

excited to start a new role and I’ve got a tell you

what it’s [P1,p9]

4.2.2 Teamwork

Another key skill which most employers identified as

important was teamwork. As a first step, many employers

interview their prospective employees in large groups of

between 12 to 20. They are looking for people who can

still “hold their own” with so many other people trying to

contribute. However, they also look for someone who

will not take over the group, and arrogantly promote

themselves, their work or what they can do, the whole

time. They want good listeners.

In the smaller group interviews of approximately 3 to 8

people, they are looking for someone who can explain

their contribution to a group project, such as the capstone

project which all IT graduates must complete before the

end of their degree. Here they are looking for someone

who has reflected on their own contribution, recognising

they have not done the whole project, and are able to

articulate why their contribution as part of a team was

crucial to the success of the project.

Hence they are not looking for arrogance, where someone

might say they were the manager and the success was

entirely because of them, but nor do they want someone

who will sit through such an interview and not promote

themselves at all. In a group interview, they are not

wanting someone to say they have a plan to be a manager

in 5 years. Some quotes from the round table discussion

which support the valued notion of teamwork include:

Some quotes which support this are:

• At Company A and other organisations … it’s the

ability to work with others and have some thinking

ability. You can see … maybe strategic thinking…

longer term thinking, but also being able to work

with others in the team [P3,p1]

• At Company B, we’re very much a consulting

services business now, we still have our technical

software engineers and that type of thing when we

look for these technical skills but the majority of

our business is consulting and services so it’s

about finding people that have the ability to work

well with our clients [P4,p1]

4.2.3 Flexibility and Willingness to Learn

Attributes that employers liked to see are flexibility and a

willingness to take up whatever role needs to be

undertaken at that time in the business. They want

employees who are comfortable being thrown in the deep

end, where they have to quickly adapt to new

environments and learn new things. Some companies

have six month rotations through various parts of their

organisation, so that staff are given the opportunity to

identify areas of interest, and employers are able to

observe where the employee would make the best

contribution. They are looking for someone who is

enthusiastic and willing to contribute. Some employer

comments which illustrate this are:

• I think it all comes back to that willingness to

learn… More often and what we look for is

someone who has that willingness to move from

one side to another. [P1,p4]

• We need them to be adaptable. We need them to

be willing to learn …but being adaptable is

something that is really important to us [P4,p5]

• They might not have that similar role in a years’

time and so they need to be adaptable. They

need to be able to go hey this is a positive thing,

not oh I thought I was going into SAP and not

going to SAP anymore. [P9,p6]

• So you need to have the attitude that they want to

be able to know that that’s part of their

development. [P3,p5]

4.2.4 Business Acumen

Employers expect graduates to have a sense of business

awareness so they can hit the ground running and enhance

the worth of the company.

• It might be their very first time working in a

corporate environment but to have some sort of

business awareness and sort of business savvy

before they hit the workforce in terms of different

stakeholders and knowing where people fit in the

company. [P9,p6-7]

• At Company D as well…. more often than not

they work with the business, they need to get that

business prac and they need to understand staff

we’re working with cause we’re working [as

though] with gold so their merchandising is

important. [P1,p10]

CRPIT Volume 160 - Computing Education 2015

34

4.2.5 Confidence but not Arrogance

The main thing which employers do not want to see is

arrogance, which potential employees sometimes

demonstrated during the interview process, by dominating

the discussion. They do not want students telling them

what their business needs are, and all the things they

would change when they joined the organisation. Nor do

they want to hear about all the wonderful things they can

do technically. They believe that most students have the

technical skills required by their company by the time

they come to the interview, as they have passed their

degree, or they have passed an entry level test, or both.

• We have grads who come in with a little bit of an

attitude of expectation of what they want and you

know we want to be a manager within a year or

two. [P4,p5]

• We didn’t like anyone who was too arrogant but

who didn’t contribute so it was one of those fine

lines, you wanted someone who can contribute

but if they started taking over, then that was

thinking oh maybe we’re not interested. [P2,p1]

• Mine’s more so about unrealistic expectations,

unwilling into compromise. [P4,p7]

Overall ICT employers are looking for someone who

demonstrates that they have the teamwork skills to fit in

with their existing employees, belong to the groups by

listening, identifying what they can contribute and

generally overall enhance and improve their company.

5 Conclusion and Future Work

Students, employers and other stakeholders expect

universities to help students maximise their potential to

find suitable work, that is, to maximise their

employability. In order to do this, it is necessary to work

in partnership with industry and professional bodies and

to understand the changing market conditions for

graduates in their discipline. Students can best improve

their generic skills when they and their teachers fully

understand ICT employers’ needs and expectations.

SFIA has provided a good framework for defining the

employability skills students need, but it has yet to be

fully integrated into academic programs. Capstone

projects, a requirement for credentialing by the ACS,

combine the technical skills required by future employers

and generic skills. However, employers believe the

generic skills need further, more guided and directed

development, with a stronger emphasis on the listening

skills, but without neglecting the oral and written skills.

This study provides a first step into understanding what

contemporary employers are looking for in the ICT

graduates. Our findings support previous studies (Archer

& Davison, 2008, Wilton, 2011, Department of Industry,

2013) that ICT employers are not focused on the technical

aspects when selecting employees. They believe that all

graduates do have the foundation technical skills, but

these technical skills are only deemed important during

the selection process for highly technical roles.

Universally, they were far more concerned about

assessing the generic skills, which they believed were

vital for sustained, successful careers in their

organisations. These findings support and highlight the

need for ICT degrees to continue to provide strong

technical foundations, but to ensure that students are

given every opportunity to develop the generic skills to

improve employability outcomes.

Employers tell us that the key skills required are problem

solving, business acumen and project management. They

rated teamwork and communication skills as the top two

skills, and within communication skills, good listeners

were highly sought after. With teamwork, the ability to

reflect and identify contribution to a team was highly

prized. In addition, the key attitudes of self-awareness,

learning, flexibility, initiative, motivation were highly

regarded by employers as markers of successful staff.

Arrogance and an inability to speak up when necessary, or

speaking out when inappropriate are some of the things

which employers did not want to see in ICT graduates.

The next stage of the project will focus on consultation

with academic staff and undergraduates to assess the

impact of activities to develop employability skills. A

series of focus groups will be undertaken with

undergraduate students, to collect evidence about when

and where students are developing generic skills. This

will be followed by a series of workshops with staff

responsible for curriculum design to map teaching

activities and generic skill development in

undergraduates. Following this series of interviews with

academic staff will be undertaken to document good

practice case studies. The study will conclude with

interviews with graduates to seek more in depth views on

generic skills required, perceived gaps and strategies to

redress the gaps.

6 Acknowledgements

The project has been funded by the Australian

Government Office for Learning and Teaching (OLT)

Grant. We thank the project team, research assistants and

ICT industry employers who have given their time to

participate in this project.

7 References

Archer,W. & Davison, J. (2008). Graduate employability:

what do employers think and want? London: The

Council for Industry and Higher Education (CIHE),

http://www.brunel.ac.uk/services/pcc/staff/employabilit

y/?a=92718, last accessed 1/09/2014.

Bhaerman, R., & Spill, R. (1988). A Dialogue on

Employability Skills: How Can They Be Taught?

Journal of Career Development (Springer Science &

Business Media B.V.), 15(1), 41-52.

Brown, P., Hesketh, A., & Williams, S. (2002).

Employability in a knowledge-driven economy. In P.

Knight (Ed.), Notes from the 13th June 2002 ‘Skills

plus’ conference, Innovation in education for

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

35

employability, held at Manchester Metropolitan

University.

Craven, J. (2014). ICT Resource Demand - An Industry

View Power presentation to the Australian Council of

Deans in ICT, UTS, Sydney 8th May 2014

http://www.acdict.edu.au/ALTA.htm (Last accessed 23

Aug 2014).

Curtis, D. & McKenzie, P., (2001). Employability Skills

for Australian Industry Literature Review and

Framework Development: report to Business Council

of Australia, Australian Chamber of Commerce and

Industry, 2001, http://www.voced.edu.au/node/1166,

(last accessed 1/09/2014).

Department of Industry, (2013). Core Skills for Work

Developmental Framework, http://www.industry.gov.

au/skills/AssistanceForTrainersAndPractitioners / Core

SkillsForWorkFramework/Documents/CSWF-

Framework.pdf, (last accessed 1/09/2014).

Finch, D. J., Hamilton, L. K., Baldwin, R., & Zehner, M.

(2013). An exploratory study of factors affecting

undergraduate employability. Education + Training,

55(7), 681-704. doi: 10.1108/et-07-2012-0077.

Fullen and Scott (2014) New Pedagogies for Deep

Learning White Paper, Education PLUS, Collaborative

Impact SPC, Seattle, Washington.

Graduate Destination Survey (2012) – Graduate Careers

Australia (GCA) Gradstats 2012, http://www. Graduate

careers.com.au/research/start/agsoverview/ctags/gdso/,

(last accessed 1/09/2014).

Jollands, M., Clarke, B., Grando, D., Hamilton, M.,

Smith, J.V., Xenos, S., Carbone, A., (2012).

Developing graduate employability through

partnerships with industry and professional

associations, OLT grant, http://www.olt.gov.au/ (Last

accessed 23 Aug 2014).

Lowden, K., Hall, S., Elliot, D., & Lewin, J. (2011).

Employers' perceptions of the employability skills of

new graduates: Edge Foundation, http://www.edge.co.

uk/media/63412/employability_skills_as_pdf_final_

online_version.pdf, (last accessed 1/09/2014).

Muhamad, S. (2012). Graduate Employability and

Transferable Skills: A Review. Advances in Natural &

Applied Sciences, 6(6), 882-885.

Okay-Somerville, B. & Scholarios, D., (2013). Shades of

grey: Understanding job quality in emerging graduate

occupations, Human Relations 2013 66: 555.

Pool, L. D., & Sewell, P. (2007). The key to

employability: developing a practical model of

graduate employability. Education + Training, 49(4),

277-289.

Riebe, L., & Jackson, D., (2014). The Use of Rubrics in

Benchmarking and Assessing Employability Skills,

Journal of Management Education 2014, Vol. 38(3)

319 –344.

SFIA (2014) Skill Framework for the Information Age

http://www.sfia-online.org/ (Last accessed 23 Aug

2014)

UKCES. (2009). The employability challenge : case

studies, http://www.learningobservatory.com/resource

/the-employability-challenge-case-studies/(last

accessed 1/09/2014).

Wilton, N., (2011). Do employability skills really matter

in the UK graduate labour market? The case of

business and management graduates, Work

Employment Society, 25, 85-100.

Yorke, M. (2006). Employability in higher education:

what it is - what it is not. Learning and Employability

Series 1, ISBN: 1-905788-01-0 The Higher Education

Academy, http://www.employability.ed.ac.uk/docume

nts/Staff/HEA-Employability _in_ HE(Is, IsNot).pdf,

(last accessed 1/09/2014).

CRPIT Volume 160 - Computing Education 2015

36

Computational Thinking, the Notional Machine, Pre-service
Teachers, and Research Opportunities

Matt Bower
School of Education

Macquarie University
Australia

matt.bower@mq.edu.au

Katrina Falkner
School of Computer Science

University of Adelaide
Australia

katrina.falkner@adelaide.edu.au

Abstract
There is general consensus regarding the urgent and
pressing need to develop school students' computational
thinking abilities, and to help school teachers develop
computational thinking pedagogies. One possible reason
that teachers (and students) may struggle with
computational thinking processes is because they have
poorly developed mental models of how computers work,
i.e., they have inadequate “notional machines”. Based on
a pilot survey of 44 pre-service teachers this paper
explores (mis)conceptions of computational thinking, and
proposes a research agenda for investigating the use of
notional machine activities as a way of developing pre-
service teacher computational thinking pedagogical
capabilities.

Keywords: Computational thinking, notional machine,
teacher education, K-12

1 Introduction
Recent changes in ICT curriculum have moved from a
focus on the use of ICT, i.e. digital literacy, to the need
for awareness of how to create and influence the creation
of new technologies. Recognition has grown, that in
addition to the need to increase awareness and interest in
Computer Science (CS), the fundamental concepts and
skills of CS are valuable for children to learn. This has
provided a driver for CS curriculum to be introduced as
early as the first year of schooling. Preparing students to
engage in current technologies and participate as creators
of future technologies requires more than is currently
being provided. We need to ensure that our educational
systems provide not only the fundamentals of digital
literacy – familiarity with the tools and approaches to
interact with technology – but also the computational
thinking processes needed to understand the scientific
practices that underpin technology.

In alignment with recent global trends, the Australian
primary and secondary school system is undergoing a
significant period of change, with the introduction of a
National Curriculum from K-10, new learning areas, and
the development of national assessment programs. This
new curriculum, defined by the Australian Curriculum

Assessment and Reporting Authority (ACARA),
identifies that “rapid and continuing advances in ICT are
changing the ways people share, use, develop and process
information and technology, and young people need to be
highly skilled in ICT. While schools already employ
these technologies in learning, there is a need to increase
their effectiveness significantly over the next decade”
(ACARA, 2012). The ACARA documents include ICT
awareness (i.e. digital literacy) as a key capability,
embedded throughout the curriculum, and introduce a
new learning area, Technologies, combining the “distinct
but related” areas of Design and Technologies and Digital
Technologies (DT) (ACARA, 2013a). DT explicitly
addresses the development of computational thinking
skills as core to the understanding of digital technologies.

The success with which the digital technologies
curriculum is implemented will depend, to a large extent,
on the quality of learning and teaching. Consultation with
Industry, Community and Education within Australia
(ACARA, 2013b) has identified significant concerns in
relation to teacher development (particularly at K-7),
appropriate pedagogy, and skills needed for integration of
DT learning objectives with the teaching of other learning
areas. Approximately 55% of respondents indicated
concern with the manageability of the implementation of
the proposed curriculum, while 45% of respondents did
not think that the learning objectives were realistic.
Support for the professional development of teachers,
including the creation of community networks to share
insights and pedagogical approaches and research, has
been identified as crucial in expanding CS curricula
(Gander, et al., 2013). Bell, Newton, Andreae, & Robins
(2012) describe the New Zealand experience of the rapid
introduction of a senior secondary CS curriculum, and the
need for extensive teacher development that addresses
both content knowledge and pedagogical knowledge.
However, many of the teachers who will be responsible
for teaching the DT curriculum have not completed any
studies that encompassed computational thinking
concepts or processes, let alone how to teach these.

A classic concept in the computing education literature
relevant to computational thinking is that of the “Notional
Machine” (du Boulay, O'Shea, & Monk, 1989). The
Notional Machine is a mental model that enables its user
to make predictions about how a machine will perform.
Without an adequate notional machine it is not possible to
perform computational thinking processes (as elaborated
later in this paper). Based on a pilot study of 44 pre-
service teachers, this paper analyses conceptions and
misconceptions of computational thinking, and based on
the survey results and literature review proposes a

Copyright (c) 2015, Australian Computer Society, Inc. This paper
appeared at the 17th Australasian Computer Education Conference
(ACE 2015), Sydney, Australia, January 2015. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 160. D. D'Souza
and K. Falkner, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

37

research agenda for developing computational thinking
capabilities based on notional machine activities.

2 What is Computational Thinking?
Computational thinking, as defined by Wing (2006) is:
“solving problems, designing systems, and understanding
human behaviour, by drawing on the concepts
fundamental to computer science”. Computational
thinking involves understanding the fundamental
concepts and abstractions that underpin computer science,
and then reformulating problems into a form that can be
solved readily using what we already understand.
ACARA defines computational thinking as “a problem-
solving method that involves various techniques and
strategies, such as organising data logically, breaking
down problems into components, and the design and use
of algorithms, patterns and models” (ACARA, 2012).
Understanding computational thinking involves
understanding core computer science concepts, and the
ability to conceptualise and create abstractions that define
solutions to problems. But why is it important that we
understand computational thinking? Why do we need to
develop these mental models as part of our education
system?

In the US, a recent survey of CS education at High
Schools identified that Schools are “failing to provide
students with access to the key academic discipline of CS,
despite the fact that it is intimately linked with current
concerns regarding national competitiveness…” (Gal-
Ezer & Stephenson, 2009). Furthermore, recent reports
from the US and Europe have argued that it is essential
that children be exposed to CS concepts and principles
from the very start of their education so that “every child
[may] have the opportunity to learn Computing at
School” (Gander, et al., 2013; Wilson & Guzdial, 2010).
If not, we face the risk of our youth being placed in the
position of consumers of technology produced elsewhere,
unable to actively participate as producers and leaders in
this field (Gal-Ezer & Stephenson, 2009; Gander, et al.,
2013; Wilson & Guzdial, 2010). As Alan Noble,
Engineering Director for Australia and New Zealand
notes, “there is a difference between using a smartphone
and creating an app that reaches millions of people”
(Noble, 2012).

New curricula introduced in England (British
Department for Education, 2013), Australia (ACARA,
2012), New Zealand and the new ACM CS standards
(Seehorn, et al., 2011) have identified the need to educate
for both digital literacy and CS, and the need to promote
both learning areas from the commencement of schooling
to support youth in participating in an increasingly digital
society. Students who are exposed early generally have
deeper interactions with computers, focused on exploring
computers and related concepts rather than just utilising
the computer for set tasks (Schulte & Knobelsdorf, 2007).
Early exposure increases interest in computing by
increasing computing self-efficacy (Akbulut & Looney,
2009).

However, it is also stressed that students would benefit
from education in CS as an independent scientific subject
on par with learning areas such as Mathematics or
English (Gander, et al., 2013). It is essential that our
education systems evolve, requiring the clear articulation

of CS as a distinct discipline, including the integration of
CS as a fundamental learning area across the curriculum
and the exploration of the societal and cultural impacts of
technology. Computational Thinking should be seen as an
enabling subject (such as literacy or numeracy) whereas
computing should be seen a separate discipline equivalent
to Mathematics or Physics (BCS, 2010).

Developing capacity for computational thinking goes
beyond building individual understanding and
capabilities, however, but helps address a significant
concern over the shrinking pool of qualified ICT
professionals available to meet the demands of a rapidly
growing industry. In a recent report by PWC (2013) on
strategies and challenges in accelerating Australian
innovation, they identify that “Even if all international
students were to stay in Australia post graduation, the
supply of computer science and engineering graduates
would still fall short of the numbers needed to accelerate
growth”, while the Bureau of Labor Statistics (Lockard
and Wolf, 2010), identifies that within computer and
mathematical occupations, there is a 22.0% increase in
employment projected from 2010-2020 (14.3% for all
occupations).

3 Notional Machine
For many decades before developing computational
thinking capabilities emerged as an important social
agenda, Computer Science education researchers have
been searching for the reasons why students find
computing difficult. A foundational theory in computer
science education that explains why students struggle to
master computing concepts and processes is that of the
“notional machine”. The notional machine is an abstract
version of the computer, “an idealised, conceptual
computer whose properties are implied by the constructs
in the programming language employed” (du Boulay, et
al., 1989, p. 431).

The notional machine has been used in numerous
studies (refer to Robins, Rountree, & Rountree, 2003, p.
149) and provides a theoretical orientation for examining
how people think about computing and the
misconceptions that may arise. That the notional machine
assists learning is not a hypothetical proposition. For
instance Mayer (1989) showed that students supplied
with a notional machine model were better at solving
some kinds of problems than students without the model.

In order for students to progress towards expert
behaviour as efficiently as possible it is important to have
an understanding of the difficulties they experience. This
allows educators to provide scaffolding that helps
learners to surmount these difficulties and allows the
students themselves to pre-empt impediments to their
learning by being aware of their potential before they
arise. Du Boulay (1989) describes five inextricably linked
potential sources of difficulty when learning computer
programming:

1. general orientation (what programs are for and
what can be done with them)

2. the notional machine (a model of the computer
as it relates to executing programs)

3. notation (the syntax and semantics of a
particular programming language)

4. structures (schemas and plans)

CRPIT Volume 160 - Computing Education 2015

38

5. pragmatics (the skills of planning, developing,
testing, debugging and so on).

Du Boulay et al. (1989) note that much of the early
difficulty in learning computing arises from the student’s
attempt to deal with these different kinds of difficulties
all at once. ‘Misapplication of analogy’, ‘interaction of
parts’ and ‘overgeneralisation’ errors result. In the early
stages teachers can assist the learning process by trying to
address these domains separately (as far as possible) so as
to reduce interference between them.

Du Boulay et al. (1989) suggest that in order for
novice programmers to overcome comprehension
problems caused by the hidden, unmarked actions and
side effects of visually unmarked processes the notional
machine needs to be simple and supported with some
kind of concrete tool which allows the model to be
observed. They suggest that the visibility component of
such models be supported through ‘commentary’ – a
teacher delivered or automated expose of the state of the
machine. On the other hand the simplicity component of
the machine can be supported through:

1. functional simplicity (operations require minimal
instructions to specify)

2. logical simplicity (problems posed to students
are of contained scale)

3. syntactic simplicity (the rules for writing
instructions are accessible and uniform).

Du Boulay et al. (1989) conclude that matching visibility
and simplicity components of notional machines to
different populations of novice learners leads to improved
educational outcomes. One would also suspect that
without notional machine cognitive models, students’
computational thinking progress would be severely
restricted in the long term, and that the more sophisticated
a student’s notional machine the more developed their
problem solving abilities. Both of these conjectures
represent potential areas for further research.

As mentioned, the Notional Machine is a discipline
specific mental model, and the literature on mental
models also sheds light on how learning and teaching
computational thinking may be enhanced. Norman (1983)
distinguishes between the target system (the system that
the person is learning or using), the conceptual model of
the target system (an accurate and appropriate
representation of the target system), the user’s mental
model of the target system (which may or may not be
accurate and suffice), the researcher’s conceptualization
of the learner’s model (a model of a model). Often
teachers attempt to provide students with a conceptual
model of a system to support the formation of students’
mental models. Effective representations are those that
capture the essential elements of the system leaving out
the rest, with the critical point being which aspects to
include and which to omit (Norman, 1993). Successfully
selecting and describing the poignant features of a system
allows students to concentrate upon the critical aspects of
the system without being distracted by irrelevancies.
When acquired, such conceptual models enhance
students’ capacity to reason and think. However if critical
features are omitted or represented in a way that students
misunderstand, then students may not comprehend crucial

aspects of the system and may subsequently form
misguided conclusions (Norman, 1993).

Some sub-domains of computer science have lead to
specialised mental models of how students learn
computing being developed. For instance, without a
viable mental model of recursion that correctly represents
active flow (when control is passed forward to new
instantiations) and passive flow (when control flows back
from the terminated instantiations) students cannot
reliably construct recursive algorithm traces (Gotschi,
Sanders, & Galpin, 2003).

There are several advantages to such domain specific
models. Firstly, they can inform educators’ decisions
about the required approach to learning – in the case of
recursion a constructivist approach is required in order for
students to create a viable mental model adequate to
apply design concepts and solve problems. Secondly,
domain specific models assist lecturers by providing
accurate mental models, such as Kayney’s ‘copies’ model
of recursion, that have been demonstrated as successful at
promoting understanding. Thirdly, such research
explicitly exposes non-viable mental models that students
may form (such as the looping, magic, and step models),
allowing lecturers and pupils to pre-empt student errors
(Gotschi, et al., 2003).

4 Developing Computational Thinking
There are a variety of broad recommendations about how
to develop computational thinking generally, most of
which emanate from the Computer Science education
literature. Pedagogues recommend connecting
Computational Thinking to young people’s interests
(Resnick, et al., 2009), for instance, through computer
games (Carter, 2006; Lenox, Jesse, & Woratschek, 2012)
or multimedia based learning tasks (Blank, et al., 2003).
A games based approach to introducing programming in
the middle years has been shown to help develop
computational thinking concepts (events, alternation,
iteration, parallelism, additional methods, parameters,
local and global variables) at the same time as enhancing
students enjoyment of learning computing (Repenning,
Webb, & Ioannidou, 2010).
Providing students with a low floor (easy to learn), high
ceiling (hard to master, many opportunities to learn),
wide walls (flexible and adaptable to a wide range of
applications) enables students of different ability levels to
remain engaged (Resnick, et al., 2009). Stephenson et al.
(2005) recommend designing course materials that
incorporate meaningful learning through the use of
problem-solving approaches, appealing experimental
environments, and an explicit emphasis on design and a
real-world focus. Supporting skills beyond programming
has been shown to increase student satisfaction with
computing and may broaden further participation
(Repenning & Ioannidou, 2008).

Creating a conducive learning environment has also
been proposed as a way to enhance computational
thinking. For instance, Stephenson et al. (2005)
recommend establishing a welcoming environment that
models life-long learning. Barr & Stephenson (2011)
suggest increased use of computational vocabulary by
teachers and students where appropriate, acceptance of

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

39

failed solution attempts by teachers and students, and
tasks involving team work by students. Yet, there is little
research to substantiate these claims.

5 The challenge of teaching Computational
Thinking

One of the main problems faced by the domain is that
many students perceive computing to be essentially the
same as technology training, which can be seen as
repetitive and teaching skills that the students already
know such as how to use standard Office tools (BCS,
2010). It is also possible that teachers (including pre-
service teachers) may not always have a firm
understanding of what computational thinking involves
(as will be explored later in this paper).

Studies have identified increased anxiety and concern
over preparation time when dealing with unfamiliar
content (Curzon, McOwan, Cutts, & Bell, 2009). Even in
cases where teachers are experienced with computing
fundamentals, the integration of new tools can create
anxiety that causes them to deviate from their planned
lessons (Meerbaum-Salant, Armoni, & Ben-Ari, 2013).

Training teachers to teach computational thinking is an
essential piece of the puzzle (BCS, 2010; Black, et al.,
2013). Poor lessons demotivate learners, creating
negative attitudes towards the subjects, and this can
create a vicious cycle of demotivating teachers who in
turn create poorer lessons (BCS, 2010). Professional
development is critical in order for teachers to effectively
develop computational thinking pedagogies, (Barr &
Stephenson, 2011). This is not only about offering
training courses, but also establishing effective
communities of practice to provide ongoing support and
sharing of resources (Black, et al., 2013).

It is also critical to provide resources to help teachers
effectively teach computational thinking concepts and
processes (Barr & Stephenson, 2011). Settle et al (2012)
identify specific difficulties for educators in translating
materials into existing curriculum, with an emphasis on
the increased difficulty in adopting and integrating new
tools. It is challenging is to provide teachers with material
which effectively conveys the most important aspects of
computing without reducing it to tool use or
programming, both of which are misconceptions of
computing (Battig, 2008). Tinapple, Sadauskas, & Olson
(2013) further comment on the challenge of
implementing lessons where expected software and/or
hardware are not easily available.

Another issue is that teachers often utilise fun
activities with a focus on impressive technology, physical
computing and programming using constructionist
environments rather than providing opportunities for deep
learning of computational thinking (Black, et al., 2013).
These results are indicative on a focus on tool usage for
engagement, rather than a deep understanding of
computational thinking processes and concepts.

6 A pilot survey of pre-service teachers
In order to gauge pre-service teachers’ perceptions of
computational thinking learning and teaching in light of
the upcoming Australian Digital Technologies
Curriculum a pilot survey was run in April of 2014. The

anonymous online survey was issued to 84 pre-service
teachers who were completing the 300 level subject
“EDUC362 – Digital Creativity and Learning” at
Macquarie University. The survey was conducted during
Week 3 of Semester 1 (March 2014). A total of 44 pre-
service teachers volunteered to respond. Apart from
demographic questions relating to age, gender and the
program of study in which the student was enrolled, the
survey asked about pre-service teachers’ awareness of the
upcoming Australian Digital Technologies curriculum,
their conceptions of the term ‘computational thinking’,
their understanding of pedagogies and technologies that
can be used to develop computational thinking, and their
confidence to teach computational thinking.

Open-ended responses were analysed using qualitative
coding techniques. First classified using an open-coding
phase to determine preliminary analytic categories. Next,
axial coding was carried out to determine emergent
themes and refine categorisations. Lastly, a selective-
coding phase supported representation of the conceptual
coding categories for reporting purposes. (See Neuman,
2006, for further details of the approach.) If responses
addressed multiple issues they were coded in more than
one category, meaning that it was possible to have a
greater tally of responses across the items than the
number of respondents.

Quantitative data was interpreted and reported using
standard descriptive statistics techniques.

6.1 Results
Of the 44 students who chose to respond, 38 were
intending to be primary school teachers and 5 were
planning to be secondary school teachers (2 science, 2
languages, and 1 english/history). On respondent did not
indicate their intended teaching level. The large majority
of respondents were in their third or fourth year of their
program (42 out of 44). The age distribution was right
skewed with 29 participants indicating that they were in
the 18-24 age range. A total of 33 females and 11 males
participated.

6.1.1 Awareness of Computational Thinking
Pre-service teachers’ awareness of the upcoming

Australian Digital Technologies Curriculum (ADTC) and
whether they had heard of the term ‘computational
thinking’ is shown in Table 1.

 Heard of

‘Computational
Thinking’

Not heard of
‘Computational

Thinking’
Aware of ADTC 15 11
Unaware of ADTC 11 7

Table 1: Awareness of the upcoming Australian
Digital Technologies Curriculum (ADTC) and the

term ‘computational thinking’

The table demonstrates that an awareness of the
upcoming ADTC did not necessarily imply an awareness
of ‘computational thinking’, even though computational
thinking was highlighted by the Australian Curriculum
Assessment and Reporting Authority (ACARA) as a
distinguishing core feature of the ADTC. Similarly,

CRPIT Volume 160 - Computing Education 2015

40

awareness of computational thinking did not necessarily
derive from the ADTC, with a quarter of students
indicating that they had heard of computational thinking
but did not know about the impending ADTC.

6.1.2 Conceptions of ‘computational thinking’
There were 32 pre-service teachers who chose to

respond to the question “what does computational
thinking mean to you?”. Table 2 summarises their
responses into the categories that emerged from the
coding process. Note once again that some responses are
tallied under two or more categories if the response
incorporated multiple elements. ‘Problem solving using
technology’ has been included as a separate category to
‘problem solving’ or ‘using technology’ as it
demonstrates a deeper understanding of computational
thinking than either of the latter two categories.

Computational thinking construct fn
problem solving using technology 11
using technology 10
technological thinking 5
logical thinking 5
gathering/organising/processing information 3
analytical thinking 3
critical thinking 2
creative thinking 2
mathematical thinking 2
problem solving 2
thinking like computer 2
scientific thinking 1
structured thinking 1
strategic thinking 1
testing 1
efficiency 1
non-descript 1

Table 2: Summary of pre-service teacher conceptions

of ‘computational thinking’

Over one third of respondents described computational

thinking as involving “problem solving using
technology”, though descriptions varied widely in
sophistication. For example:

Problem solving using technology; using technology in
a variety of ways to approach a problem; analysing
and logically organising data, generating problems
that require computers assistance; identifying, testing,
and implementing possible solutions

Using computer technology to solve a problem.

Having heard of the term computational thinking did
not necessarily result in more sophisticated responses
being provided. For instance, the first response above is
from someone who had not heard of computational
thinking and the second response is from someone who
had.

Nearly one third of the pre-service teachers considered
computational thinking to merely be using technology,
for instance “awareness of how to operate software,

ability to 'self help'”. Two students described it as
problem solving without associating it with technology,
and one student had a blurred conception of
computational thinking as both digital literacies and
problem solving using technology: “Digital Literacy, the
ability to use technology to solve problems and assist
learning, create digital artefacts”.

Pre-service teachers were able to identify types of
thinking associated with computational thinking, namely
logical thinking, analytical thinking, critical thinking,
creative thinking, mathematical thinking, scientific
thinking, structured thinking, and strategic thinking.
Some were able to identify activities and concepts
associated with computational thinking, such as testing,
efficiency, gathering information and organising data.
Only two students were able to associate computational
thinking with more than three of any of the above
elements.

Two pre-service teachers erroneously thought
computational thinking was thinking like a computer, for
instance “Thinking or memorising in a way that computer
works”. One pre-service teacher gave the non-descript
response “a process or a way of thinking to understand
topics”. There were five students who used the term
“technological thinking” or synonymic phrases, which
has no clear meaning,

6.1.3 Associated Pedagogies
There were 30 pre-service teachers who chose to respond
to the question “What pedagogical strategies do you have
(or can you think of) for developing school students'
computational thinking capabilities?” Their responses are
summarised in Table 3.

pedagogical strategies fn
using technology 13
group work 6
problem based tasks 6
active learning 4
direct instruction / modelling 3
inquiry based approach 3
games/play 2
none / non-descript 2
provide scaffolding 2
teacher familiarity with technology 2
authentic problems 1
brainstorming 1
establish purpose 1
provide process for thinking 1
safe environment 1
writing code 1

Table 3: Summary of pre-service teacher pedagogical

strategies to develop computational thinking

The most popular pedagogical strategy represented in

students’ responses (n=13) was to simply use technology,
for instance: “Continuous practice, engagement and
exposure to different computer technology”. Four of these
responses also mentioned problem solving in association
with the use of technology. Six students made general

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

41

mention of how group work strategies could be used (for
instance, collaborative learning, cooperative learning,
paired learning). There were sixteen instances where
responses discussed the nature of the learning process
(problem-based learning, active learning, inquiry
learning, games based learning, brainstorming, writing
code). It is interesting to note that only one pre-service
teacher mentioned writing code. There were another ten
cases where responses discussed the role and
responsibilities of the teacher (direct instruction /
modelling, provide scaffolding, be familiar with
technology, establish purpose, provide processes for
thinking, creating a safe environment).

Overall responses were lacking in detail so in most
cases it was difficult to tell whether pre-service teachers
had a concrete understanding of how the pedagogy could
be applied to develop computational thinking. Responses
also revealed more about pre-service teacher conceptions
of computational thinking. For instance, one respondent’s
pedagogical strategies were:

Using group work (heterogeneous groups) for students
to engage in negotiation, reasoning and student
discussion. I would also use apps for students to
engage in thinking abstractly and outside of the square
such as Comic life, I-movie.

It is unclear how this respondent would use group
work to develop computational thinking, and it appears
that while the student did associate abstraction with
computational thinking, they did not appear have a clear
understanding of how technology could be used to
develop computational thinking.

6.1.4 Supportive Technologies
Asking pre-service teachers the question “How can
technologies be used to help develop school students'
computational thinking capabilities? (Provide specific
examples if you can.)” offered further insight into their
conceptions of computational thinking (see Table 4). Of
the 26 students who responded to this question, 10
provided only unspecific suggestions about how
technology could be used to develop computational
thinking, for instance “organise and help the logical
thinking”. Six students talked generally about how
technology could be used to increase engagement, for of
which were from the unspecific respondents. For
example: “technological resources can be more
engaging/exciting to students”.

Technologies to support computational thinking fn
unspecific 10
engagement 6
conduct research (e.g. searching Internet) 5
presentation tools 4
software/apps - general 4
comic/story creation tools 3
mindmapping 3
create 3D objects 2
data analysis (e.g. spreadsheet) 2
practice - general 2
brainstorming software 1
none 1
program creation 1
publishing tools 1

websites 1

Table 4: Summary of pre-service teacher identified
technologies for developing computational thinking

Some pre-service teachers provided more specific

suggestions about how technology could be used to
develop computational thinking, but for many of these it
was unclear how it actually would develop computational
thinking. For instance, using comic/story creation tools,
mindmapping tools, brainstorming and presentation tools
are not obviously and usually related to developing
compuational thinking. The specific examples of
technologies that pre-service teachers identified were
Mindmeister, Comic Life, Toontastic. Prezi, iBooks, and
Google Sketchup. Five students mentioned using the
Internet for research purposes, and only one identified a
technology that was specifically related to computational
thinking (the code.org website).

6.1.5 Pre-service teacher confidence
There were 32 pre-service teachers who chose to

respond to the questions relating to how confident they
felt to develop their students’ computational thinking
capabilities (see Figure 1). From the graph it can be seen
that 18 of the 32 pre-service teachers (56%) indicated
that they were to some degree unconfident rather than
confident about teaching computational thinking.

Figure 1: Pre-service teachers’ confidence about

developing their students’ computational thinking
abilities

It is important to note that responses on the confident side
of the scale did not mean that pre-service teacher
confidence was warranted. For instance, some pre-service
teachers indicated that they were ‘slightly confident’
about developing their students’’ computational thinking
abilities, but had not heard of the term computational
thinking and had poor conceptions of computational
thinking such as:

Computational thinking is ones ability to navigate and
problem solve using the medium of technology such as
ipad, macbooks and IWB's.

teaching and learning using technology

More concerning, there were some teachers who had
heard of computational thinking and indicated that they
were ‘confident’ about developing their students’
computational thinking abilities yet had erroneous
conceptions of computational thinking, for instance:

CRPIT Volume 160 - Computing Education 2015

42

using the computer to help with forming ideas and
opinions / - how technology can help your thinking

6.1.6 Lack of Confidence
When pre-service teachers were asked “what prevents
you from feeling confident about developing your
students' computational thinking capabilities?” responses
related to pedagogical issues, technology issues, general
issues, circumstantial and affective issues.

Nine pre-service teachers felt unconfident about
developing their students’ computational thinking
because of pedagogical issues, including unfamiliarity
with the curriculum (5), lack of pedagogical strategies
(3), lack of lesson ideas (1), and uncertainty how to apply
computational thinking to real world situations (1). There
were eight pre-service teachers who felt that they did not
have the technological knowledge and experience to feel
confident about teaching computational thinking, though
many of these appeared to be confusing computational
thinking with general technology usage (for instance “I
lack ICT knowledge”). One of these pre-service teachers
felt they did not have the required computer science and
programming knowledge.

There were thirteen pre-service teachers who indicated
more general reasons for their lack of confidence
including a poor understanding of what computational
thinking means (4), a general lack of knowledge (6) and a
general lack of experience (3). Two pre-service teachers
did not feel confident about teaching computational
thinking due to circumstantial factors relating to
becoming a teacher:

Still learning about being a teacher so not yet
confident in any particular area

I wasn't not taught like this at school, content and the
use of technology

One pre-service teacher spoke directly about the fear
of the unfamiliar affecting their confidence:

Because it is something new to me and to teach
something i am just coming to terms with slightly
scares me and i lose confidence because of that

6.1.7 Building confidence
When pre-service teachers were asked “What could help
you to feel more confident about developing your
students' computational thinking capabilities?” the most
common response related to explicit professional
development (11 respondents). Other items identified by
students provide insight into the form that such
professional development might take. There were 6 pre-
service teachers who indicated they would like a better
understanding of pedagogical strategies, 7 who wanted
greater exposure to and experience with technology, and
7 who felt that a better understanding of computational
thinking would improve their confidence to teach
computational thinking. There were seven students who
indicated that greater understanding and practice
generally would be beneficial.

 Pre-service teachers identified other factors that could
improve their confidence in developing computational
thinking including more resources and information,

learning more about computer programming, learning
more about the research relating to computational
thinking, and having well planned lessons.

6.2 Limitations of this study
A limitation of this study is that it was only issued to a
small sample of pre-service teachers from one university,
and results may vary widely depending on the institution.
As well, students were not asked about their previous
studies of computing, which one would expect would
have a large influence on their responses. Any future
iterations of the survey will ask students about their
previous exposure to computing.

The survey was conducted before pre-service teachers
completed a topic on computational thinking in the third
year unit they were studying. This was done so that
responses were more representative of the general pre-
service teacher population of the university, most of
whom do not complete the unit which was offered for the
first time in 2014. After completing the unit student
responses may have been quite different. However, it is
conjectured that many universities do not yet have any
courses that cover computational thinking as an explicit
topic, and as such the responses may be more
representative of the broader pre-service teacher
population both nationally and internationally.

As this was an online survey students may not have
been motivated to provide elaborate responses that
accurately represented the full extent of their perceptions
and conceptions. Semi-structured interview techniques
may be necessary to probe more deeply into pre-service
teacher thoughts surrounding computational thinking.

7 Discussion of results
Generally speaking pre-service teachers had a weak
understanding of computational thinking. There are a
large proportion of pre-service teachers who confuse
computational thinking with using technology generally
(for instance word processing or searching the internet).
Pre-service teachers correctly associated computational
thinking with problem solving using technology, logical
thinking, gathering/organising/processing information,
analytical thinking, critical thinking, creative thinking,
mathematical thinking, scientific thinking, structured
thinking, strategic thinking, testing and efficiency, though
only two students were able to associate it with more than
three of these points. This indicates that there is extensive
potential to improve pre-service teachers' conceptions of
computational thinking. The data also implied we should
not assume that because pre-service teachers are aware of
the upcoming Digital Technologies Curriculum they
understand computational thinking, or visa versa – half of
respondents were aware of one but not the other.

For many of the pre-service teachers the extent of their
pedagogical strategies for developing computational
thinking was simply to have students use technology.
Collectively pre-service teachers were able to identify
generally appropriate pedagogical strategies such as types
of group work and student centred learning. Several
teachers identified the role of the teacher in providing
instruction and creating a conducive learning
environment. Yet because responses were almost

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

43

invariably lacking in detail there was no evidence to
indicate that the pre-service teachers had specific and
clear ideas about how to develop their students'
computational thinking capabilities.

The technologies they identified to support the
learning of computational thinking provided further
verification that many students did not understand what
was meant by computational thinking - the specific tools
that were suggested (such as Comic Life and iBooks)
bore no specific relation to computational thinking and
only one student mentioned a purpose built platform (the
code.org website).

Pre-service teachers were of varying confidence about
teaching computational thinking, and some were
overconfident based on their evidenced understanding.
Not only were the majority on the unconfident side of the
response spectrum, but several of those who indicated
confidence had poorly formed or incorrect conceptions of
what computational thinking actually meant. There were
classic examples of third order ignorance (Waite et al
2003) where pre-service teachers were unaware that they
did not know.

Responses from pre-service teachers indicated that
they would value professional learning opportunities that
focused on:

• Developing their computational thinking
pedagogical capabilities - understanding of the
curriculum, lesson ideas, strategies for
implementation, links to real world examples

• Technological understanding - exposure to and
practice with the sorts of technologies that can be
used to develop computational thinking, and even
elementary programming instruction

• Content knowledge - a better understanding of
what computational thinking is and means.

This accords with the well renowned Technology
Pedagogy and Content Knowledge (TPACK) model of
teacher learning and practice (Mishra & Koehler, 2006).
Responses also highlighted the need for both knowledge
and practice. Some pre-service teacher responses
highlighted the importance of affective considerations
when designing professional learning - this is unfamiliar
territory for many teachers who have never been taught or
learnt computational thinking so it is important to
sensitively scaffold their confidence.

8 Computational thinking research agenda
The notional machine has been an important and useful
construct in computer science education (Robins et al,
2003) but there has been little if any work investigating
how it can be used to understand and enhance
computational thinking learning and teaching. There is
urgent and pressing need to develop school students’
computational thinking capabilities and teachers’
computational thinking pedagogies (as established
through the literature review and also by the data
collected in this study). Thus there are several research
opportunities to investigate how notional machines can
inform our understanding of computational thinking and
improve how it is learnt. Phrased as research questions,
these are:

1. How do notional machine constructs map to
different computational thinking environments?
For instance, how do we define notional machines
for computational thinking systems that may vary
from Eclipse, to Scratch, to Beebots?

2. How can ‘visability’ (du Boulay et al., 1989) be
used to support computational thinking within
computational thinking environments? There may
be several pedagogical strategies along the lines of
including visual debugging-style output within
programs to make the operations of the machine
visible to students, thus enhancing their notional
machine, but their effectiveness has not been
investigated specifically from a computational
thinking frame of reference.

3. How can ‘functional simplicity’(du Boulay et al.,
1989) be best instantiated through easy to
understand instructional sets? This relates to the
quality of introduction and explanation of how the
machine works, and success may reside in
illuminating exemplars, economical explanation,
and powerful analogies). As Norman (1993) points
out in order to help students form accurate mental
models it is just as critical to decide what should
be left out as what should be included.

4. How can ‘syntactic simplicity’ (du Boulay et al.,
1989) be fostered through accessible and uniform
programming grammars? This has been applied in
some of the computational thinking tasks available
through Code.Org, Scratch, Alice, and the like that
use visual interfaces to write programs. Ideally
teachers would utilise and even create non-
computer based tasks that develop computational
thinking abilities, in which case an understanding
of syntactic simplicity is critical.

5. How do we incrementally graduate the ‘logical
simplicity’(du Boulay et al., 1989) of the problems
to be solved in line with the developing
conceptions of the novice computational thinker?
(Scope and sequencing and timing issues are
crucial so that students are neither bored nor
overwhelmed - low floor, high ceilings, wide
walls. Bower's Taxonomy of Task Types provides
a one possible hierarchy for incrementing task
complexity). The idea is to attempt to avoid
problems relating to trying to learn about what
computational thinking means, developing notional
machines, learning languages, learning computing
structures, and developing computational thinking
process skills all at once (the 5 sources of difficulty
identified by DuBoulay). Teachers need to know
how to deconstruct computational thinking to
avoid possible student cognitive overload.

6. Where do 'misapplication of analogy',
'overgeneralisation' and 'interaction of parts' and
potentially other types of errors commonly occur
in the curriculum? An understanding of these
errors and where they occur helps teachers to
better support the learning of computational
thinking constructs. More importantly, how can we
use these instances to create threshold learning
experiences.

CRPIT Volume 160 - Computing Education 2015

44

7. How do researchers and educators accurately
gauge novice mental models of target systems so
that we can understand how to effectively guide
learners towards correct conceptual models? As
Norman (1983) distinguishes between the correct
conceptual model of the target system, the user's
mental model of the target system, and the
researcher's conceptualisation of the learner's
model, understanding how to gauge and contrast
these may be the key to understanding
computational thinking learning and teaching, As
Gotschi, Sanders and Galpin (2003) point out,
domain specific models not only provide a point of
reference to help identify non-viable mental
models but also provide teachers with a resource to
help develop their students' mental models.

8. How do we best structure teacher professional
learning in order to most effectively develop their
computational thinking pedagogical capabilities?
This not only relates to the execution of
professional learning courses, but also the
development of an appropriate learning community
around computational thinking pedagogy
comprised of pre-service teachers, in-service
teachers, researchers and developers. The pre-
service teachers provide some general ideas, as
does the literature, yet the devil will be in the
detail.

Universities should be playing a key role in the
development of teachers, methods and curriculum
(Tucker, et al., 2003). A key element for a successful
curriculum in schools is founding the resources and
teaching practices on research into computer science
education (Hazzan, Gal-Ezer, & Blum, 2008). In order to
develop high quality computing curriculum is to have the
course part of the research process, whereby teaching and
learning data is used to iteratively refine the educational
process (Hazzan, et al., 2008). Teachers can then become
active participants in the research process. In Israel the
teacher preparation process includes some research
components, so that teachers can learn how to iteratively
refine their teaching practices. In this way, research
projects can contribute to the education of students,
teachers and the educational community at large.

9 Concluding remarks
Accurate notional machines underpin successful

performance in computational thinking. A structured
rather than haphazard approach to examining notional
machine understanding is required if we are to help
students (and teachers) identify their misconceptions and
take appropriate remedial action. Notional machine
understanding is a prerequisite for effective teaching of
computing, but not a guarantee. Teachers also need to
have an appropriate repertoire of computational thinking
pedagogies and technological knowledge in order to
successfully teach computational thinking concepts and
create a conducive learning environment for students.

This paper calls for further research into how the
notional machine can be used to better understand and
develop the computational thinking abilities of students
as well as the computational thinking pedagogical
capabilities of teachers. Results from this study suggest

that pre-service teachers are ill prepared to teaching
computational thinking, and need pedagogical strategies,
experience with relevant technologies, and a better
understanding of what computational thinking means.
The computer science and education fields more
generally need a greater understanding of how
computational thinking is effectively learnt and taught in
order to better support students and teachers.

The literature has identified visibility, functional
simplicity, syntactic simplicity, logical simplicity and
graduation as critical pedagogical issues, but how these
relate to specific aspects of computational thinking
learning is an open question. As yet there is no clear
understanding of how to best describe and gauge notional
machines, nor key places where novice misconceptions
appear in the computational thinking curriculum. This
paper is a call to action and an invitation to researchers
interested in working on understanding the computational
thinking research questions identified in this paper.

10 References
ACARA (2012). The shape of the Australian curriculum:

technologies. Retrieved 17 August, 2014, from
http://www.acara.edu.au/curriculum_1/learning_areas/
technologies.html

ACARA (2013a). The Australian curriculum:
Technologies information sheet. Retrieved 17 August,
2014, from
http://www.acara.edu.au/curriculum_1/learning_areas/
technologies.html

ACARA (2013b). Draft Australian Curriculum:
Technologies Foundation to Year 10 Consultation
Report. Retrieved 17 August, 2014, from
http://www.acara.edu.au/curriculum_1/learning_areas/
technologies.html

Akbulut, A. Y., & Looney, C. A. (2009). Improving IS
student enrollments: Understanding the effects of IT
sophistication in introductory IS courses. Journal of
Information Technology Education, 8, 87-100.

Barr, V., & Stephenson, C. (2011). Bringing
computational thinking to K-12: what is Involved and
what is the role of the computer science education
community? ACM Inroads, 2(1), 48-54.

Battig, M. (2008). Piltdown man or inconvenient truth? A
two-year study of student perceptions about
computing. In Proceedings of ISECON.

BCS, T. C. I. f. I. (2010). Consultation response to Royal
Society’s Call for Evidence – Computing in Schools.
The Royal Society: T. C. I. f. I. BCS.

Bell, T., Newton, H., Andreae, P., & Robins, A. (2012).
The introduction of computer science to NZ high
schools: an analysis of student work. In Proceedings
of the 7th Workshop in Primary and Secondary
Computing Education, (pp. 5-15): ACM.

Black, J., Brodie, J., Curzon, P., Myketiak, C., McOwan,
P. W., & Meagher, L. R. (2013). Making computing
interesting to school students: teachers' perspectives.
In Proceedings of the 18th ACM conference on
Innovation and technology in computer science
education, (pp. 255-260): ACM.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

45

Blank, G. D., Pottenger, W. M., Sahasrabudhe, S., Li, S.,
Wei, F., & Odi, H. (2003). Multimedia for computer
science: from CS0 to grades 7-12. EdMedia,
Honolulu, HI.

British Department for Education (2013). The national
curriculum in England. Cheshire, UK: Crown.

Carter, L. (2006). Why students with an apparent aptitude
for computer science don't choose to major in
computer science. In ACM SIGCSE Bulletin, (pp.
27-31): ACM.

Curzon, P., McOwan, P. W., Cutts, Q. I., & Bell, T.
(2009). Enthusing & inspiring with reusable
kinaesthetic activities. In ACM SIGCSE Bulletin,
(pp. 94-98): ACM.

du Boulay, B., O'Shea, T., & Monk, J. (1989). The black
box inside the glass box: presenting computing
concepts to novices. In E. Soloway & J. C. Spoher
(Eds.), Studying the Novice Programmer (pp. 431-
446). Hillsdale, NJ: Lawrence Erlbaum.

Gal-Ezer, J., & Stephenson, C. (2009). The current state
of computer science in US high schools: A report
from two national surveys. Journal for Computing
Teachers, 1-5.

Gander, W., Petit, A., Berry, G. r., Demo, B.,
Vahrenhold, J., McGettrick, A., et al. (2013).
Informatics education: Europe cannot afford to miss
the boat.

Gotschi, T., Sanders, I., & Galpin, V. (2003). Mental
models of recursion Proceedings of the 34th SIGCSE
technical symposium on Computer science education
(pp. 346-350): ACM Press.

Hazzan, O., Gal-Ezer, J., & Blum, L. (2008). A model for
high school computer science education: the four key
elements that make it! In ACM SIGCSE Bulletin,
(pp. 281-285): ACM.

Lenox, T., Jesse, G., & Woratschek, C. R. (2012). Factors
influencing students decisions to major in a computer-
related discipline. Information Systems Education
Journal, 10(6), 63.

Lockard, C.B and Wolf, M. (2012). Occupational
employment projections to 2020. Monthly Labor
Review , January 2012, 84-108.

Mayer, R. E. (1989). The psychology of how novices
learn computer programming. In E. Soloway & J. C.
Spoher (Eds.), Studying the Novice Programmer (pp.
129-159). Hillsdale, NJ: Lawrence Erlbaum.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.
(2013). Learning computer science concepts with
scratch. Computer Science Education, 23(3), 239-264.

Neuman, W. L. (2006). Social research methods –
Qualitative and quantitative approaches (6th Edition).
Boston: Pearson Education.

Noble, A. (2012). Science the key to seize control of the
future (26th December). Sydney Morning Herald.
Retrieved from
http://www.smh.com.au/opinion/politics/science-the-
key-to-seize-control-of-the-future-20121225-
2bv55.html

Norman, D. A. (1983). Some observations on mental
models. In D. Gentner & A. L. Stevens (Eds.), Mental
Models. Hillsdale, NJ: Erlbaum.

Norman, D. A. (1993). Things That Make Us Smart:
Perseus Books.

PWC (2013). The startup economy: How to support tech
startups and accelerate Australian innovation.

Repenning, A., & Ioannidou, A. (2008). Broadening
participation through scalable game design. ACM
SIGCSE Bulletin, 40(1), 305-309.

Repenning, A., Webb, D., & Ioannidou, A. (2010).
Scalable game design and the development of a
checklist for getting computational thinking into
public schools. In Proceedings of the 41st ACM
technical symposium on Computer science education,
(pp. 265-269): ACM.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., et al. (2009). Scratch:
programming for all. Communications of the ACM,
52(11), 60-67.

Robins, A., Rountree, J., & Rountree, N. (2003).
Learning and Teaching Programming: A Review and
Discussion. Computer Science Education, 13(2), 137-
172.

Schulte, C., & Knobelsdorf, M. (2007). Attitudes towards
computer science-computing experiences as a starting
point and barrier to computer science. In Proceedings
of the third international workshop on Computing
education research, (pp. 27-38): ACM.

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D.,
O'Grady-Cunniff, D., et al. (2011). CSTA K-12
Computer Science Standards: Revised 2011.

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson,
C., Rennert-May, C., et al. (2012). Infusing
computational thinking into the middle-and high-
school curriculum. In Proceedings of the 17th ACM
annual conference on Innovation and technology in
computer science education, (pp. 22-27): ACM.

Stephenson, C., Gal-Ezer, J., Haberman, B., & Verno, A.
(2005). The new educational imperative: Improving
high school computer science education. Computer
Science Teachers Association (CSTA), New York, New
York.

Tinapple, D., Sadauskas, J., & Olson, L. (2013). Digital
culture creative classrooms (DC3): teaching 21st
century proficiencies in high schools by engaging
students in creative digital projects. In Proceedings of
the 12th International Conference on Interaction
Design and Children, (pp. 380-383): ACM.

Tucker, A., Deek, F., Jones, J., McCowan, D.,
Stephenson, C., & Verno, A. (2003). A Model
Curriculum for K–12 Computer Science. Final report
of the ACM K-12 task force curriculum committee.

Wilson, C., & Guzdial, M. (2010). How to make progress
in computing education. Communications of the ACM,
53(5), 35-37.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

CRPIT Volume 160 - Computing Education 2015

46

Using Cognitive Load Theory to select an Environment for Teaching
Mobile Apps Development

Raina Mason
Southern Cross University

raina.mason@scu.edu.au

Graham Cooper
Southern Cross University

graham.cooper@scu.edu.au

Simon
University of Newcastle

simon@newcastle.edu.au

Barry Wilks
Southern Cross University

barry.wilks@scu.edu.au

Abstract
After considering a number of environments for the
development of apps for mobile devices, we have
evaluated five in terms of their suitability for students
early in their programing study. For some of the
evaluation we devised an evaluation scheme based on the
principles of cognitive load theory to assess the relative
ease or difficulty of learning and using each environment.
After briefly presenting the scheme, we discuss our
results, including our findings about which mobile apps
development environments appear to show most promise
for early-level programming students..

Keywords: mobile apps, programming education,
computing education, cognitive load theory

1 Introduction
The teaching of programming is generally situated in the
context of some sort of programming language
environment. There have been, and possibly still are,
courses that teach programming concepts in the abstract,
with no writing or execution of code; but when a course
involves code writing and execution, it must necessarily
carry out these steps in some sort of environment,
whether it be a command-line environment with a simple
text editor or a comprehensive Integrated Development
Environment (IDE).

Programming environments incorporate not only
programming language processors but also tools for many
ancillary tasks such as editing, debugging, and file
management. We suggest that some of these
environments may be so complex as to have an adverse
impact on learning outcomes. Professional development
tools such as Eclipse (www.eclipse.org) and Visual
Studio (www.visualstudio.com) incorporate facilities for
advanced programming concepts such as code sharing,
versioning, profiling, and more, giving them the potential
to be overwhelmingly complex for beginning students. It
is important to note that such advanced concepts and
capabilities are unnecessary for the purpose of teaching
novices introductory programming concepts and skills.
These are not only extraneous to the task of teaching and

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D D’Souza and K Falkner, Eds.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

learning introductory level programming, but may well be
distracting to learners’ focus of attention, overloading
their cognitive resources and reducing the capacity of
their cognitive processes for learning.

On the other hand there are environments specifically
designed for teaching purposes, such as Alice
(www.alice.org) and BlueJ (www.bluej.org), which
provide the essential tools for learning application
development. Between these extremes there are tools
such as LiveCode (livecode.com) and App Inventor
(www.appinventor.org), which appear to be designed for
ease of use, but also to suit continued use by more
experienced programmers.

The choice of a programming environment for a
particular course hinges upon many factors (Mason &
Cooper, 2014; Simon & Cornforth, 2014), including

 the programming language to be used
 the desire to give students experience in a

professional development environment
 the availability of teaching aids such as textbooks
 the personal preferences and expertise of the

people designing and teaching the course
 cost to students and/or the institution
 access to suitable hardware
 suitability for the purpose of teaching and learning

In this paper we focus on the last of these criteria,
pedagogy. In a recent survey of Australian and New
Zealand computing academics (Mason and Cooper,
2014), this was the top ranked criterion for selection of a
programming language for teaching an introductory
programming course, and one of the top four reasons for
choosing a development environment.

In considering a possible course in programming apps
for mobile devices, we have investigated a number of
relevant environments in terms of their usability,
including both ease of learning and ease of subsequent
use. In this paper we concentrate on the usability of
programming environments without considering the
many other factors that must contribute to the choice. We
go further by developing a method for evaluating
usability based on cognitive load theory (CLT) (Sweller,
1994; Sweller, Ayres & Kalyuga, 2011). This method is
then applied to several programming environments that
were available at the time of writing, and the results
discussed.

Other researchers have evaluated IDEs in various
ways. For example, Dujmović and Nagashima (2006)
used a highly quantitative approach to compare three Java

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

47

IDEs, but from the perspective of professional
developers. And Kline and Seffah (2005) survey a
number of projects that used interviews, questionnaires,
or observation to evaluate particular IDEs. However, we
are not aware of any prior work using a quantitative
approach based on cognitive load theory to assess and
compare IDEs.

2 Cognitive Load Theory

2.1 Human cognitive architecture
Humans are limited to a working memory capacity of
about seven items (Miller, 1956). Miller observed that
this capacity was effectively standardised across our
senses. Irrespective of whether the mode of presentation
was visual, auditory, taste, or smell, people reliably
demonstrated a working memory capacity of 7 (plus or
minus 2) for unrelated, ‘random’ items of information (or
stimuli). This was an important observation because it
suggested that our capacity to perceive and process the
world around us is channelled through a central
executive, associated with consciousness that is strictly
bounded and relatively small, at least compared to our
long-term memory store.

2.2 Expert performance
The kernel of cognitive load theory lies in the argument
that the architecture of human cognitive processes, with
its limited working memory capacity, may be easily
overloaded, whereupon cognitive performance will falter
(Sweller, 1988).

There is an apparent contradiction in this when one
considers the expert performance of people such as the
readers of this paper in the area of computer
programming. As you work in an IDE, surely you are
attending to and processing and organising and
manipulating and coordinating many more than just seven
items of information associated with sequences,
selections, iterations, objects, variables, functions,
properties, methods, and so on.

There are, however, some important riders to this. You
do not perceive all of these items as random,
disassociated items, but rather, as deeply intertwined and
interacting. You have acquired a vast knowledge base
regarding the area of programming concepts and skills,
and so you are able to effectively work around the
limitations of working memory because each of the items
that you attend to and process is in fact a highly complex
array of information that could be unpacked and deployed
into many constituent components. This is a key feature
of expertise: you have developed complex schemas that
hold well defined, hierarchically structured organisations
of knowledge (Chi et al, 1982).

The second key feature of expertise is that experts can
attend to, and process, activities in their area of expertise
with very low levels of conscious attention (Kotovsky et
al, 1985). This is akin to being able to perform on
‘automatic pilot’, and the terms ‘automation’ and
‘automaticity’ have been used to reflect this (Cooper and
Sweller, 1987; Shiffrin and Schneider, 1977).

In contrast, novice learners in programming lack both
the schemas and their consequent automation that are
held by experts. Novices, when seeking to attend to the

same information as the expert, must carry it as many
more, smaller, packets of information. The fact that they
are smaller in size does not help their cause. It is the
number of elements that is critical, and for novices, this
number will probably approach, and possibly exceed,
their critical threshold level of cognitive capacity.

2.3 Sources of cognitive load
Cognitive load stems from three sources: intrinsic,

extraneous and germane (Sweller, 2010). Intrinsic
cognitive load is that load imposed by the inherent
complexity of the material to be learnt. This is highly
dependent upon the level of element interactivity between
the individual elements of the information to be learnt,
rather than the numerical count of elements per se
(Chandler and Sweller, 1991; Sweller et al, 1990). For
example, manipulating an array within a loop will impose
a higher intrinsic cognitive load than assigning a value to
a variable. A common teaching practice is to work from
tasks with low levels of element interactivity, and thus
low levels of intrinsic load, to those with higher levels of
element interactivity, and thus higher levels of intrinsic
cognitive load.

Extraneous cognitive load is the load imposed by the
way in which information is presented, and depends upon
the format of instructional materials and the nature of
student activities (Ayres & Sweller, 2005). In the context
of teaching programming, extraneous load will also be
imposed by the interface that the student is required to
navigate in undertaking the instructional materials and
learning activities.

Germane cognitive load is the load that occurs as a
result of the learners’ conscious focus of attention to
deliberately remember and understand the learning
material (Paas & Van Merriënboer, 1994). That is,
germane cognitive load is applied to the actual process of
learning.

These three sources of cognitive load are additive, and
combine to produce a total cognitive load for each instant
of time during an instructional event or learning activity.
If, at any point in time, the total cognitive load exceeds
the capacity of cognitive resources, then by definition,
some aspects of information being attended to must be
dropped from consciousness; comprehensions will be lost
and learning will be impeded.

Cognitive load theory posits that while the intrinsic
complexity of a task remains fixed, the extraneous load
may be reduced through re-engineering the instructional
materials and/or the learning activities (Sweller et al,
2011). With extraneous cognitive load thus reduced, the
released cognitive resources may be re-allocated to the
germane aspects of schema acquisition and automation,
thus facilitating learning (Paas et al, 2003).

Researchers have identified several specific
instructional design principles based on cognitive load
theory and have empirically demonstrated their
effectiveness. These principles include the worked
examples effect (Sweller & Cooper, 1985), the goal free
problem effect (Ayres & Sweller, 1990), the split
attention effect (Chandler & Sweller, 1991), the
redundancy effect (Chandler & Sweller, 1991), the
modality effect (Tindall-Ford, Chandler & Sweller,

CRPIT Volume 160 - Computing Education 2015

48

1997), and the expertise reversal effect (Kalyuga, Ayres,
Chandler & Sweller, 2003).

2.4 IDE as a source of cognitive load
Cognitive load theory specifically addresses situations
where students are tasked with learning. Learning
requires cognitive processes to attend to information in
working memory, then to organise this new information
and manage its transmission to long-term memory, where
it will become embedded and organised into existing
knowledge, evolving as an increasingly complex network
of schemas. The limitations of working memory can
become a bottleneck, constricting the interplay of
information between the various memory stores.

To make matters worse, the cognitive resources
required for the learning process need to actively compete
with the demands placed upon resources for attending to
and processing other matters. For novices working on a
programming task, this will include attending to the
relatively many conceptual items of information
associated with programming, along with the means of
accessing and implementing them by way of components
of the IDE.

The instructional design considerations for teaching
and learning programming will thus need to consider the
extent to which the organisation and presentation of tools
in an IDE either increase or decrease the extraneous
cognitive load associated with accessing and
implementing programming concepts and tasks.

2.5 Assessing cognitive load
The cognitive load experienced during a learning
transaction is often assessed by means of a questionnaire
or similar instrument. An early instrument was that of
Paas (1992), which has formed the basis for numerous
studies (Paas et al, 2003). Morrison et al (2014) propose a
version specific to computer programming, and present a
preliminary report on its use to assess the cognitive load
of lectures in an introductory programming course.

If a lecture is found to entail a high cognitive load, it
can generally be redesigned to reduce that load. However,
this scope for redesigning does not apply to programming
environments, which are essentially fixed and invariant.
With such environments, the instructor who is aware of
cognitive load theory would want to choose an existing
environment that offers a low cognitive load when used
for the types of task that are typically undertaken by
novice students. To this end, we propose a means of
assessing the cognitive load associated with programming
environments, and apply it to a number of development
environments for mobile apps.

When designing teaching and learning resources,
teachers should consider the extent of the students’ prior
knowledge in the content domain. The selection of a
development environment will depend on many elements
of prior knowledge, for example of the

 environment’s programming languages
 target device hardware
 target operating system
 environment’s operating system
 general programming concepts

This is a baseline that must be determined when
evaluating the suitability of an environment. In the
method described in the following section we will assume
that this baseline has been clearly accepted and already
considered when selecting products for evaluation. This
will ensure that consideration and evaluation of the
cognitive load factors will be normalised across the
evaluation of different products with respect to the level
of prior knowledge.

3 Mobile App Development Environments
Just a few years ago it seemed reasonable when
discussing the infrastructure for a mobile app
development course to consider just one option for Apple
iOS devices and one option for Android devices.
Goadrich and Rogers (2012) did this, considering XCode
and Eclipse. Other platforms and environments were
acknowledged, but these two were considered to offer
sufficient coverage of the field.

Since then many more development environments
have appeared, and the Windows phone has started to
make some inroads on the market. The choice of
development environments and programming languages
is no longer so straightforward.

In the first instance we identified 15 environments that
might be worth considering as the basis for an early
course on developing mobile apps. This might be a first
programming course, or it might be a first mobile apps
development course following a more generic
introductory programming course. We had decided that
we were interested in the development of native apps
rather than Web apps; that is, the apps should run directly
on the device rather than through a browser.

Initial exploration of these environments led us to
narrow the field to just five; in the following subsections
we explain our reasoning.

3.1 Environments discarded as too simple
A number of environments appear to be designed for non-
programmers, to the point where we did not consider
them useful for teaching programming. Having
established this, we did not further investigate these
environments.

BuzzTouch (www.buzztouch.com) is a medium for
designing screens using interface elements and preset
behaviours. The actual code generation is carried out in
another environment.

Socialize appmakr (www.appmakr.com), Infinite
Monkeys (www.infinitemonkeys.mobi), and Orbose
(orbose.com) are all menu-based applications with
limited functionality, and do not appear to facilitate
‘coding’ as it is generally understood in computing
education.

3.2 Environments discarded as too complex
Several environments appear very much targeted to the
professional developer. These environments might well
be suitable for students at higher levels of study, but we
considered that they would prove too daunting for novice
programmers. Indeed, even to install some of them was a
major undertaking, requiring multiple reboots and the
interpretation of enigmatic error messages. This is

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

49

something that we would prefer to avoid with beginning
students.

Netbeans with Google Android plugin, Eclipse with
Google Android libraries, and IntelliJ IDEA with Google
Android libraries (www.jetbrains.com/idea), all fell into
this category of professional development environments
in which there were problems installing either the
environments themselves or the supplementary libraries.

Telerik Icenium (www.icenium.com) was ruled out of
consideration because it appears to rely on existing
advanced HTML5/CSS/Javascript skills, which we
cannot assume novice programming students will have.

3.3 Environments discarded for other reasons
GameSalad (gamesalad.com) is designed specifically

for writing game apps as opposed to general app
programming.

AIDE (www.android-ide.com) was discarded because
its code must be written on an Android device: this
environment offers no way of writing code on a computer
and transferring it to the device. This renders it unsuitable
unless we can be sure that every student in the class will
have access to an Android device.

3.4 Environments selected for further study
Having eliminated the environments listed above, we
were left with just five environments for further
investigation.

Visual Studio is an environment used in more than
15% of introductory programming courses in Australia
and New Zealand (Mason & Cooper, 2014). Visual
Studio Express for Windows Phone is a recent variation
that permits development on a Windows computer of
apps for a Windows phone.

App Inventor (appinventor.mit.edu) is a web-based
environment that is used to develop apps for Android
phones. In a similar way to Scratch (Maloney et al, 2010),
code is built from jigsaw-like code-snippet blocks by
dragging them to an editing screen and fitting them
together.

TouchDevelop (www.touchdevelop.com) is a web-
based environment designed to develop apps for
Windows phones, and has recently been extended to
include Android devices. Unlike App Inventor,
TouchDevelop has a textual form for its code; but
because the language was designed to be programmed
from smart phones, most of the text entry is carried out by
tapping screen buttons rather than from a character-based
keyboard.

LiveCode (livecode.com) runs on a Windows,
Macintosh, or Linux system and produces mobile apps
for Apple and Android devices, as well as desktop
applications. LiveCode is a more traditional text-based
language, with code entry from a normal keyboard. While
LiveCode is designed for writing mobile, desktop, and
server applications, its current promotion appears to be
aimed primarily at the development of mobile apps.

Xamarin Studio (xamarin.com) runs on a Windows
computer to develop apps for Apple, Android, and
Windows devices, using C# in an IDE somewhat similar
to that of Visual Studio.

Of these environments, App Inventor, TouchDevelop,
and Xamarin have been designed specifically for mobile

applications development. In the case of Visual Studio a
specific version was available for mobile development
(Visual Studio Mobile 2012) at the time of evaluation.

All five of these environments are undergoing rapid
change at the time of writing. In the rest of this paper we
shall report on the environments as we found them in the
first half of 2014, expecting that aspects of them will
have changed, perhaps substantially, by the time this
paper is published.

3.5 Other considerations
There are many reasons why a specific mobile application
development environment may be chosen for teaching.
These include

 cost to students
 relevance to industry
 number of phone features (eg gyroscope, camera,

phone book) available via the environment

Table 1 shows a comparison of these features, and more,
for our five chosen environments.

4 Assessing Cognitive Load in Mobile App
Development Environments: Method and
Application

We set out to investigate the usability of these five
environments, with the goal of assessing how suitable
each might be as an environment for teaching mobile app
development to reasonably inexperienced programming
students. We devised a four-step process for the
evaluation of the programming environments:

1. choose a selection of small problems whose
solutions offer coverage of various aspects of the
target environments;

2. record a video screen capture and verbal narration
of an experienced teacher solving each problem;

3. view and evaluate the recordings using the
cognitive load theory factors discussed below;

4. analyse and compare the evaluations to determine
a scoring and ranking of the products studied.

We will describe our method in a general sense as we
believe that it will be useful for any instructor selecting a
programming environment for any development task. At
the same time we will work through our application of the
method to the specific task of choosing suitable
environments for developing mobile apps.

4.1 Selection of problem set
A programming environment usually contains a rich
source of components or tools for development. To
evaluate the complexity of an environment, problems
were chosen to use small but distinct sets of individual
components. Although it would be possible to devise
problems that exercise large numbers of components, the
interaction between components would increase
complexity and complicate the final analysis, so we chose
tasks that exercise as few components as possible.

The task descriptions do not have to be strict. The aim
is to observe and analyse the use of components of the
development environment. Minor variations in
interpreting the task will not significantly restrict analysis
of its presentation and use. Similarly, while different
problem solvers might chose different solutions to the

CRPIT Volume 160 - Computing Education 2015

50

problem, all will entail the targeted environment
component.

For example, in targeting mobile apps development
environments, we considered three distinct areas. First
there is the coding itself. Second, these environments tend
to incorporate a separate graphical area for designing the
user interface. Finally, different environments will have
different ways of managing external media, which are of
high importance in mobile apps. So for our evaluation of
mobile development environments we chose three
separate tasks that together exercise the coding, layout,
and media aspects of the environments.

Task 1: Hello world program
This task requires the developer to create an

application that displays a “Hello, world!” message when
a button is clicked. This was considered to be the simplest
mobile application that requires processing of user
actions, and that does not correspond to a default
application provided in any of the development
environments. A key facet of this task is the ability to
create a testable application using the environment’s
application building tools.

Task 2: Animal display
This task requires the display of four animal images as

chosen by a selection widget. The selection widget type is
not specified, as this might vary with environment and
target platform, but the developers were expected to use
the simplest possible widget for this task. The animal
images are to be in common graphic formats. This
problem exercises the environment’s media processing
ability, in this case with images. The selection widget
also had to be more complex than a simple button, in
order to cater for the four-way choice.

Task 3: Hello world permute
This task requires the display of permuted versions of

the string “Hello, world!” on the press of a button. This
task exercises the programming language part of the
environment by requiring a small but non-trivial text-

manipulation computation to be programmed. This task
has previously been used by Goadrich and Rogers (2012)
to compare two environments, and by Simon and
Cornforth (2014) to further compare those with a third
environment.

These tasks were selected on the basis that they would
progress from the simplest possible task, through one
with a little more complexity in both the graphical user
interface and the coding, to one in which the algorithm
and the coding might appear fairly complex to a novice
programmer.

4.2 Recording the solution
Solutions to the problems identified above were recorded
by screen capture software, with the recording including a
think-aloud narration to help the evaluators understand
why particular actions are taken during the process.

Three of the four authors were each allocated one or
two environments, in which they undertook all three
tasks, producing 15 screencasts in total.

Some screencasts included steps that are not strictly
necessary for completion of the task, such as changing the
default names of interface objects. These steps were not
counted as part of the activity or included in the
evaluation. We also excluded any debugging steps apart
from the standard steps required to build and test the final
product. Our goal was to compare the environments
themselves, and for this we required a straightforward
bug-free coding of the simplest solution for each activity.

It would not have been appropriate to have students
make the screencasts. Firstly, any problems with the use
of the IDE would then be conflated with the students’
learning problems. Second, such an approach would
entail having students use five different IDEs with
different programming languages, which would be a
somewhat unusual approach to selecting the IDE and
language for a course.

4.3 Evaluation of the recordings
Analysis of each screencast began by iteratively breaking

Table 1: big-picture considerations of the environments

Environment
App

Inventor
Touch-
Develop

Live-
Code

Xamarin Visual
Studio

Cost to students free free free free free
Visual cues yes yes yes yes yes
Visual debugger no yes yes yes yes
Graphical user interface yes yes yes yes yes
Difficulty of installation low low medium high medium
Cross-platform development no yes yes yes no
Relevant to industry yes yes yes yes yes
Open source no no yes no no
Available support material high high medium high medium
Can port to more than one platform no yes yes yes no
Number of files user has to manage 0 0 1 many many
Degree of textuality (block-based → typed code) low medium high high high
Phone features available via the environment high high medium high high
Required prior knowledge . . .

Procedural algorithms yes yes yes yes yes
Object orientation no no no yes yes
GUI widgets and event processing no no yes yes yes
Target mobile operating system no no no yes yes
Specific programming language no no no yes yes

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

51

the program development into a series of steps. The same
task will usually require different numbers of steps in
different environments, and steps that appear in more
than one environment may vary in complexity.

To evaluate the steps we devised a series of cognitive
load factors that are either directly observable from the
screencasts or readily deduced; see Table 2. While these
factors might vary according to the activity being
addressed, we posit that they are applicable to a broad
range of software development tasks.

We then examined the screencasts in detail, assessing
each step according to each evaluation criterion. This
resulted in 15 two-dimensional tables, one for each
screencast, with rows representing the steps and columns
representing the CLT factors.

Finally we describe the scoring system. As indicated
in Table 2, factors that add to cognitive load were rated as
low, medium, or high, while factors that can diminish
cognitive load were rated as present, absent, or not
applicable. These ratings were all assigned numerical
values, as shown in Table 3.

The scoring scale in Table 3 is obviously non-linear.
This is consistent with CLT theory in that a difficult step,
imposing high cognitive load, will impact considerably
more upon cognitive resources than a simple step that
entails lower cognitive load, and might even block
progress completely. Given this effect, the choice of the
value 4 rather than, say, 5 or 10 is discretionary, but has
proven useful for our analysis in these mobile app
development environments. Likewise, we note the
presence of a cognitive load reduction factor by
subtracting 2 from the score for the step. Again, this
judgement is discretionary, and is based on the
supposition that a factor that reduces cognitive load
would typically offset a medium-level factor that
increases cognitive load. Both of these factor levels
require a level of mindfulness from the user rather than
just an acknowledgment of their existence.

The evaluations were arrived at by consensus. Two of
the authors jointly evaluated the recordings and then
allocated an agreed level (low, medium, or high for
loading factors, and present, absent, or NA for the
reduction factors) for each entry in the Environment/CLT
Factor tables. The other authors checked the evaluations
and initiated discussion on any values they were not in
agreement with.

There was no assessment of the inter-rater reliability
of the method, essentially because of the time constraints
in choosing the IDE for a proposed course. Future work
would certainly include checking the inter-rater
reliability.

 A highly reduced example table is shown in Appendix
1. This includes all of the steps in the hello world task in
App Inventor, one row for each step; but because of the
limited space, only a small sample of the columns,
showing five of the load-adding factors and three of the
load-reducing factors.

4.4 Analysis of data
In this section we suggest ways of evaluating the data
gathered in the previous section. Bearing in mind the
overall goal of ranking a number of environments, some
standard summative statistics can be applied to each
program development task and comparisons made

Table 2: cognitive load factors
CLT Factor Description
Factors that add to cognitive load; scored as
low/medium/high
EC:
Environment
schema
complexity

Breadth/depth of environment
and/or language-specific schemas
that are required to perform this step

PC:
Programming
schema
complexity

Breadth/depth of general
programming schemas that are
required to perform this step

TB:
Think back

Number of elements from previous
steps needing to be kept in mind to
perform this step

I:
Interactivity

Complexity of the interactions
between environment schemas,
programming schemas, and think
back required to perform this step

PE:
Relevant
physical
elements

Number of relevant physical
elements appearing on screen that
may be chosen as part of performing
this step

D:
Distractors

Number of physical elements in
view but irrelevant to performing
this step

WP:
Windows/
palettes

Number of windows/palettes that are
visible and active on screen while
performing this step

SA:
Split attention
source

Extent of physical separation
between elements of information or
interaction that need to be mentally
integrated to order to perform this
step

Factors that can reduce cognitive load; scored as
present/absent/NA
PH:
Prompts/hints

Instructions viewable in text or
graphical form for performing this
step

GS:
Guiding search

Attention drawn to next element
required for performing this step; for
example, by highlighting text
instructions or target entry field

CS:
Context-
sensitive help

Help available as scaffold for
performing this step; for example,
tool tips or other prompts indicating
the purpose of an element

G:
Groupings

Clustering of elements into related
functionality associated with
performing this step; for example,
automatic indentation, clustering of
menu items

Table 3: step/factor score scale
Score Description

1 low – minimal or no cognitive load
2 medium – requires consideration
4 high – substantially present
2 reduction factor present (subtracted)
0 reduction factor not present
0 reduction factor not relevant to this step

CRPIT Volume 160 - Computing Education 2015

52

between environments. The same measures can also be
applied to all three tasks combined, regarding them as a
single, more complex, task. Here are the measures that we
have devised.
Number of steps: this is the total number of steps required

to complete the task in the development environment.
It does not consider the difficulty of each step.

Cognitive load score per step (CLSS): the cognitive load
score for a step is calculated as the sum of the numeric
values of the step’s individual CLT factors using the
scoring system in Table 3.

 The measure is determined by:
 CLSS = EC + PC + TB + I +PE + D +WP+ SA

 – (PH + GS + CS + G).

This measure is important because a step with a high
CLSS is likely to overload novice programmers and
hence block progression on the programming activity.

Minimum and maximum CLSS: the maximum CLSS over
all the steps involved in carrying out the task can be
used as a measure of the expertise required to use this
environment for this activity. The minimum is
provided for completeness.

Mode and median CLSS: the mode and median of CLSS
across all steps allow a comparison of the central
tendencies of CLT difficulty of each step between
environments and between tasks.

Threshold score: this is the proportion of CLSS scores
above a threshold value intended to represent high
cognitive load for a particular cohort of learners. After
examining the scores of each task in each
environment, we chose a threshold value of 10 as
indicating a step with a relatively high cognitive load
for novice learners. The proportion of steps with a
CLSS over this value is therefore indicative of how
much of the task is cognitively taxing for this cohort
in each environment.

Average cognitive load per factor (ACLF): averaging the
scores for each individual cognitive load factor across
all steps allows the relative contribution of various
cognitive load factors to be determined. For example,
the ACLF for think back (TB) for a particular
environment would be calculated by the formula
ACLFTB = sum(TB) / steps. ACLF will always be

between the low and high scores given for each factor.
For the scoring that we have used (Table 3), ACLF
will be between 1 and 4 inclusive.

Proportion of steps assisted (PSA): for each cognitive
load factor whose presence reduces cognitive load
(Table 2), this is the proportion of steps in a task that
are assisted by that factor, and is therefore something
of an offset to ACLF. The PSA for a factor is
calculated by the count of the steps in which the
reduction factor was present, divided by the number
of steps. PSA = count (reduction factor present) /
steps
Table 4 shows the number of steps, CLSS measures

and threshold score for each task in each environment,
ordering the environments by increasing number of steps
for each task. The table clearly shows how the number of
steps and the complexity of steps must be considered
together. For example, in the hello world task, LiveCode
scored lowest in both the number of steps and the
proportion of steps that exceeded our threshold,
indicating that it presented the least cognitive load for
novice users. However, in the animal display task, Visual
Studio presented the lowest number of steps but the
highest proportion of steps that exceeded our threshold.
This indicates that even though there were fewer steps, a
clear majority of the steps would provide excessive
cognitive load to a novice user.

Table 5 shows the average cognitive load per factor,
highlighting the highest value of each factor for each task.
This table allows us to judge the average cognitive load
per CLT factor, independent of the number of steps. For
example, in the string permute task, Visual Studio
provided the highest average cognitive load per step for
the think back (TB) factor (2.06), while LiveCode
provided the lowest (1.25). This supports our intuition
that Visual Studio requires a much higher degree of
memory of previous actions than LiveCode, which
provides a larger amount of contextual information to its
user. In contrast, for the same task, LiveCode provided
the highest average environmental schema complexity
(EC) factor and Visual Studio provided the smallest. This
supports our intuition that more complex algorithms can
be more concisely expressed in a traditional programming
language than in the more verbose programming Table 4: measures of cognitive load per step

1: Hello World STEPS Min Max Mode Median

App Inventor 18 2 10 9 8.5 6%

LiveCode 13 5 8 7 8 0%

Touch Develop 22 2 13 8 7 14%

Visual Studio 18 4 13 8 8 28%

Xamarin 13 8 13 8 10 54%

2: Display Animals

App Inventor 61 2 16 8 9 41%

Livecode 54 5 16 8 8 20%

Touch Develop 61 2 13 4 6 13%

Visual Studio 48 4 26 16 15 83%

Xamarin 50 6 26 11 11 64%

3: Permute

App Inventor 60 2 16 9 10 52%

LiveCode 20 5 12 8 8 30%

Touch Develop 88 2 17 8 8 22%

Visual Studio 36 4 23 15 15 83%

Xamarin 26 7 27 8 10 58%

CLSS Threshold

Score
Table 5: average cognitive load of each factor,

highlighting the highest value for each task

1: Hello World EC PC TB I PE D WP SA

App Inventor 1.33 1.11 1 1 1.56 1.5 1.39 1

LiveCode 1.23 1.08 1.08 1 1.08 1.54 1.31 1

Touch Develop 1.64 1.27 1.14 1.18 1.41 1.41 1 1.32

Visual Studio 1.33 1.28 1.11 1.11 1.11 1.72 1.22 1.06

Xamarin 1.62 1.62 1.23 1.31 1.46 1.38 1.15 1.15

2: Display Animals

App Inventor 1.56 1.44 1.46 1.51 1.57 1.2 1.16 1.07

Livecode 1.54 1.28 1.24 1.26 1.35 1.59 1.35 1.19

Touch Develop 1.49 1.46 1.3 1.36 1.74 1.05 1 1.15

Visual Studio 1.96 1.46 1.58 1.38 2.6 3.29 3.19 1.71

Xamarin 1.76 2.34 2.14 2.1 2.54 2.3 2.08 1.74

3: Permute

App Inventor 1.37 1.85 1.48 1.68 1.48 1.32 1.18 1.17

LiveCode 1.5 1.3 1.25 1.4 1.5 1.6 1.65 1.05

Touch Develop 1.4 1.77 1.53 1.67 1.59 1.65 1.01 1.43

Visual Studio 1.19 1.94 2.06 1.97 2.64 3.44 3.11 1.44

Xamarin 1.38 2.19 1.85 2.04 2.19 2 1.65 1.5

ACLF (Average Cognitive Load per Factor)

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

53

language of LiveCode. Both Visual Studio and Xamarin
scored highly on relevant physical elements (PE),
distractors (D) and windows/palettes (WP). For more
experienced programmers with developed schemas about
programming and the environment, having a large range
of palettes and options available on screen will be an
advantage as all options have easier access. For novices,
the availability of options and palettes provides extra
cognitive load which may add to other load and impede
learning.

Table 6 shows the proportion of steps assisted by CLT
factors which reduce cognitive load. This is useful to
consider separately because it provides a judgement on
how explicit design choices of the IDEs actually
contribute to cognitive load reduction during solution of
the chosen problem set. As an overall comparison it can
be seen from this table that Touch Develop used all four
factors to better reduce cognitive load in all three
problems. It is also interesting how the contributing
factors varied according to problem type. For example,
the string permute task, which required the user to design
an algorithm, showed App Inventor providing the lowest
amount of cognitive load reduction in its grouping factor.
This was not the case for this IDE in the hello world task,
where it provided the highest contribution to cognitive
load reduction from its grouping factor. This suggests
that App Inventor’s grouping design was aimed at facets
of mobile app development other than the algorithm
design.

As a final step we computed the average threshold
score of each environment over all three tasks. While an
instructor trying to choose between these environments
should carefully examine all of the measures, this average
has the advantage of being a single measure for an
environment, thus permitting a very quick high-level
comparison of the environments. The computed averages
are as follows:

 TouchDevelop: 16%
 LiveCode: 17%
 App Inventor: 33%

 Xamarin: 59%
 Visual Studio: 65%

These average scores show a clear clustering of results,
which will be discussed in the following section.

5 Discussion and Conclusion
In this paper we have addressed the usability criterion for
selecting an environment for teaching programming to
relative novices. We have introduced a method for
evaluating and comparing usability among a selection of
candidate products, and have applied this method to the
selection of a programming environment for teaching the
development of apps for mobile devices.

The mobile development environments that we
evaluated fell clearly into three groups. TouchDevelop
and LiveCode, with threshold scores of less than 20%,
permitted the development of code with the least relative
cognitive load. Despite the fact that it was designed for,
and is typically used for, novice programmers, App
Inventor had double the threshold score of these two
environments, indicating a substantially higher relative
cognitive load. Both Visual Studio and Xamarin Studio
had threshold scores of around 60%, nearly double again,
indicating another substantial leap in the relative
cognitive load required to develop mobile apps in these
environments.

It would be incorrect to conclude that all we have
achieved here is to confirm an intuitively obvious result.
While different people have different intuitions, we
nevertheless imagine that many readers would expect the
block-based App Inventor to impose the least extraneous
cognitive load, and that is not what we have found.
Things that are “obviously” the case sometimes turn out
to be incorrect. The tool and methodology presented here
is a movement towards enabling objective analysis and
comparisons between dissimilar IDEs using Cognitive
Load Theory.

Readers interested in applying this method to their
own selection of programming environments should
remain aware that this single figure is derived from many
conflicting factors, and that each factor should be
considered in its own right before a decision is made. For
example, Table 4 shows that TouchDevelop typically
requires more steps than the other environments to carry
out the same task. Because coding in this environment is
carried out by way of tapping buttons on the screen,
coding a loop might be counted as half a dozen separate
steps, whereas coding the equivalent loop in a keyboard-
based environment might count as a single step. On the
other hand, Xamarin and Visual Studio tend to score
quite high on cognitive load score per step.

Therefore it does not necessarily follow that early
courses in mobile apps development should choose
between TouchDevelop and LiveCode. There are many
factors involved in selection of a program development
environment, and instructors should consider all of the
factors that pertain to their circumstances. However, it
does follow that if the other factors are more or less
equivalent, one of these two environments might be a
good choice, especially if targeting novice programmers.

App Inventor has been used for at least one university-
level course (Robertson, 2014), but only at the outset,

Table 6: proportion of steps assisted by each load-
reducing factor, highlighting highest values

1: Hello World PH GS CS G

App Inventor 11% 11% 6% 78%

LiveCode 54% 8% 8% 54%

Touch Develop 64% 50% 18% 50%

Visual Studio 11% 17% 0% 50%

Xamarin 15% 0% 0% 38%

2: Display Animals

App Inventor 23% 3% 5% 51%

Livecode 19% 7% 22% 50%

Touch Develop 74% 38% 38% 67%

Visual Studio 11% 17% 0% 50%

Xamarin 50% 10% 48% 74%

3: Permute

App Inventor 30% 10% 2% 47%

LiveCode 30% 10% 45% 75%

Touch Develop 72% 31% 50% 69%

Visual Studio 36% 3% 28% 67%

Xamarin 35% 0% 35% 69%

PSA (Proportion of Steps Assisted)

CRPIT Volume 160 - Computing Education 2015

54

with a move during the course to a more traditional
development environment. We tend to concur with
Robertson that App Inventor is in one sense too simple
and in another sense too frustrating to form the basis for a
full university course.

Visual Studio or Xamarin Studio might be chosen for
a mobile apps development course that is not the first
programming course, particularly if the same
environment had been used for the introductory course, or
if the students were already familiar with the
programming language chosen. They might also be
chosen if the instructors particularly wanted to introduce
the students to these environments. However, instructors
should be alert to the substantially higher cognitive loads
imposed by these environments, and should be prepared
to scaffold their novice students appropriately.

The design and application of the cognitive load
analysis method described here offers a prospective way
for instructors to assess different IDEs in a wide range of
contexts. The method is open to modification with respect
both to the cognitive load factors that are considered and
to the calibration of scoring used to assign values.

6 References
P. Ayres and J. Sweller (1990). Locus of difficulty in

multistage mathematical principles. American Journal
of Psychology, 105(2):167-193.

P. Ayres and J. Sweller (2005). The split attention
principle in multimedia learning. In The Cambridge
Handbook of Multimedia Learning, ed. Richard
Mayer, Cambridge University Press, 135-146.

P. Chandler and J. Sweller (1991). Cognitive load theory
and the format of instruction. Cognition and
Instruction, 8:293-332.

M. Chi, R. Glaser, and E. Rees (1982). Expertise in
problem solving. In Advances in the Psychology of
Human Intelligence, Erlbaum, Hillsdale, NJ, 7-75.

G. Cooper and J. Sweller (1987). Effects of schema
acquisition and rule automation on mathematical
problem-solving transfer. Journal of Educational
Psychology, 79:347-362.

J. Dujmović and H. Nagashima (2006). LSP method and
its use for evaluation of Java IDEs. International
Journal of Approximate Reasoning, 41:3-22.

M.H. Goadrich and M.P. Rogers (2012). Smart
smartphone development: iOS versus Android. ACM
SIGCSE Technical Symposium (SIGCSE’12), 607-
612.

S. Kalyuga, P. Ayres, P. Chandler, and J. Sweller (2003).
Expertise reversal effect. Educational Psychologist,
38:23-33.

R. Kline and A. Seffah (2005). Evaluation of integrated
software development environments: challenges and
results from three empirical studies. International
Journal of Human-Computer Studies, 63:607-627.

K. Kotovsky, J.R. Hayes, and H.A. Simon (1985). Why
are some problems hard? Evidence from tower of
Hanoi. Cognitive Psycholology, 17:248-294.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E.
Eastmond (2010). The Scratch programming language

and environment. ACM Transactions on Computing
Education, 10(4):16.

R. Mason and G. Cooper (2014). Introductory
programming courses in Australia and New Zealand
in 2013 – trends and reasons. 16th Australasian
Computing Education Conference (ACE2014),
Auckland, New Zealand, 139-147.

B.B. Morrison, B. Dorn, and M. Guzdial (2014).
Measuring cognitive load in introductory CS:
adaptation of an instrument. Tenth International
Conference on Computing Education Research
(ICER2014), Glasgow, Scotland, 131-138.

F.G. Paas (1992). Training strategies for attaining transfer
of problem-solving skill in statistics: a cognitive-load
approach. Journal of Educational Psychology,
84(4):429.

P. Paas, A. Renkl, and J. Sweller (2003). Cognitive load
theory and instructional design: recent developments.
Educational Psychologist, 38(1):1-4.

F. Paas, J.E. Tuovinen, H. Tabbers, and P.W. Van Gerven
(2003). Cognitive load measurement as a means to
advance cognitive load theory. Educational
Psychologist, 38(1):63-71.

F.G.W.C. Paas and J.J.G. Van Merriënboer (1994).
Variability of worked examples and transfer of
geometrical problem-solving skills: a cognitive-load
approach. Journal of Educational Psychology,
86:122-133.

J. Robertson (2014). Rethinking how to teach
programming to newcomers. Communications of the
ACM, 57(5):18-19.

R. Shiffrin and W. Schneider (1977). Controlled and
automatic human information processing II.
Perceptual learning, automatic attending and a general
theory. Psychological Review, 84:127-190.

Simon and D. Cornforth (2014). Teaching mobile apps
for Windows devices using TouchDevelop. 16th
Australian Computing Education Conference
(ACE2014), 75-82.

J. Sweller (1988). Cognitive load during problem solving:
effects on learning. Cognitive Science, 12:257-285.

J. Sweller (1994). Cognitive load theory, learning
difficulty and instructional design. Learning and
Instruction, 4:295-312.

J. Sweller (2010). Element interactivity and intrinsic,
extraneous, and germane cognitive load. Educational
Psychology Review, 22:123-138.

J. Sweller, P. Ayres, and S. Kalyuga (2011). Cognitive
Load Theory. Springer, New York.

J. Sweller, P. Chandler, P. Tierney, and M. Cooper
(1990). Cognitive load as a factor in the structuring of
technical material. Journal of Experimental
Psychology: General, 119:176-192.

J. Sweller and G.A. Cooper (1985). The use of worked
examples as a substitute for problem solving in
learning algebra. Cognition and Instruction, 2:59-89.

S. Tindall-Ford, P. Chandler, and J. Sweller (1997).
When two sensory modes are better than one. Journal
of Experimental Psychology: Applied, 3:257-287.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

55

Appendix: Example evaluation (partial): App Inventor environment with the hello world task.
A number of columns have been removed in order to fit the table on this page.

Step Description Notes

P
rior

k
n

ow
ledge

C
om

p
lexity of

sch
em

a
req

u
ired

R
elevant

p
h

ysical
elem

en
ts

D
istractors

W
in

d
ow

s/
p

alettes

P
rom

pts/h
ints

G
u

id
in

g
search

G
roup

in
gs

1 Turn off intro help
screen

 low low low low low yes no yes

2 second help screen
close

 low low low low low no no no

3 Create new project low low low low low no yes yes

4 Name project low low low low low yes yes no

5 Add button Drag and drop low low medium medium medium no no yes

6 Change label of button in properties
palette

low low medium medium medium no no yes

7 Add textbox drag and drop low low medium medium medium no no yes

8 Rename textbox low mediu
m

low medium medium no no yes

9 Go to blocks To start editing
code

medium low low medium medium no no yes

10 Go to Button 1 to choose event
associated with
Button 1

medium low medium low low no no yes

11 Choose click event "When Button1
click do .."

low low medium medium low no no yes

12 Go to Textbox blocks to choose action
associated with
Label 1

medium low medium low low no no yes

13 Choose set text block "set label1.text to
.."

low low medium medium medium no no yes

14 Go to text blocks to choose string
block

medium low medium low low no no yes

15 Choose string block go to text, choose
first option
(string), drag and
drop to right
position.

medium mediu
m

medium low medium no no yes

16 set value to "Hello
World"

 low low low medium low no no no

17 Connect Emulator Connect menu -
emulator

medium low medium medium low no no yes

18 Test application click on button in
app

low low low low low no no no

 Counts: low 12 16 8 9 11 2 2 14

 medium 12 4 20 18 14 11% 11% 78%

 high 0 0 0 0 0

 Average (weighted): 1.33 1.11 1.56 1.50 1.39

CRPIT Volume 160 - Computing Education 2015

56

Student Perceptions of Flipped Learning

David Murray Terry Koziniec Tanya McGill

School of Engineering and Information Technology
Murdoch University,

90 South St, Murdoch WA 6150
Email: D.Murray@murdoch.edu.au

Email: T.Koziniec@murdoch.edu.au
Email: T.McGill@murdoch.edu.au

Abstract

Flipped learning has been the subject of significant
hype and attention but descriptions of the develop-
ment and the evaluation of this pedagogical model
are lacking. Flipped learning is an inverted teaching
approach where students learn the basics via short
videos at home, then come to class to complete chal-
lenges and clarify any misunderstandings. This pa-
per describes how an IT unit was delivered using
the flipped learning approach. A survey was used
to determine how students perceived flipped learn-
ing. Students were generally positive about the ap-
proach, particularly the convenience and flexibility of
the flipped videos. Although face to face teaching
time was reduced in this flipped learning implemen-
tation, students felt that they interacted more with
their instructors and peers. Students felt strongly
positive to walkthroughs and were mixed as to the
need for the instructors face. Significant efforts to
produce high quality and engaging videos were made,
but the survey suggested that students learnt the
most during tutorial time. The relative importance of
interactive tutorials is congruent with a large body of
research and pedagogical approaches advocating the
importance of active student-centred learning.

Keywords: Flipped learning, student-centred learn-
ing, inverted classroom, online learning, blended
learning, IT education

1 Introduction

The flipped classroom pedagogical approach gener-
ally involves inverting the typical university style of
lecture-based teaching, to get students to view short
video lectures at home before the class session, and re-
serving class time for more interactive activities such
as discussions, group exercises or projects. This ap-
proach has received a lot of publicity, but there has
been little formal evaluation of the impacts on student
satisfaction or performance. There has also been lit-
tle research on how the pedagogical approach can be
used in teaching Information Technology (IT).

This paper seeks to address this gap by describ-
ing the development and evaluation of a new flipped
classroom IT unit called Introduction to Server Envi-
ronments and Architectures (ISEA). The evaluation
was performed to determine student perceptions of

Copyright c©2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computer Educa-
tion Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 160, Daryl D’Souza and Katrina Falkner,
Ed. Reproduction for academic, not-for-profit purposes per-
mitted provided this text is included.

the efficacy of flipped learning. Content, accessibil-
ity, the amount of face-to-face interaction and prefer-
ence on video types were all specific areas of interest.
The results provide insight into the value of adopt-
ing a flipped classroom approach to teaching in IT,
and provide understanding about the contribution of
different aspects of the design to student satisfaction
with their learning.

This paper is structured as follows. Section 2 re-
views the literature of online learning, flipped learning
and other similar pedagogical approaches. Section 3
describes the unit and the approach taken to create
and deliver the videos. The method for the evalua-
tion is detailed in Section 4 and 5 discusses the results.
Section 6 concludes the paper.

2 Literature Review

Online learning has received significant attention in
the past decade, with increasing amounts of tertiary
instruction being delivered online. There are various
pedagogical models that can be used to facilitate on-
line instruction. Some courses are delivered purely
online, with no face to face interaction. Blended
learning is a broad term and simply refers to any
learning program where more than one delivery mode
is used. Within blended learning, numerous differ-
ent pedagogical approaches exist including student-
centred learning, active learning and problem based
learning. Flipped classrooms (AKA inverted class-
rooms) are one way of implementing active student-
centred learning. Flipped learning inverts the tradi-
tional approach of teaching the basics in class and re-
serving practical activities for homework. In flipped
learning, the basics are covered in short video lec-
tures which are watched before attending class. This
reserves class time for interesting and engaging prob-
lem based learning. Any difficulties with the basics
can also be identified and addressed during class time.

Flipped learning has received a great deal of pop-
ular attention, particularly due to the success of the
Khan Academy, which offers a library of over 3,000
videos. The creator, Salman Khan, has been a strong
advocate of the flipped learning model.

Despite the flipped learning hype, there is very lit-
tle evidence about the specific merits of flipped learn-
ing and there have been calls for quantitative and rig-
orous qualitative research on flipped learning (Ham-
dan 2013, Bishop 2013). In their review of the re-
search on flipped learning, Bishop and Verleger (2013)
identified 11 previous studies that have explored stu-
dent perceptions of flipped learning and concluded
that although the results were mixed, with a small
proportion of students disliking the approach, stu-
dents generally had positive perceptions of flipped
learning. More recent studies by Butt (2014) and

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

57

Kong (2014) have also reported positive student per-
ceptions.

Evidence on the ability of flipped classroom ap-
proaches to improve learning outcomes is more lim-
ited, but despite this, many of the elements are based
on established and well researched learning strategies.
The reduced emphasis on traditional lectures is sup-
ported by the literature, with a recent meta-analysis
of 225 active learning studies in Science Technology
and Math (STEM), finding that average examination
scores improved by 6% and that students in tradi-
tional lecturing classrooms were 1.5 times more likely
to fail (Freeman 2014).

Pierce et al (2012) used flipped learning in their
pharmacotherapy class and found modest improve-
ments in student performance as well as positive stu-
dent perceptions that suggested that students recog-
nised the pedagogical benefits and the convenience of
the flipped classroom approach. Kong (2014) used a
flipped classroom approach in an integrated humani-
ties class and found that students taught in this way
significantly increased their domain knowledge.

Within the domain of IT learning and teaching
there have only been a limited number of published
studies on the success of flipped classroom approaches
to teaching IT. Gannod, Burge and Helmick (2008)
described on a pilot implementation of a service ori-
ented architecture course which was received very
favourably by students. Both Day and Foley (2006)
and Davies, Dean and Ball (2013) have taken their
evaluation further and reported on learning outcomes.
Day and Foley (2006) implemented a flipped class-
room intervention for a computer interaction course
and found that those students in the flipped classroom
group received significantly higher results on both as-
signments and tests. More recently, Davies, Dean and
Ball (2013) also noted improvements in learning for
students in the flipped classroom version of a spread-
sheet course. They however, identified the short dura-
tion of their class (5 weeks) as a limitation and called
for further research on the use the flipped classroom
approach in IT teaching.

3 Description of the Study

3.1 Information about the unit

A flipped learning approach was used in a first-year
first-semester university unit called Introduction to
Server Environments and Architectures (ISEA) at
Murdoch University. There were 85 enrolled stu-
dents, of which, 75 were enrolled in internal mode
and 10 were enrolled in external mode. This unit
introduces students to Linux and Windows operat-
ing systems, with an emphasis on servers. The unit
also covers virtualization and Amazon EC2 is used
as a vehicle to explore cloud computing. The final
assignment task involves launching a Linux server in
the cloud, linking it to Domain Name System (DNS)
and installing/customising a server application such
as HTTP. ISEA was a new unit and ran for the first
time in Semester 1 2014. As a result comparisons with
a traditional, non-flipped version, are not possible.

The familiar activities which accompany many
university units were used. A unit guide dictated as-
sessment and the breakdown of topics. A brief ab-
stract was provided to introduce each weekly topic
and tie the video, reading, discussion and lab ele-
ments together as a cohesive unit. All the elements
required for the course were provided as links from
the Learning Management System (LMS). Many of
the units at the university have a 2 hour lecture and

2 hour tutorial format. In ISEA there was an in-
troductory lecture in week 1, to describe the flipped
learning approach, then all subsequent content was
delivered online using short 3-20 minute videos.

In flipped learning, the tutorials are designed to
be interactive and build upon the basics established
in the videos. The ISEA tutorials began with a 20
minute discussion about something topical relating
to the unit or the recent videos. While group discus-
sions are the norm in arts degrees, they are rare for
applied and technically focused IT units. Following
the 20 minute discussions, students completed prac-
tical work which built upon the weekly videos.

3.2 Flipped Video Production

When converting a university unit to flipped learning,
the new element required for the course is the short
videos. The creation and production of these videos
is likely to be the most time consuming element for
unit coordinators.

3.2.1 Audio

An early decision was made to pursue quality audio in
presentations. PCs, tablets and smartphones are all
capable of high quality audio, while video quality is
heavily dependent on the student’s viewing platform,
with small screen mobile devices severely limiting the
effectiveness of a visual message. The unit coordi-
nators purchased a popular USB omindirectional mi-
crophone and a broadcast quality directional micro-
phone. Both were capable of quality audio but their
characteristics and usage were quite different.

The USB microphone was suited to presentations
where the presenter needs to move around as its po-
sitioning was not critical. It also made video pre-
sentations more casual as the microphone could be
placed inconspicuously. The downside to the USB
microphone’s ability to capture audio from any posi-
tion was its susceptibility to picking up background
noise. Conversely the broadcast microphone was in-
sensitive to background noise but required positioning
in a manner often seen with radio announcers. This
made it suitable for “voice-overs” but more difficult
to use inconspicuously when combined with video of
the presenter’s face. Achieving clear audio is not dif-
ficult but each technology is optimised for particular
conditions and matching the equipment characteris-
tics to the environment was something we found to
be important but not obvious at the outset.

3.2.2 Video

A variety of video capture methods were em-
ployed. These ranged from basic screen capture
applications such as the open source “simplescreen-
recorder” and “CaptureMyDesktop” which were used
for demonstrating computer based activities and
“walk-throughs” of screen based activities. An ex-
ample of this video type is shown in Figure 1. The
‘chalk and talk’ approach, where the instructor talked
the students through an idea while drawing a diagram
or doing some math, was also used. This presentation
type is shown in Figure 2 and is similar to the video
type used on Khan Academy.

These videos were the most simple to produce as
the steps used to combine the video and voice-over
are flexible. Both can be captured at once and eas-
ily edited later. Alternatively a perfect run-through
can be obtained first and then the voice-over can be
added later, while the presenter watches the prere-
corded action. For instructors seeking to record their

CRPIT Volume 160 - Computing Education 2015

58

Figure 1: Computer aided demonstration with audio
narration

content, voice-over demonstrations are an excellent
starting point and introduction to combining video
with audio and exploring the basic functions of their
chosen video editing environment.

A number of video styles were employed to deliver
recorded versions of traditional PowerPoint presenta-
tions. One example of this video type is shown in Fig-
ure 3. In some instances the presenter’s face featured
heavily in the recording while in other cases a small
face in a window merely reminded viewers who the
presenter was. To record the presenters face, internal
and external webcams and a digital SLR camera were
employed, with each step-up improving the quality of
the image. Adding video to the presentations adds
considerable complexity. Issues encountered included
difficulty in placing cameras in positions that lead
to natural looking environments and problems with
misaligned audio and video (lip-sync). Editing video
without producing jarring and disconcerting jumps in
the images is something that requires planning and
the unit coordinators found that “delivery” quickly
becomes “production”. Depending on skill and level
of perfectionism, “production” can quickly consume
time and creative energy that could otherwise have
been devoted to improving the instructional content.

3.2.3 Delivery of videos

The final edited videos were were standardised as
high definition 720p in an MP4 container and were
uploaded to the university LMS site for students to
download. The maximum size of each file was less
than 100 MB. Despite testing the files in Windows,
Apple and Android environments there were still re-
ports of students experiencing difficulties and the ac-
cessibility being less than might be expected from
commercial sites such as YouTube.

For some students there were clearly local client
issues and quality Internet connections are not uni-
versal in Australia. The instructors did find these
aspects distracting and time consuming to deal with,
particularly as students involved become frustrated
with the technology. As the size of the class increases
the number of these issues will also grow. There is
certainly an incentive to have video content served
and managed by a third party that has the expertise
and experience to ensure multi-platform compatibil-
ity, if those services are not already present in the
host’s organisation.

Figure 2: Traditional blackboard style chalk and talk

Figure 3: Talking head and slide show

4 Methods

Student perceptions of flipped learning were mea-
sured using an online survey. Internal students were
delivered a consent form and an online survey at the
beginning of the final tutorial (contact the authors
for a copy of the survey questions). The research in-
vestigators, who were involved in the unit, did not
enter the class while surveys were being completed
by consenting students and were not provided access
to any survey data until after final grades had been
submitted.

Students who do not attend classes on campus and
are enrolled in external mode, were emailed informa-
tion about the evaluation and invited to complete the
online survey at a time convenient to them. The sur-
vey was approved by the Murdoch University Human
Research Ethics Committee (Approval No 2014050).
The response rate was 73.6% (56 of the 76 who com-
pleted more than 50% of the assessment activities).

5 Results

5.1 Access and flexibility

One of the benefits of flipped learning videos is that
the content is accessible via all devices and can be
viewed and re-viewed at the time and place most con-
venient to the student. Students were asked what
time of the day they viewed the videos. The question
was a ‘pick all that apply’ question and thus the per-
centages do not reconcile. The results suggest that
90.4% of students viewed them outside office hours.
Comparatively, 61.5% viewed the content during work
hours. Students were also surveyed about where they
watched videos. The majority, 96.1%, stated that

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

59

they watched the videos at home. Videos were also
frequently watched at university, 47.1%, while usage
in other locations, such as public transport was quite
small, 7.8%.

Written responses suggest that students appreci-
ated the flexibility of the flipped learning approach.

i preferred it due to the flexibility of the
unit only needing to be at the the university
for two contact hours allowed for more time
at home to complete homework,assignments
etc, and gave spare time at the university
itself.

I liked flipped learning. The flexibility and
the total amount of time saved from watch-
ing the video lectures ultimately improved my
overall performance in this unit.

I found the flexibility helped me fit ICT171
around my lifestyle.

There were, however, a small number of students
that felt the lack of an allocated or scheduled lec-
ture time, hindered their motivation and engagement
in the unit. The following are comments from these
students:

The fact that I don’t make time for them or
think they are as important as normal lec-
tures.

Motivation to keep on top of the video lec-
tures and readings, it can be quite easily to
fall behind

Students predominantly watched the videos on
their PC, 73.1%, or laptop, 75.0%. Smaller numbers
of students used their tablet, 21.2%, or smartphone
11.5%. Some students appreciated the ability to in-
tegrate the flexible content into they daily schedule.
The following are responses to the question, ”What
was the worst part of flipped learning?”:

The fact that I could watch it on the train
on the way to my class and have everything
fresh in my mind, as opposed to watching it
right before my class, being up a bit earlier
to get to my class. It made it more efficient
because instead of waking up that hour ear-
lier I could wake up and head to my class
and watch it on the train on the way to the
lecture allowing everything to be fresh in my
mind.

Some of the videos were computer aided demon-
strations, and some videos may not have played on all
devices. This may have caused the usage of tablets
and smartphones to be less than originally anticipated
as indicated by the following comments:

video file formats had problems running in
browser or on some smartphones. limited
me to watching them only at home or uni.

I had some issues with the videos not playing
on my iMac.

A minority of students also seemed to suffer from
technical problems:

During the last few weeks I haven’t had In-
ternet at home so I haven’t been able to
watch some of them, but I could have put
more effort into downloading them while I
was at university.

The state of the Internet in Australia does
create some difficulties for some people in
accessing these videos. This is a much
greater problem than where the student has
a physical lecture that they can choose to at-
tend.

Although a range of different student experiences,
preferences and issues are evident, when students
were asked to indicate their level of agreement with
the statement “I found the flexibility of flipped learn-
ing beneficial”, there was strong agreement with an
average score of 4.21/5. This suggests that on aver-
age, the flexibility of flipped videos is favourable to
most students.

5.2 Face-to-Face Interaction

One of the fears with replacing face-to-face lectures
with pre-recorded videos is a possible reduction in
the interaction with staff and peers. In the ISEA
flipped classroom, students had only 2 hours of face-
to-face contact time per week. For reference, other
similar first year units run with a 2 hour lecture and
2 hour tutorial. In response to the statement: “Com-
pared with traditional units, I interacted more with
my peers in the flipped classroom”, there was general
agreement with an average score of 3.59/5. In re-
sponse to the statement, “Compared with traditional
units, I interacted more with my instructors in the
flipped classroom” there was a similar level of agree-
ment, 3.65/5. This suggests that, despite a reduc-
tion in overall class time, the interaction with peers
and instructors was higher. This may have occured
because of better quality interaction in the tutorial
as the following comment indicates: “The interactive
tutorials were more engaging, interesting and I felt I
learnt more from them than usual tutorials”. It must
however, also be acknowledged that the unit coordi-
nators took responsibility for a lot of the teaching in
this unit. It is possible that their enthusiasm for the
flipped learning approach approach had an impact on
these results.

5.3 Student Perceptions of Video Types

Students were surveyed about their preferences of
video types. The talking head with PowerPoint slides
(Figure 3) has the closest resemblance to a traditional
lecture and was also the least desirable, with a score
of 4.84/7. The chalk and talk, Figure 2, received a
slightly higher score of 5.14/7. The most applied el-
ement of the course was the computer aided demon-
strations, Figure 1, which received the highest student
score of 6.08/7. On the same survey page, students
were asked about how much they enjoyed traditional
lectures with the physical presence of the lecturer.
The response to this question was the most neutral
with an average rating of 4.06/7. A summary table
showing student preferences for different video types
is shown in Table 1. In this unit, students least liked
the approach that most closely resembled the tradi-
tional lecture and students were most satisfied with
the applied instruction. Overall, student indicated
that they preferred video lectures to traditional face
to face lectures.

Written student feedback also suggested that stu-
dents appreciated the ability to follow along with
computer aided demonstrations. These computer
aided demonstrations were the elements that would
be most difficult to replicate in a traditional live lec-
ture:

CRPIT Volume 160 - Computing Education 2015

60

Table 1: Student preferences for video types

Question 1 2 3 4 5 6 7 Mean
On a scale of 1 (Did not enjoy at all) to 7 (Very much enjoyed),
How much did you enjoy the blackboard style? 1 1 4 4 19 16 5 5.14
On a scale of 1 (Did not enjoy at all) to 7 (Very much enjoyed),
How much did you enjoy the computer aided demonstrations? 0 0 2 1 7 21 19 6.08
On a scale of 1 (Did not enjoy at all) to 7 (Very much enjoyed),
How much did you enjoy the talking head and PowerPoint style? 0 2 3 8 13 16 3 4.84
On a scale of 1 (Did not enjoy at all) to 7 (Very much enjoyed),
How much do you enjoy traditional lectures,
with the physical presence of the lecturer? 1 4 10 20 8 5 2 4.06

The ease at which the content was accessible
and the ability to work along with the video.
I found that it helped me discover and feel
more engaged with my learning as opposed
to sitting back and listening to a lecture.

i enjoyed the flipped learning system because
it gave me the chance to watch the video
lectures when i felt it was most appropriate
time. It also gave me the chance to work
along side on my pc as the video was play-
ing

I find long lectures very boring and find
it hard to concentrate. I do enjoy the
video formats particularly as with this course
they were broken down into specific topics.
Which meant I could follow along and recre-
ate on my own computer the various server
things that we’re being done.

Yes, I generally did as you can wind it back
if you missed something.

Although many students, 34.7%, liked to see the
face of the person speaking, the majority felt that it
was not important. Given the ambivalence of the au-
dience and the work involved, this is an aspect to give
careful consideration when developing flipped learn-
ing videos. One possibility is the use of short video
“bumpers”. Bumpers are short video introductions
and conclusions that are placed at either end of the
video to present a human feel to the presentation with
the remaining content consisting of a voice accom-
paniment to static PowerPoint slides or other visual
elements. This approach might achieve a workable
balance between some viewers’ need to see the pre-
senter’s face and the developer’s need to limit time
spent on the editing process.

5.4 Coverage of material

Pre-recorded semi scripted video lectures are gener-
ally shorter than the typical lecture. The average
length of video materials was 10 minutes. The to-
tal content in each of the teaching weeks averaged 42
minutes 28 seconds, substantially less than the 100
minutes that might be expected in a typical 2 hour
lecture time slot. When asked “Do you feel that less
content was delivered under flipped learning?” the
overwhelming response was that the level of content
was not compromised. The following student com-
ments were typical:

No - I think there was the same amount of
VALUABLE content delivered. This is my
last unit, I wish this was in place for my
whole degree.

I think it was much more direct, and kept
my interest. However, I do think we miss

out on the interesting tangents that occur in
the lecture theatre.

Possibly less in terms of minutes, but more
effective than a 2 hour lecture where you are
losing concentration by covering too many
topics at once.

No, too much time in lectures is spent arriv-
ing, quieting down the lecture theatre etc. I
feel the weekly videos provide a more focused
environment. I also felt the weekly videos
were more rich in content and of a higher
quality than the average lecture.

I don’t think that less information was cov-
ered and that it was just covered in a more
concise way with more direct information
and less filling that can sometime happen in
a defined 2 hr lecture time.

The downside to focused and edited content is
that the presentations can become mechanical and
less personal. Some students stated that they missed
the tangents that lecturers sometimes go off on in
face-to-face lectures.

5.5 General student perceptions

General student perceptions of flipped learning were
positive. The mean and standard deviation of ques-
tions asked about general student perceptions are
shown in Table 2. This was also evident in the written
feedback from students:

I liked flipped learning in ICT171 because
its a better learning experience than a tra-
ditional lecture/tutorial. Sometimes tradi-
tional lectures go on for so long and some
information is lost. With flipped learning
tutorial videos shows and give us a good un-
derstanding of what it is to do in the labs.
Once in class we know exactly what we are
doing and any questions can be answered by
the tutors. For me Flipped learning is far
better experiences learning and more units
should implement this method of learning.

I enjoyed the short videos as I found it is
much easier to concentrate and take in small
videos than a 2 hr lecture. I found the videos
to be very useful and related well to the in-
formation that was presented in the labs.

Students were surveyed on where they felt like they
learnt the most. The majority, 61.5%, felt that they
learnt the most in tutorials and 30.8% felt that they
learnt the most in lectures. Only a minority of stu-
dents, 3.8%, felt that they learnt the most in readings
and assessment respectively. The transition from a
traditional lecture-tutorial format to flipped learning
forced considerable efforts and emphasis into the new

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

61

Table 2: Summary statistics on general student perceptions

Question SD D N A SA Mean
More university units should use flipped learning 0 3 8 34 7 3.87
Short flipped learning videos are more effective
than traditional face-to-face lectures 1 3 8 26 13 3.92
My experience in ICT171 would have been better
with at traditional lecture tute format 7 20 20 4 1 2.46

element, the flipped videos. While it is important
that these video are well produced and accessible, the
results of the survey reinforce the notion that the lec-
tures are present to reinforce the tutorials. Reducing
the emphasis on passive, one-way instruction methods
is well supported by the literature (Hamdan 2013).

5.6 Future Work

The results described in this paper are preliminary
and are purely based on the feedback of an elec-
tronic survey delivered to students. Consent was ob-
tained from participants and permission was granted
by the Murdoch Human Research Ethics Committee
to utilise learning management statistics and data
from student records. Future work will provide a
more detailed and comprehensive analysis based on
this data.

6 Conclusion

Students expressed a strong preference for the flipped
learning model. Students liked the convenience and
accessibility of the video lectures and in the IT uni-
versity cohort, student preferences were to view the
content outside of standard work hours. Although no
group assessment was performed and contact hours
were halved under flipped learning, students felt like
they interacted more with their peers and instructors.

Students liked the concise nature of the video lec-
tures and generally felt that an equivalent amount of
content was covered in significantly less time. Three
different video types were used and students ex-
pressed a preference for the computer led video where
the applied elements of the unit were being demon-
strated and discussed. The responses indicate that
students often paused, rewound and followed along at
home on their own PC. The unit coordinators found
these video types the most straight forward from a
production perspective. The students least liked the
PowerPoint and talking head video type. It is possible
that the reason for this was because the talking head
video type was used to deliver the majority of the
theory in the unit. Videos containing the instructor
were the most difficult to produce due to the com-
plexity of editing and many students reported that
seeing the instructor’s face was unimportant. The in-
structors found that, despite the emphasis on videos
when converting to flipped learning, it is important
to recognise that their role is to facilitate the tutori-
als, where the bulk of learning was reported to occur.
Overall, the unit and the flipped learning approach
was received very favourably by students.

References

Bishop J & Verlager MA 2013, ‘The flipped class-
room: A survey of the research’, 120th Annual
ASEE Annual Conference & Exposition Available,
Atlanta, USA, 23-26th June.

Butt A 2014, ‘Student views on the use of a flipped
classroom approach: Evidence from Australia’,
Business Education and Accreditation, 6(1) 33-43.

Davies RS, Dean DL & Ball N 2013, ‘Flipping the
classroom and instructional technology integration
in a college-level information systems spreadsheet
course’, Educational Technology Research and De-
velopment, 61(4), 563-580.

Day JA & Foley JD 2006, ‘Evaluating a web lec-
ture intervention in a human-computer interaction
course’, IEEE Transactions on Education, 49(4),
420-431.

Freeman S, Eddy SL, McDonough M, Smith MK,
Okoroafor N, Jordt H & Wenderoth MP 2014,
‘Active learning increases student performance
in science, engineering, and mathematics’, Pro-
ceedings of the National Academy of Sciences,
doi:10.1073/pnas.1319030111.

Gannod GC, Burge JE & Helmick MT 2008, ‘Using
the inverted classroom to teach software engineer-
ing’, Proceedings of the 30th international Confer-
ence on Software Engineering, Leipzig, Germany,
May, 777-786.

Hamdan N, McNight P, McNight K & Arfstrom KM
2013, ‘A Review of Flipped Learning (white pa-
per)’, Flipped Learning Network, viewed August
2014, http://www.flippedlearning.org/.

Kong SC 2014, ‘Developing information literacy and
critical thinking skills through domain knowledge
learning in digital classrooms: An experience of
practicing flipped classroom strategy’, Computers
& Education, 78, 160-173.

Pierce R & Fox J 2012, ‘Vodcasts and active-learning
exercises in a “Flipped Classroom” model of a
renal pharmacotherapy module’, American Jour-
nal of Pharmaceutical Education, 76(10): 196, doi:
10.5688ajpe7610196

CRPIT Volume 160 - Computing Education 2015

62

Teaching Computational Thinking in K-6:
The CSER Digital Technologies MOOC

Katrina Falkner Rebecca Vivian Nickolas Falkner
School of Computer Science
The University of Adelaide
Adelaide, South Australia

Firstname.lastname@adelaide.edu.au

Abstract
In recent decades, ICT curriculum in K-10 has typically
focussed on ICT as a tool, with the development of digital
literacy being the key requirement. Areas such as
computer science (CS) or computational thinking (CT)
were typically isolated into senior secondary programs,
with a focus on programming and algorithm development,
when they were considered at all. New curricula
introduced in England, and currently awaiting minister
endorsement within Australia, have identified the need to
educate for both digital literacy and CS, and the need to
promote both from the commencement of schooling. This
has presented significant challenges for teachers within
this space, as they generally do not have the disciplinary
knowledge to teach new computing curriculum and
pedagogy in the early years is currently underdeveloped.

In this paper, we introduce the CSER Digital
Technologies MOOC, assisting teachers in the
development of the fundamental knowledge of CT and
the Australian Digital Technologies curriculum
component. We describe our course structure, and key
mechanisms for building a learning community within a
MOOC context. We identify key challenges that teachers
have identified in mastering this new curriculum,
highlighting areas of future research in the teaching and
learning of CT in K-6.

Keywords: National curriculum, computer science,
computational thinking, education, primary school, high
school.

1 Introduction
Over the past decade ICT education has transitioned from
focusing on ICT as a tool - with the development of
digital literacy as the key requirement - toward
understanding the underpinning concepts and workings of
digital technologies. Areas such as Computer Science
(CS) or computational thinking (CT) were typically

isolated into senior secondary programs, with a focus on
programming and algorithm development, when they
were considered at all. The lack of computing curriculum
at the primary level was perceived to be ‘failing to
provide students with access to the key academic
discipline of CS, despite the fact that it is intimately
linked with current concerns regarding national
competitiveness’ (Gal-Ezer and Stephenson, 2009).

To promote CS career pathways, global initiatives
have targeted youth engagement and interest in CS
through various outreach programs (Bell et al, 2011;
Koppi et al., 2013; Lambert & Guiffre, 2009; Liu et al,
2011; Myketiak et al 2012). However, research findings
and a continued lack of uptake of CS degrees suggest that
outreach programs have had little success (Koppi et al.,
2013). More recently, a drive to include computing in
schooling curriculum has arisen, proposing that all
children should have an opportunity to develop CT skills
and have opportunities to be ‘creators’ of digital
technologies (Gander et al., 2013; The Royal Society,
2012).

New curricula introduced in England (Department for
Education, 2013), Australia (ACARA, 2012), New
Zealand and the new ACM CS standards (Seehorn et al.,
2011) have identified the need to educate for both digital
literacy and CS, and the need to promote both learning
areas from the commencement of schooling through to
high school, to support the future generation of digital
creators and increase international competitiveness. This
is a significant milestone yet also raises a number of
challenges, including the preparation of teachers and
development of resources to support the success of
implementation at a national scale. Curriculum change is
not easy for teachers, in any context, and to ensure
teachers are supported, scaled solutions are required. A
potentially key factor in the success of implementing a
new computing learning area will be appropriate
professional development (PD) that provides teachers
with the confidence and experience to integrate CS
effectively into their classroom activities.

One educational approach that has gained traction for
delivering content to large-scale audiences are massively
open online courses (MOOCs), however, little is known
about what constitutes effective MOOC design;
particularly within the contexts of CT and teacher
professional development. In this paper, we introduce the
CSER Digital Technologies MOOC, assisting teachers in

Copyright (c) 2015, Australian Computer Society, Inc. This paper
appeared at the 17th Australasian Computer Education Conference
(ACE 2015), Sydney, Australia, January 2015. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 160. D. D'Souza
and K. Falkner, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

63

development fundamental knowledge of CT and the
Australian Digital Technologies curriculum component.
We describe our course structure, approaches to teaching
CT within the K-6 context, and key mechanisms for
building a learning community within a MOOC context.
We identify key challenges that teachers have identified
in mastering this new curriculum, highlighting areas of
future research in the teaching and learning of CT.

2 The Australian National Curriculum
The Australian primary and secondary school system is
undergoing a significant period of change, with the
introduction of a National Curriculum. In Australia
primary school includes the first year of school, called
Foundation (F), also known as Kindergarten (K), until
year 6 or 7, depending on the state. Secondary school
(also known as high school) includes years 7 or 8 to year
12. The Australian Curriculum describes the nature of
learners and curriculum across three broad year-
groupings: Foundation to Year 2 (ages 5-7); Years 3 to 6
(ages 8-11); and Years 7 to 10 (ages 12-16).

In 2013, the Australian Curriculum Assessment and
Reporting Authority (ACARA) released a series of draft
curriculum standards for the national curriculum to be
introduced across Australia in 2014. The curriculum
introduces new learning areas with considerable effort
committed in the definition of the curriculum and
national achievement standards for each area. Some
learning areas have achievement standards defined from
K-12, while others, including ICT, have achievement
standards defined from K-10, with decisions in the senior
years of schooling to be defined at a later stage.

‘The Shape of the Australian Curriculum’ (ACARA,
2012), identifies that ‘rapid and continuing advances in
ICT are changing the ways people share, use, develop and
process information and technology, and young people
need to be highly skilled in ICT’. The ACARA
documents include ICT awareness (digital literacy) as a
key capability, embedded throughout the curriculum, and
introduce a new learning area, Technologies, combining
the ‘distinct but related’ areas of Design and
Technologies and Digital Technologies (DT) (ACARA,
2013). DT focuses on developing knowledge of digital
systems, information management and the CT required to
create digital solutions. The core is the development of
CT skills: problem solving strategies and techniques that
assist in the design and use of algorithms and models.

The DT curriculum does involve some (CS)
knowledge and skills, as well as some digital solutions
(possibly involving programming and CS concepts) but
the intended focus is on developing computational
thinking, logic and problem solving capabilities. The DT
curriculum is based on a systems thinking approach,
designed to encourage students to understand the
individual parts of the system, while also being capable
of having a holistic view of the, including ethical, societal
and sustainability considerations.

DT focuses on developing knowledge of digital
systems, information management and the computational
thinking required to create digital solutions. The core is
the development of computational thinking skills:
problem solving strategies and techniques that assist in
the design and use of algorithms and models. The

Australian Curriculum describes the nature of learners
and curriculum across three broad year-groupings:
Foundation to Year 2 (ages 5-7); Years 3 to 6 (ages 8-11);
and Years 7 to 10 (ages 12-16).

Approaches to teaching vary according to the

curriculum year-groupings. The development of both
digital literacy and CT commences in the K-2 band and
learning is based around directed play, facilitating
students in developing an understanding of the
relationship between the real and virtual worlds, the use
and purpose of technology in communication, and the
importance of precise instructions and simple problem
solving in the digital world. In Years 3-6, students are
guided to develop a wider understanding of the impact of
technology, including family and community
considerations, and are able to work on, and
communicate about, more complex and elaborate
problems. In this year level, students begin to apply CT to
develop algorithms with visual programming software.
Across Years 7-10, students move beyond their initial
community and are required to consider broader ethical
and societal considerations. In this band, students should
be able to solve sophisticated problems using technology,
and understand complex and abstract processes. Students
begin to apply CT in their use of general-purpose
programming languages to solve problems and create
digital solutions. This development from K-10 supports
the understanding of the utility of technology, as well as
the development of problem solving skills and an abstract
understanding of CS.

The eight key concepts that underpin the DT
curriculum are allocated to one of two strands:
‘Knowledge and Understanding’ and ‘Processes and
Production Skills’.

2.1.1 Knowledge and Understanding
The Knowledge and Understanding strand builds
awareness of digital systems and digital information. This
includes the impact of digital technologies upon societies
and relationships between these technologies and a
society, exploring ethical and cultural considerations,
from both a local and global perspective. The following
sequence of learning objectives explores how an
understanding of digital representation is developed
across the curriculum:

• K-2: Recognise and play with patterns in data
and represent data as pictures, symbols and
diagrams.

• 3-6: Explain how digital systems represent
whole numbers as a basis for representing all
types of data.

• 7-10: Explain how text, audio, image and video
data are stored in binary with compression.

2.1.2 Processes and Production Skills
In Processes and Production Skills, students explore how
to solve computational problems, involving developing
skills in ‘formulating and investigating problems;
analysing and creating digital solutions; representing and
evaluating solutions; and utilising skills of creativity,
innovation and enterprise for sustainable patterns of
living’ (ACARA, 2013).

CRPIT Volume 160 - Computing Education 2015

64

The following presents an example sequence of
learning objectives designed to introduce algorithmic
planning:

• K-2: Follow, describe, represent and play with a
sequence of steps and decisions needed to solve
simple problems.

• 3-4: Design and implement simple visual
programs with user input and branching.

• 5-6: Follow, modify and describe simple
algorithms, involving sequence of steps,
decisions and repetitions that are represented
diagrammatically and in plain English.

• 7-8: Develop and modify programs with user
interfaces involving branching, repetition or
iteration and subprograms in a general-purpose
programming language.

• 9-10: Collaboratively develop modular digital
solutions, applying appropriate algorithms and
data structures using visual, object-oriented
and/or scripting tools and environments.

The processes and production strand encapsulates the key
concepts of CT and presents challenges to us as a
community in how we develop relevant skills within the
younger age groups.

2.2 Challenges of New Computing Curriculum
The challenges faced by both nations in the adoption of
these curricula are extensive. Consultation with Industry,
Community and Education within Australia (ACARA,
2013b) has identified significant concerns in relation to
teacher development (particularly at K-7), appropriate
pedagogy, and skills needed for integration of DT
learning objectives with the teaching of other learning
areas. Respondents (55%) indicated concern with the
manageability of the implementation of the DT
curriculum and 45% of respondents did not think that the
learning objectives were realistic. Further concerns were
expressed regarding teacher preparation.

Bell et al (2012) describe the New Zealand experience
of the rapid introduction of a senior secondary CS
curriculum, and the need for extensive teacher
development that addresses both content knowledge and
pedagogical knowledge. In the Australian curriculum,
this will involve teachers understanding CT, CS
disciplinary knowledge as well as the development of
skills in visual or general-purpose programming. Further,
it has been recommended that key to teacher development
will be the integration of aspects such as CT across other
learning areas (Yadav et al 2011). In their CT course for
educators, the instructors recommend incorporating CT
modules into teacher education courses to expose
teachers to these ideas. Through connecting CT to
learning areas, it is recommended that teachers will be
able to move beyond an ‘abstract’ idea of CT and
understand its application and relevance as a problem-
solving tool. Ragonis, Hazzan, and Gal-Ezer (2010)
identify best practice as the development of a dedicated
teacher development programme specifically addressing
CS. They recommend that a critical element of such
programs is to use empirical research to guide appropriate
pedagogy for specific year bands, and learning objectives.

However, despite materials being available to teachers
through PD, Settle et al. (2012), recognise the difficulty

teachers face in translating materials into existing
curriculum, when unfamiliar with the tools. In a study by
Meerbaum-Salant et al (2011), they identified that even
teachers experienced in CS, can be challenges with the
introduction of new tools, which created feelings of
anxiety, and resulted in teachers to deviate from original
lesson plans. Another issue regarding tools is that they
may be suggested to teachers to use to teach subject
matter but they may not always be available. Tinapple,
Sadauskas, and Olson (2013) further comment on the
challenge for teachers, where expected software and/or
hardware are not easily available. This is a consideration
that needs to be taken into account with national
computing PD, particularly when teachers from a variety
of contexts (e.g. rural, disadvantaged) may be
participating. Such findings indicate that teachers require
opportunities to explore tools and also alternative
‘unplugged’ lessons as well as a variety of potential
software that could be used.

In our previous review of research in the teaching and
learning of CT within K-12 (Falkner, Vivian & Falkner,
2014), we identified a dearth of research into the
development of appropriate pedagogy within the K-10
space, and in particular, within the K-6 space, with most
of the research that has been done is situated within
outreach programs, focussed on sharing teaching
techniques aimed at motivating students to study CS, to
address negative perceptions of the discipline, stereotypes
and to increase diversity in our student cohorts. This
places extreme pressure on deliverers of PD as well as
teachers, when pedagogy and pedagogical strategies are
underdeveloped in the K-10 space of computing
education.

Developing pedagogically appropriate lessons for
particular contexts, needs and students may be
challenging for teachers and the adoption of teaching
approaches may be influences by teacher confidence in
teaching the learning area. In one study, when teachers
used guiding activity resources for their CS lessons, they
were apprehensive about using teaching methods such as
group work (Curzon et al, 2009). Further, teachers felt
that because they were unfamiliar with the topic,
considerable preparation would be required. In Black et
al’s survey (2013), they discovered that teachers tend to
focus more on fun activities rather than providing
opportunities for deep learning of CT, focussing on
impressive technology, physical computing and
programming in constructionist environments. These
forms of activities can complicate the learning
environment further by placing additional stress on
teachers inexperienced with technology.

Support for the professional development of teachers
is crucial in expanding CS curricula, including the
creation of community networks to share insights and
pedagogical approaches and research (ACARA, 2013;
Gander et al, 2012). This was confirmed by a study by
Black et al. (2013) involving a survey of UK computing
teachers in relation to their suggestions on improving CS
education, and teacher development needs. Although their
results highlighted a need for teacher training, they also
expressed the need for a network and community to
support resource development.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

65

3 Massive Open Online Courses
Massively open online courses (MOOCs) offer one
means to deliver education at scale and have the potential
for community elements to connect participants across
various locations, even around the world. Although
online learning is not new, it has been argued that the
difference between online learning and MOOC
environments are the combination of teaching approaches
course instructors use, the massive levels of participation
and the openness (Glance, Forsey, & Riley, 2013).

Typically two different types of MOOCs have been
identified; one being based on courses that embrace the
use of videos to deliver content and computer-assisted
online assessment (‘xMOOCs’) (Glance et al., 2013) and
other courses based around online communities and
connectivist principles, called ‘cMOOCs’ (Siemens,
2005, 2012). A number of ‘hybrid’ MOOC versions are
also surfacing, that combine a mixture of xMOOC and
cMOOC approaches, blending a structured pace with a
focus on participant-led communities, such as EDMOOC
by Coursera, and MOOC-EDs introduced by the Friday
Institute (Kleinman, Wolf, & Frye, 2013).

Enrolment in MOOCs have reported significantly high
enrolment rates, with edX and MITx reporting a total of
841,687 registrations from the fall of 2012 to the summer
of 2013 across a number of their courses (Ho et al.,
2014). In that year, 43,196 participants earned completion
certificates. On average there was a 5.17% completion
rate across the courses, with a 9% completion rate for
those who went beyond ‘enrolment’ in the course. A
typical measure of completion within xMOOCs is the
completion rate for those that complete half or more of
the course, known as explorers – edX and MITx report a
completion rate for explorers of 54%. A supporting
component of xMOOCs are the community forums,
which have seen engagement anywhere from 6.5% to
25.7% with an average of 7.9%.

In comparison, cMOOCs measure enrolment based on
members who ‘subscribe’ to the course via mailing lists
or by signing up to the course platform. cMOOC
enrolment figures have been found to be ranging from the
hundreds to the low- thousands and researchers typically
report participant engagement through the measurement
of social media activity (de Waard et al., 2011). While the
communities engagement seems large and broad, analysis
of cMOOC social media engagement reveals that
typically a small core of participants generate the activity.
For example, in CCK11, 18% (N= 126) participants were
actively involved (Kop, Fournier, & Mak, 2011) and in
First Steps in Teaching and Learning (FSTL12) (Roberts,
2012) about 30% actively participated throughout the 6
weeks and only 14 participants undertook assessment and
received a certificate.

4 The CSER Digital Technologies MOOC
In selecting a ‘hybrid’ MOOC approach, we were able to
deliver structured content as well as adopt a participant-
led community, which is proposed as being valuable for
teacher support in computing curriculum implementation
(ACARA, 2013; Gander et al, 2012; Black et al. 2013). A
large focus of the Australian DT curriculum is on CT,
which is defined in the ACARA curriculum documents,

as ‘a problem-solving method that involves various
techniques and strategies, such as organising data
logically, breaking down problems into components, and
the design and use of algorithms, patterns and models’.
Understanding CT involves understanding core CS
concepts, and the ability to conceptualise and create
abstractions that define solutions to problems.

At the level of K-6, the teaching and learning of CT
involves the developing of capabilities in solving
problems, utilising core concepts such as algorithm
definition – including the introduction of selection and
iteration – and data collection and analysis. Also
introduced are key ideas such as abstraction and
decomposition. Previous work in educator PD
recommends integrating new concepts throughout courses
and the application of concepts to other learning areas
(Yadav et al. 2011). CT concepts and ideas were
presented throughout the MOOC modules and examples
of the concepts (e.g. abstraction, decomposition) were
defined, incorporating lesson ideas with application to
everyday examples and other learning areas.

4.1 Course context
The average age of primary teachers is 42.1 and 44.5 for
high school teachers, with leadership roles being held by
those around 50 years of age (Cordova, Eaton, & Taylor,
2011). In Australia, the teacher workforce is
predominately female, particularly in the primary years
(81% of primary teachers and 57% for secondary
teachers). In Australia, teachers are reportedly spending
46 hours per week on all school related activities and
about 8 or 9 days a year toward professional learning
(Cordova et al., 2011).

Australian primary school teachers are typically
generalist teachers, with 80% reportedly teaching in
generalist classrooms (Cordova et al., 2011),
implementing the various learning areas prescribed by
their state or territory. Some schools are fortunate enough
to have specialist teachers, such as an ICT teacher, but
this is not typically the case for all schools, with only 6%
(N=7,500) of teachers reportedly teaching computing
(Cordova et al., 2011). In Australia, 17% of teachers
report having had some post-secondary education in
computing, with only 8% having been trained in the
practice and pedagogy of computing (Cordova et al.,
2011). Teachers are typically left to integrate the use of
ICTs and digital literacy into their classroom activities by
integrating with other learning areas.

4.2 Course Structure and Design
In response to existing research findings, we identified in
the development of this course the importance of
providing learning and teaching opportunities that were
tool-independent and focussed on deep learning (Black et
al, 2013, Meerbum-Salant et al, 2011), and the need to
provide exemplars of activities that were already
integrated with existing knowledge areas within the
curriculum – removing the need for direct translation
(Settle et al, 2012). We drew on and adapted existing
lesson ideas from organisations and initiatives such as CS
Unplugged and Code.org, and drew on lesson ideas and
approaches from education texts in other learning areas,
such as Mathematics, Science and Literacy, and with

CRPIT Volume 160 - Computing Education 2015

66

examples from possible teaching themes, commonly used
within K-6.

As a new learning area, the disciplinary content would
be new for many teachers. Therefore, the course was
designed around a series of seven topics that align with
the Australian curriculum, delivered in a logical order,
suitable for someone learning CS for the first time over a
period. Our goal in the first unit was to provide an
introduction to digital technologies, showcasing the
development and application of digital solutions to solve
real-world problems. Further, we wanted to define
terminology for digital technologies (e.g. computing and
CS) and distinguish between digital literacy and digital
technology creation and CT. In unit 2, the more familiar
topics of patterns (creating and continuing sequences and
recognition) and data representation (collecting and
representing data in different ways, with and without
technology) were introduced because of the potential
links to what teachers are already doing in Mathematics
and Science. In subsequent units, we moved toward the
use and application of data by computers and digital data
as well as the introduction of more abstract concepts,
such as algorithms. Lastly, we visited visual
programming environments.

In each unit, the topic (e.g. ‘digital systems’) was
introduced with the relevant Australian learning
objectives. Each unit were broken into sub-topics and for
each sub-topic a concept video was created or an existing
suitable video used in which the concept was explained
and supported with analogies and real-world examples.
Links were made to the Australian curriculum ‘expected
outcomes’ as guiding points for assessment. The goal of
the course was to deliver core disciplinary knowledge,
packaged for primary year levels, and lesson ideas so that
teachers could feel comfortable and empowered to create
or draw on existing resources to design learning activities
to meet the learning objectives. The sequence of units for
the Digital Technologies course are outlined in Table 1.

Table 1: Sequence of MOOC Modules

Unit 1: Introduction
Unit 2: Data – Patterns & Play
Unit 3: Data - Representation
Unit 4: Digital Systems
Unit 5: Information Systems
Unit 6: Algorithms & Programming
Unit 7: Visual Programming

The core elements of the course were the focus on

worked examples, and the sharing of further examples as
identified and developed by the teachers themselves. To
assist in community development, we initiated a Google+
community for the course; this space allowed participants
to network, share ideas and course tasks and to
collectively build an online series of resources
corresponding to topic areas.

Each unit incorporated two fully worked examples of
how specific learning objectives could be addressed
across K-6. For example, Unit 6: Algorithms &
Programming, incorporated a worked example exploring
instructions and sequences of instructions addressing the
learning objectives (with ACARA id):

• Follow, describe and represent a sequence of steps
and decisions (algorithms) needed to solve simple
problems (ACTDIP004)

• Define simple problems, and describe and follow a
sequence of steps and decisions (algorithms) needed
to solve them (ACTDIP010).

Within this worked example, we explore multiple
learning and teaching activities for different age groups
connected to different knowledge areas, starting with a
wriggle break activity, commonly included to signpost a
change between activities in early years. A variety of
instructions are written on pop sticks, such as “jump up
and down”, or “spin around”. A student or the teacher
selects a pop stick at random, and the class acts out the
selected activity, with opportunities for paired or group
exploration to demonstrate achievement. This activity is
deceptively simple – while fun, and engaging for the
students, it introduces the idea of instructions, and
sequences of instructions through variants of the game.
We then explore an extension of this activity, designed to
assist in literacy development, where students construct a
sentence, word by word, through rearranging a series of
pop sticks (see Figure 1).

Figure 1: Computational Thinking development

embedded within Literacy (Tunstall, 2013).

We continue this worked example, by exploring learning
and teaching activities where students are able to
construct their own instructions, incorporating existing
videos and examples, including the well known “jam
sandwich” example (Bagge 2012), and identify ideas for
assessment of these learning objectives:
• Students understand that computers require explicit

instructions.
• Students can explain that an algorithm is a step-by-

step sequence of instructions.
• Students can re-order instructions or develop

instructions that form a logical sequence.
• Students can adapt instructions based on their

observation of an outcome.
• Students use descriptive and precise language when

giving instructions.
• Students can provide a set of instructions

to achieve a desired outcome.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

67

For each unit, teachers were asked to post a task on the
Google+ community page for the course. These tasks
were designed to be informal and promote the exchange
of tools, resources and lesson ideas. In all cases, teachers
were provided with three options so that we could have a
variation of content being shared. For example, within the
same unit, we considered: ‘Design an activity that
explores sequences of instructions’.

As an indication of the type of engagement within the
course, we include here two example activities shared by
teachers within the course. Teacher A integrated a lesson
within the context of Mathematics, incorporating Beebots
as an interactive technology at Year 1; the activity
required students to identify the sequence of instructions
to navigate their Beebot between two points on a map.
This activity required the students to develop and
demonstrate key skills in problem solving, instruction
selection, sequencing and navigational language.

Teacher B identified a lesson activity that could be
either represented on its own, or within the Drama
learning area in the Arts curriculum at a more senior year
level (Years 3 or 4), where students were asked to define
a sequence of instructions for a random scenario, such as
brushing teeth, or packing a school bag, which were then
enacted by the group in a performance. This activity
required the students to develop and demonstrate key
skills in problem solving, instruction design and
selection, sequencing, selection and repetition. Further
integrating aspects of digital systems, they suggested a
simplification of the activity suitable for Year 1, adopting
QR codes as a mechanism for accessing a set of existing
instructions for a given scenario.

Teachers were able to comment on peers’ task
contributions in the Google+ community by providing
constructive advice or suggesting extensions or ways that
the activity could be adapted for other learning contexts.

Of the 1374 people who enrolled in the course via the
course website, we had 473 participants connect to the
Google+ community. Counting Google+ community
posts of the community revealed that posting activities
began at 269 for unit 1 and tapered off to around 100 in
for the portfolio.

Figure 2: Google+ Community Posts

While we felt a level of enthusiasm from the

community and participants appeared to be actively
posting, what was participation and engagement like
across the course and how did teachers experience
learning digital technologies content and partaking in the
course? The follow section reports on data obtained about

participant engagement and survey findings about
participant experiences.

5 Cohort Participation
Although we did not originally ask participants for
demographic details, we were able to gather some idea of
where participants were located via an anonymous survey
as part of an optional activity in unit 3. The majority of
participants appear to be from South Australia,
Queensland, New South Wales and Victoria (see Figure
3, N=174). Advertising and visits generally covered these
areas, suggesting that for future courses, more targeted
advertisements and connections need to be made to
Western Australia, Northern Territory and Tasmania.

Figure 3: Survey results for location of participants

Unsurprisingly, with the majority of teachers being

female in Australia (81%) and the average age of teachers
being between 40 and 50, according to the YouTube
analytics, the majority of the cohort was female and
between the age bracket of 45 to 64 (see Figure 4). These
results show that we were able to target our intended
audience and attract a female demographic that is
typically lacking in post-secondary courses and careers
(Koppi et al., 2013).

Figure 4: Google Analytics demographic details for

video views

Of the 1378 enrolled in the course, 99 participants

completed the course and 438 did not engage in the
course any further than enrolling. As a result, we have a
7.2% completion rate, or 10.5% completion rate for those
who went ahead and began the course. When considering
completion rates, and measures of MOOC engagement,
we consider engagement across all course components,
and within core components specifically. Our completion
rate overall was 7.2%, with a further 5.73% of
participants exploring half or more of the course (without
completion), and 56.39% of the participants completing
less than half of the course. In terms of core components
only, 8.13% of the participants explored half or more of
the core components (without completion) and 52.3% of

269

192
145 124 134

109 95 104

0
50

100
150
200
250
300

Number of Google+ Community Posts

CRPIT Volume 160 - Computing Education 2015

68

the cohort (group of MOOC participants) explored less
than 50% of the core components. Our completion rate
for explorers was 55.7%, and 46.9% when considering
core components only.

Overall, across the course platform and the Google+
community, the completion rates were mostly in-line with
what one would expect to see in MOOCs in terms of
enrolment and completion. However, 34.3% of the cohort
(n=473) viewed and/or engaged with the online
community – a significant increase in engagement over
typical MOOCs. The completion rate relative to those
that engaged with the community is 20.9%. A key
motivating factor for this engagement was tying the
course tasks in with the use of the Google+ community –
a strategy that resulted in the co-creation of K-6 digital
technologies resources and lesson plans.

In accordance with the participation and engagement
described previously, we had a high number of viewers
watching videos during the first unit (N=462), slowly
decreasing during each module (to 66 in unit 7).
According to the YouTube analytics, the average video
length created by the CS Education Research group, was
5.8 minutes – ranging from around 1 minute to 11
minutes. This timeframe is typical of many of the
xMOOC style video length. The average length of the
videos watched was 4.37 minutes, suggesting that short
concept videos work; however, designers need to
consider presenting important information at the
beginning.

5.1 Survey Responses

5.1.1 Survey: Participant Background
Some 51 participants responded to a survey about their

experience in the MOOC. 45 females and 5 males
responded. We recognize that the sample is biased
towards educators who completed the course but the
participants are able to provide insight into their
experience across the whole course. Almost 50% (23%)
of survey participants said that they had not participated
in an online course before (28 had). A majority of the
survey participants were teachers in primary schools,
with some people in leadership roles or enrolled in
university pre-services courses (see Table 2).

Table 2: Survey participants’ professional role

Professional Role Count

Teacher in Primary School 28

Teacher in multi-level school (K-12) 6

Leadership Role in an ICT-related area 5

Student/Pre-service teacher 4

Teacher in High School 2

IT-related professional 1

Leadership role (in other area or organisation) 1

Missing 4

Grand Total 51

We received survey responses from most people

throughout Australia, except from the Northern Territory
and Western Australia. Those who did respond were from
Queensland (16), Victoria (11), New South Wales (10),

South Australia (7), Tasmania (4), Australian Capital
Territory (2) and one from the United Kingdom.

The MOOC was targeted at the Foundation to Year 6
levels, however, we had a number of people enroll who
were not specifically focused on these years in their
professional roles. Table 4 shows that survey participants
were primarily from the K-6 years but also worked across
multiple year levels or upper year levels.

Table 3: Survey Participants’ Year Level

Year Levels Count

K-6 Years 19

Years 7-12 8

Multiple 16

Higher Ed/ Other 2

Not a teacher 3

Missing 3
Total 51

Table 3 demonstrates that survey respondents were

from a variety of different Year levels, with most from
either the K-6 years or working across multiple years.

Table 4 represents participant confidence (on a scale
of 0 to 7, with 0 being no experience at all and 7 being
highly confident), previous experience in teaching digital
technologies, using ICT in everyday activities and
confidence implementing digital technologies learning
activities (N=51).

Table 4: Survey participants’ confidence before the

MOOC

Experience
Teaching DT

Using ICT
course

Implementing
DT

Mean 3.9 6.2 3.5
Median 4 6 4
Mode 4 7 4
Std. Dev 2.143 0.967 1.88
Min 0 2 0
Max 7 7 7

Before going into the course, participants reported that

they were reasonably comfortable using ICTs in their
everyday lives and activities (mean 6.2) but had limited
experience teaching digital technologies (mean 3.9) and
confidence implementing the learning area (mean 3.5).

Table 5: Survey participants’ previous experience with

DT activities

Previous experience with digital technologies Count
No previous experience 22

Visual Programming 12

Programming (general-purpose) 8
Other (basic computer use, internet, etc) 6
Microworlds LOGO 1

Robotics 1

Algorithm activities 1

3D simulations 1

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

69

Table 5 presents participant experience with digital
technologies lessons before starting the course. Many had
no previous experience (22 responses), with some having
had experience in using visual programming (12),
general-purpose programming (8) and teaching students
about basic computer, Internet and application use (6).
Other items that mentioned were algorithm activities, 3D
simulations, robotics and LOGO.

5.1.2 Participant experience in the course
A majority of participants reported completing all of the
modules, which is consistent with our participation
findings that those who completed the portfolio also
completed all core and non-core modules. When survey
participants were asked which modules they did not
complete (6 in total), the following modules were
identified in Table 6. Although some had not completed
these modules they had intentions to return to view
materials or, even if they did completed all modules,
some still mentioned that they would revisit the modules
in more detail. Others who had not tried visual
programming during the course had set personal goals to
learn visual programming in the near future.

Table 6: Survey participants’ ‘non completed’

modules
Module Count

Data - Representation 1

Digital Systems 3

Information Systems 2

Algorithms & Programming 1

Visual Programming 2

Portfolio 1

After the course, participant confidence to implement

the new learning area had risen (mean 6.2) as well as
confidence in implementing digital technologies lessons
(mean 6.5) and making cross-curricula links (mean 6.2).
However, we still have room to improve on increasing
teacher confidence with digital technologies teaching
strategies, the organization of content, designing
activities, the integration of ICT and applying content
knowledge. Survey participants were asked to select from
a list of items, which activities they had tried for the first
time since undertaking the course. Table 8 presents a
summary of the frequency of participants who reported
trying the new activities.

Table 7: Survey participants’ confidence after the

MOOC

Statement Mean
Mo
de

Std.
Dev Min Max

Comfort Implementing
DT AFTER 6.2 7 1.1 1 7
Confidence
Implementing Lessons 6.5 7 0.7 5 7
Applying Content
Knowledge 4.4 5 0.7 2 5
Organising Content 4.4 5 0.7 2 5
Designing Activities for
Implementation 4.3 5 0.7 2 5

Teaching Strategies 4.2 5 0.8 2 5
Integrate ICT into
lessons 4.5 5 0.6 2 5
Cross Curricula Links 6.2 7 1.0 2 7

Table 8: Survey participants’ experience in DT
activities after the MOOC

New activities tried Count
Algorithm activities 24
Binary activities 23
Visual Programming 21
Other module topics 16
Data collection and analysis 13
Robotics 6
Code club 1

Previously 22 participants reported having had no

experience with digital technologies activities or any of
the items, but since participating in the course many had
tried new activities for the first time. Many of the
activities adopted for the first time were related to
algorithms (24 responses), binary (23), visual
programming (21), other module topics (16; digital
systems, information systems) and data (13). Six
participants had tried robotics and 1 person reported
starting a school Code Club.

5.1.3 Perceived Challenges
Content analysis was applied to the participant responses
to the questions about the challenges encountered by
participating in the MOOC and the most challenging
Modules. Time was a major factor identified as external
pressures from work or personal life meant that they
could not spend as much time on each module and
activity as they would have liked.

Participants were asked to identify the most
challenging modules. Participants reported that the later
units from module 5 onwards (4 responses), algorithms
and programming (9), binary (5) and other module 3
topics (3), and preparing the portfolio (3) were the most
challenging. Two participants also mentioned that
‘everything’ was challenging. Using content analysis, we
were able to group the reasons as to why participants felt
that these topics or the MOOC in general was
challenging. We identified a series of primary reasons
that emerged relating to the content being challenging,
transferring and applying knowledge, personal
challenges and external factors.

The content was challenging: These reasons included
that the topic was dry itself, that sometimes the
information was overwhelming or too technical, or that
they wanted to know more but were limited in time. A
number of participants mentioned that the content was
challenging because it was new (10 responses). Four
participants mentioned that although the content was
challenging it was exciting to learn and three mentioned
that they intend to explore the course content further.
Some interesting comments emerged around the language
of the new curriculum – that once concepts, such as
algorithms or iteration, were de-mystified they were far

CRPIT Volume 160 - Computing Education 2015

70

more comfortable with the new curriculum and that the
terminology was less ‘scary’.

Transferring and applying knowledge: This topic
included reasons such as that designing lessons for this
new learning area was challenging (4 responses) and that
transferring knowledge to the classroom (3) or the design
of learning activities (4) for the community was a
challenge. One other participant who was in a leadership
role mentioned that transferring knowledge in the MOOC
for teachers would be a challenge for them because they
needed to understand it well enough themselves first at a
higher level to be able to transfer the knowledge.

Personal challenges: One participant expressed a
feeling of pressure to perform well in the community by
producing quality materials or lessons and another
participant expressed that they personally felt that they
struggled with a topic because they were not good at
mathematics. Although these only account for 2 out of 51
responses, others in the community may have also
encountered similar challenges.

Two external challenges were identified relating to
time constraints (32 responses) such as personal reasons,
workload, work pressures, life events that limited their
ability to participate or complete modules as well as
technical challenges (8), such as low internet speed,
computer issues and limitations imposed by school
contexts to access particular sites.

6 Conclusions
The expected changes in the teaching of CS represent a
significant challenge for our schooling systems. CT and
CS will form part of the Australian standard curriculum
from K-12 from 2014. In this paper, we have described
the CSER Digital Technologies MOOC, which supports
K-6 teachers in their development of CT awareness,
within the direct context of their learning and teaching
activities. We have described our course structure,
incorporating a specific example of how we have
focussed course activities within the teacher’s context,
incorporating a range of learning examples, with varied
tool dependency and integration across multiple existing
knowledge areas.

Our analysis has indicated that this course can assist
teachers in developing their understanding and
confidence in CT and digital technologies. Similar to
previous work that found weaving CT concepts
throughout teacher courses was beneficial (Yadav et al
2011), we also found that unpacking core CT concepts
(e.g. abstraction, algorithms, decomposition) and
programming statements (e.g. functions, iteration) that
featured in the curriculum, with everyday examples and
cross-curriculum connections assisted teachers to
understand and feel more comfortable the new
curriculum. However, our cohort still indicated that the
challenge of new content, and translation requirements
for their immediate teaching context were still of concern,
which is consistent with literature in the area. While we
have provided one resource that addresses the required
development of CT awareness, there is still substantial
effort required not in providing needed resources, but also
in further exploring appropriate pedagogy within the K-6
context. We identify that further research and
development is required in building teaching strategies

through exploring pedagogical research in K-6 digital
technologies education and translating effective pedagogy
to teachers through worked examples (e.g. pair
programming, teamwork, problem-based learning, etc).
Further, following teachers into the classroom to
determine impact of such PD courses in this field is
important.

Findings from the literature state that teachers suggest
computing education PD incorporate online community
networks to support teachers and facilitate the sharing of
resources (ACARA, 2013b; Black et al, 2013; Gander et
al, 2012;). A core, and tentatively successful, aspect of
our course featured the development of a knowledge
sharing community; our future work seeks to evaluate the
community component and the more immediate and long-
term impact use of the community had on teacher support
and implementation.

7 References
ACARA. (2012): The shape of the Australian curriculum:

technologies. Sydney, NSW: ACARA,
http://www.acara.edu.au/curriculum_1/learning_areas/t
echnologies.html, Accessed 17 Aug 2014.

ACARA. (2013): The Australian curriculum:
technologies information sheet. Sydney, NSW:
ACARA,
http://www.acara.edu.au/curriculum_1/learning_areas/t
echnologies.html, Accessed 17 Aug 2014.

Bagge, P (2012) Jam Sandwich Algorithm (programming
teacher bot), Computing At School (CAS), University
of Kent, available online,
http://community.computingatschool.org.uk/resources/
376

Bell, T., Curzon, P., Cutts, Q., Dagiene, V. & Haberman,
B. (2011) 'Introducing students to computer science
with programmes that don't emphasise programming',
Joint conference on Innovation and technology in
computer science education, Darmstadt, Germany.

Bell, T., Newton, H., Andreae, P., & Robins, A. (2012):
The introduction of computer science to NZ high
schools: an analysis of student work. Workshop in
Primary and Secondary Computing Education,
Hamburg, Germany, 5-15.

Black, J., Brodie, J., Curzon, P., Myketiak, C., McOwan,
P., & Meagher, L. (2013): Making computing
interesting to school students: teachers' perspectives.
Proc. ITiCSE, Canterbury, England, 255-260.

Cordova, J., Eaton, V. & Taylor, K. (2011) 'Experiences
in computer science wonderland: a success story with
Alice', Journal of Computing Sciences in Colleges, vol.
26, no. 5, 16- 22.

Curzon, P., McOwan, P., Cutts, Q., & Bell, T. (2009):
Enthusing & inspiring with reusable kinaesthetic
activities. SIGCSE Bulletin 41(3): 94- 98.

de Waard, I., Koutropoulos, A., Özdamar Keskin, N.,
Abajian, S., Hogue, R., Rodriguez, C., et al. (2011)
'Exploring the MOOC format as a pedagogical
approach for mLearning', 10th World Conference on
Mobile and Contextual Learning, Beijing, China.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

71

Department for Education. (2013): The national
curriculum in England. Cheshire, UK: Crown.

Falkner, K, Vivian, R, & Falkner, N. (2014) The
Australian Digital Technologies Curriculum: Challenge
and Opportunity. In Proceedings of ACE 2014.

Gal-Ezer, J., & Stephenson, C. (2009): The current state
of computer science in US high schools: a report from
two national surveys. Journal for Computing Teachers,
Spring: 1- 5.

Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold,
J., McGettrick, A., Boyle, R., Drechsler, M.,
Mendelson, A., Stephenson, C., Ghezzi, C. & Meyer,
B. (2013): Informatics education: Europe cannot afford
to miss the boat ACM Europe: Informatics Education
Report. New York.

Glance, D., Forsey, M. & Riley, M. (2013) 'The
pedagogical foundations of massive open online
courses', First Monday, vol. 18, no. 5- 6.

Ho, A., Reich, J., Nesterko, S., Seaton, D., Mullaney, T.,
Waldo, J., et al. (2014) HarvardX and MITx: The first
year of open online courses, fall 2012- summer 2013,
HarvardX and MITx: The first year of open online
courses (HarvardX and MITx Working Paper No. 1),
Social Science Research Network: Social Science
Electronic Publishing, [online] Available at:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=23
81263

Kleinman, G., Wolf, M. & Frye, D. (2013) The digital
learning transition MOOC for educators: exploring a
scalable approach to professional development,
[online] Available at: http://www.mooc-ed.org/wp-
content/uploads/2013/09/MOOC-Ed-1.pdf

Kop, R., Fournier, H. & Mak, J. (2011) 'A pedagogy of
abundance or a pedagogy to support human beings?
Participant support on Massive Open Online Courses',
International Review of Research in Open and
Distance Learning, vol. 12, no. 7, pp. 74- 93.

Koppi, T., Ogunbona, P., Armarego, J., Bailes, P.,
Hyland, P., McGill, T., et al. (2013) Addressing ICT
curriculum recommendations from surveys of
academics, workplace graduates and employers,
[online] Available at:
http://www.arneia.edu.au/project/37

Lambert, L. & Guiffre, H. (2009) 'Computer science
outreach in an elementary school', Journal of Compter
Science in Colleges, vol. 24, no. 3, pp. 118- 124.

Liu, J., Hasson, E., Barnett, Z. & Zhang, P. (2011) 'A
survey on computer science K-12 outreach: teacher
training programs', Frontiers in Education Conference,
Rapid City, San Diego.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.
(2010): Learning computer science concepts with
scratch. Proc. International workshop on computing
education research, Denmark, 69- 76.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.
(2011): Habits of programming in scratch. Proc.
ITiCSE, Germany, 168- 172.

Myketiak, C., Curzon, P., Black, J., McOwan, P. &
Meagher, L. (2012) 'cs4fn: a flexible model for

computer science outreach', Innovation and technology
in computer science education, pp. 297- 302, ACM,
Haifa, Israel.

Ragonis, N., Hazzan, O., & Gal-Ezer, J. (2010): A survey
of computer science teacher preparation programs in
Israel tells us: computer science deserves a designated
high school teacher preparation! Proc. ACM technical
symposium on computer science education, 401- 405.

Roberts, G. (2012) OpenLine project: final report,
Oxford Brookes University, [online] Available at:
http://openbrookes.net/firststeps12/files/2012/08/Open
Linefinalreport2012-08-10_merged.pdf

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D.,
O'Grady-Cunniff, D., . . . Verno, A. (2011): CSTA K-
12 computer science standards The CSTA Standards
Task Force. New York: Computer Science Teachers
Association, Association for Computing Machinery.

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson,
C., Rennert-May, C., & Wildeman, B. (2012): Infusing
computational thinking into the middle-and high-
school curriculum. Proc. ITiCSE, Haifa, Israel, 22- 27.

Siemens, G. (2012), 'MOOCs are really a platform'
ELearnspace, [online] Available at:
http://www.elearnspace.org/blog/2012/07/25/moocs-
are-really-a-platform/

The Royal Society. (2012): Shut down or restart? The
way forward for computing in UK schools. London.

Tinapple, D., Sadauskas, J., & Olson, L. (2013): Digital
culture creative classrooms (DC3): teaching 21st
century proficiencies in high schools by engaging
students in creative digital projects. Proc. International
Conference on Interaction Design and Children, New
York, 380- 383.

Tunstall, R (2013), Tunstall’s Teaching Tidbits, available
online,
http://tunstalltimes.blogspot.com.au/2013/05/five-for-
friday-holla.html

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., &
Korb, J. T. (2011). Introducing computational thinking
in education courses. In Proceedings of the 42nd ACM
technical symposium on Computer science education -
SIGCSE ’11 (p. 465). New York, New York, USA:
ACM Press. doi:10.1145/1953163.1953297

CRPIT Volume 160 - Computing Education 2015

72

Why Don't More ICT Students Do PhDs?

Cally Guerin1*, Asangi Jayatilaka2, Paul Calder3, Alistair McCulloch4, Damith Ranasinghe2

1
 School of Education / University of Adelaide, Adelaide, Australia

2
 School of Computer Science / University of Adelaide, Adelaide, Australia

3
 School of Computer Science, Engineering, and Mathemat ics / Flinders University, Adelaide, Australia

4
 Research Education (Learn ing and Teaching Unit) / University of South Australia, Adelaide, Australia

* cally.guerin@adelaide.edu.au

Abstract

Compared to many other disciplines, ICT has relat ively

few students choosing to continue into doctoral studies.

We have explored some of the perceived barriers to

undertaking doctoral studies in ICT in three Australian

universities. Current students were surveyed to establish

their post-course intentions regarding employment and

further study. Their reasons for not choosing to go onto

research degrees were linked largely to concerns about

the financial implications of such study and a limited

understanding of what research in ICT involves. We

recommend that ICT students be given accurate

informat ion about the costs involved, that students have

authentic undergraduate experiences of research, and that

smooth pathways be developed to allow students to return

to doctoral studies after working in industry.
.

Keywords: Information and Communication Technology

(ICT); doctoral education; motivations; barriers.

1 Introduction

Despite increasing focus on doctoral-level education and

the doctoral graduates produced by higher education

institutions, relatively few ICT bachelor graduates from

Australian universities choose to undertake doctoral

studies compared to most other STEM disciplines

(Graduate Careers Australia 2013). This paper seeks to

uncover and exp lore some of the barriers to doctoral

studies in ICT, in order to better understand why this is a

relatively unattractive option to many potentially suitable

graduates when compared to the situation in other

disciplines.

Previous research has identified five factors

influencing decisions to embark on doctoral studies

across all faculties: family and friends, intrinsic

motivation, lecturer influence, research experience, and

career progression (Guerin et al., 2014). In Engineering

more specifically, the reasons for continuing into a PhD

are based on a genuine interest in the topic, often inspired

by positive undergraduate experiences of engaging with

active research (Guerin and Ranasinghe 2010, Jiang and

Loui 2012). Baytiyeh and Naja (2011) identify

professional attitude, social attitude, financial attitude and

subjective norm as factors influencing choices regarding

Copyright © 2015, Australian Computer Society, Inc. This paper
appeared at the 17th Australasian Computing Education Conference

(ACE 2015), Sydney, Australia, January 2015. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 160. D. D’Souza
and K. Falkner, Eds. Reproduction for academic, not -for-profit
purposes permitted provided this text is included.

PhD study for engineering graduates; Jiang and Loui

(2012) add the sense of attachment to the university

department as another important influence in th is decision

making. While a clearer picture about the motivations

underpinning students’ decisions to undertake research

degrees is starting to develop, very little has been

published relating to the barriers to continuing study.

Although Crede and Borrego (2011) comment briefly on

barriers for Engineering students more generally, reliab le

informat ion relating to ICT specifically appears to be

virtually non-existent. As has been found when

attempting to encourage greater participation in

undergraduate education, understanding these barriers is

important for policy makers and universities to develop

appropriate strategies for reducing or removing them

(Gorard 2006). A recent review of research into access to

doctoral education reveals that there is little research into

the barriers to students continuing to postgraduate

degrees of any sort (McCulloch and Thomas 2013) and

this current project, involving students at three Australian

universities, goes some way towards addressing that

knowledge gap through a specific focus on ICT.

2 Method

The current paper asks: what are the barriers for ICT

students moving into study for a research degree? To the

best of our knowledge, there is no relevant questionnaire

readily availab le to conduct our investigation. Therefore,

a questionnaire was designed to identify the level o f

interest in pursuing a research degree and the

barriers/motivations relevant to those decisions amongst

current undergraduate and Honours/Masters students.

2.1 The Questionnaire

The complete questionnaire contained three main

sections. Section 1 contained four statements regarding

students’ intentions after completing their current degree,

that is, whether they intended to leave higher education or

continue studying (in a different undergraduate degree, in

a Masters by coursework degree, or in a research degree).

Section 2 contained 13 statements regarding possible

barriers to undertaking a research degree. The third

section contained 17 statements regarding possible

motivations for undertaking a research degree.

Respondents were asked to answer Section 1 and

either Section 2 or 3. In each section, they were asked to

respond to statements on a 7-point Likert scale with

responses ranging from 1 (strongly disagree) to 7

(strongly agree). In addition to the closed questions,

respondents were also invited to provide qualitative

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

73

comments at the end of each section. The focus of this

paper is on responses to Section 2, which investigated the

reasons students identified for not choosing to continue

into research degrees.

2.2 Questionnaire Design

Since there is no existing research that focuses directly on

the barriers for pursuing a research degree, we used

related studies to develop a questionnaire. The main

sources for this are Park et al. (2010), who have discussed

barriers to undertaking research degrees in medical

science. We also used the insights of Naturalistic

Decision Making (NDM) (Klein, 2008), part icularly in

relation to the influence of “past experience” in decision

making. Finally, the researchers’ domain knowledge

gained from extensive experience of the sector was used

to inform the questionnaire design. In summary, the

questionnaire items were based on five main themes: 1)

Financial reasons (4 questions); 2) Attitude (2 questions);

3) Value for degree (2 questions); 4) Lack of awareness

(3 questions); and 5) Past experience (2 questions).

Participants were invited to indicate the strength of the

influence of each element on a 7-point Likert scale,

ranging from 1 (not at all) to 7 (a lot). Respondents were

also invited to provide comments at the end of each

section. Respondents were invited to answer Section 1

and either Section 2 or 3. Here we report on the reasons

students identified for choosing not to continue into

research degrees.

2.3 Survey Administration and Participants

The three universities involved in this study have

different histories, and different strategic and research

priorities. They represent three different types of

universities: University One is a member of the Group of

8 (Go8) lead ing research-intensive universities;

University Two is part of the Australian Technology

Network (ATN) that focuses on the practical application

of tertiary education; and University Three is an

Innovative Research University (IRU), a collaboration

that comprises research universities established more

recently than the Go8 group.

Human Research Ethics approval was granted by each

of the three universities and hard copies of the survey

were handed out in ICT final year undergraduate and

Honours/Masters classes. Altogether 172 responses were

received. All the respondents answered Section 1

regarding intentions following graduation, and 136

respondents answered Section 2 regarding barriers to

undertaking a research degree.

2.4 Overview of the Analysis

Two approaches have been taken to analysing the data

gathered in the survey. Firstly, we conducted an overall

analysis of the responses (regarding post-course

intentions and barriers fo r pursuing a research degree)

using descriptive statistics and then explored the reasons

for those decisions in closer detail according to

differences between university types (Go8, ATN and

IRU). Secondly, an Exploratory Factor Analysis was

undertaken to investigate the underlying structure of

factors that are perceived by students to be potential

barriers to continue studying in a research degree.

2.5 Preliminary Analysis: Descriptive Statistics

An initial evaluation of the dataset resulted in the

elimination of seven respondents who had completed less

than 75% of the questionnaire. For all other respondents,

missing scale items were imputed by determin ing the

mean for the items on the scale (an appropriate data

replacement strategy when less than 5% of data is

missing) (Tabachnick & Fidell, 2007). No outliers were

found for Section 1; one outlier was detected and

removed from Section 2. Descriptive statistics regarding

demographic characteristics of all respondents, including

details of gender, nationality, age, current university and

levels of study, are presented in Table 1. We have

 University One University Two University Three Total

P
o

st
-c

o
u

rs
e

in
te

n
ti

o
n

s

B
ar

ri
er

s
to

d
o

ct
o

ra
l

st
u

d
y

P
o

st
-c

o
u

rs
e

in
te

n
ti

o
n

s

B
ar

ri
er

s
to

d
o

ct
o

ra
l

st
u

d
y

P
o

st
-c

o
u

rs
e

in
te

n
ti

o
n

s

B
ar

ri
er

s
to

d
o

ct
o

ra
l

st
u

d
y

P
o

st
-c

o
u

rs
e

in
te

n
ti

o
n

s

B
ar

ri
er

s
to

d
o

ct
o

ra
l

st
u

d
y

 % % % % % % % %

 n=99 n=79 n=45 n=37 n=21 n=17 n=165 n=133

Gender
Male 88 89 84 86 90 88 87 88

Female 12 11 16 14 10 12 13 12

Nationality
Australian 47 37 60 59 89 88 55 56

International 53 63 40 41 21 12 45 44

Age

21-25 76 80 74 79 67 71 74 78

26-30 19 16 20 16 14 6 19 15

Over 31 5 4 6 5 19 23 7 7

Level of

Study

Final Year U/grad 37 37 67 76 62 71 48 52

Honors/Masters 63 63 33 24 38 29 52 48

Table 1: Descriptive statistics for respondents

CRPIT Volume 160 - Computing Education 2015

74

interpreted responses of 5, 6 and 7 as indicating broad

agreement with the statement, whereas 1, 2 and 3 indicate

broad disagreement.

The data satisfy the assumption of homoscedasticity,

therefore t-tests could be carried out. In line with the

central limit theorem, means of samples from a

population with finite variance approach a normal

distribution regardless of the distribution of the

population. Provided the sample size is at least 30, we can

assume that sample means are normally d istributed.

Given our s mallest sample size for a t-test is 44,

assumptions of normality are satisfied.

2.6 Exploratory Factor Analysis

Exploratory Factor Analysis (EFA) was used to

investigate the underlying structure of factors that are

perceived by current final year undergraduate and

Honours/Masters students to be potential barriers to

continue studying in a research degree. EFA is used to

reduce a large number of variables into a smaller set of

variables (also referred to as factors) and, as its name

suggests, it is exploratory in nature and has the advantage

of having no expectations of the number or the nature of

the factors. Therefore, it is not expected that the themes

identified in the questionnaire development stage would

necessarily emerge as distinct factors in the EFA.

Nevertheless, the results obtained through EFA enable

identification of the most important factors for not

continuing into a research degree.

3 Post-course intentions

Table 2 shows the respondents’ intentions following

complet ion of their current undergraduate/Masters degree

with most (78%) intending to leave the university system

for employment after completion of their current degree.

The most common response for this statement was 7 on

the Likert scale. The statement “continue studying in a

different undergraduate degree” received the lowest

percentage for broad agreement (12%) with the most

common response being 1 on the Likert scale. “Continue

studying in a Masters coursework degree” (25%) and

“continue studying in a research degree” (27%) received

similar levels of b road agreement. However, these

options were not interpreted by the respondents as being

absolutely mutually exclusive, demonstrating the

potentially flu id nature of post-graduation decision-

making, with 13% of respondents being in broad

agreement with both the possibility of pursuing a Masters

by coursework degree and also the possibility of pursuing

a research degree. This flu idity is also demonstrated by

the fact that 17% of respondents were in broad agreement

with both “I want to leave the university and get a job”

and “Continue studying in a research degree”. Fluid ity in

intention (and thus decision-making) is something that

comes through the results fairly consistently and has

implications for both policy makers and university

administrators.

Table 2 also shows that the majority of the students in

all three institutions plan to leave the university and find a

job after completing their current degree (S1).

Interestingly, while 14% of students from both the Go8

and IRU universities broadly agreed to the possibility of

continuing studying in a different undergraduate course

(S2), just 4% of students from the ATN university

indicated this intention. Although the responses here are

from institutions with different emphases on research,

M
ea

n

S
td

.
D

ev
ia

ti
o

n

S
td

.
E

rr
o

r
M

ea
n

M
o

d
e

O
v

er
al

l
(n

=
1

6
5

)

U
n

iv
er

si
ty

 O
n

e
G

o
8

(n

=
9

9
)

U
n

iv
er

si
ty

 T
w

o

A
T

N
 (

n
=

4
5

)

U
n

iv
er

si
ty

 T
h

re
e

IR
U

(n

=
2

1
)

S1
I want to leave the
University and get a job 5

.5
4

1
.8

7

0
.1

5

7

%Disagree 15 15 13 14

%Neutral 7 5 11 10

%Agree 78 80 76 76

S2

Continue studying in a

different undergrad

course
2

.3
9

1
.6

3

0
.1

3

1

%Disagree 84 72 87 76

%Neutral 5 14 9 10

%Agree 12 14 4 14

S3

Continue studying in a

Masters by course work

degree

3
.2

3

1
.7

1

0
.1

3

1

%Disagree 62 51 60 67

%Neutral 13 25 16 5

%Agree 25 24 24 29

S4
Continue studying in

research degree 3
.5

8

1
.8

2

0
.1

4

4

%Disagree 57 48 60 57

%Neutral 16 24 16 10

%Agree 27 27 24 33

Table 2: Post-course intentions

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

75

similar percentages of students intended to continue

studying in a research degree (S4): University One (Go8)

27%, University Two (ATN) 24% and University Three

(IRU) 33%. Not all have decided on their next step,

though: 24% of students from University One, 16% from

University Two and 10% from University Three remain

uncertain about pursuing a research degree. While such

uncertainty in ICT areas is considerably less than that

found by Shaw et al. (2013) in a cross-institutional study

of Honours students in all faculties (which stood at one

third of students), this level of uncertainty supports the

earlier contention that the decision-making process

regarding research degrees is not static but fluid.

M
e
an

S
td

. D
ev

ia
ti
o

n

S
td

. E
rr

o
r

M
ea

n

M
o
d

e

O
v

er
al

l
(n

=
1
3

3
)

U
n

iv
er

si
ty

 O
n

e
(n

=
7

9
)

U
n

iv
er

si
ty

 T
w

o
 (

n
=
3

7
)

U
n

iv
er

si
ty

 T
h
re

e
(n

=
1
7
)

S1 I want to start earning money 5
.7

1

0
.1

5

1
.6

9

7

%Disagree 12 15 8 6

%Neutral 3 4 3 0

%Agree 85 81 89 94

S2
I don’t expect high enough
grades 3

.5
5

0
.1

7

2
.0

0

1

%Disagree 47 46 49 53

%Neutral 19 21 22 0

%Agree 34 33 30 47

S3 I never thought about it 3
.2

6

0
.1

5

1
.7

3

2

%Disagree 66 59 54 65

%Neutral 13 24 16 12

%Agree 21 17 30 23

S4
I don’t really know what it
would involve 3

.9
0

0
.1

4

1
.6

6

5

%Disagree 41 46 35 29

%Neutral 21 21 27 6

%Agree 38 33 38 65

S5
I don’t know anything about
research 3

.3
8

0
.1

5

1
.6

9

2

%Disagree 56 65 38 59

%Neutral 13 10 22 6

%Agree 31 25 41 35

S6
I think research will be
boring 3

.8
1

0
.1

5

1
.7

6

5

%Disagree 41 40 41 47

%Neutral 20 19 27 12

%Agree 38 41 32 41

S7
I think research would be too

difficult 3
.7

4

0
.1

4

1
.5

9

4

%Disagree 41 46 32 41

%Neutral 26 20 35 35

%Agree 32 34 32 24

S8
I’m tired of studying and

want a change 5
.1

1

0
.1

5

1
.7

5

6

%Disagree 20 24 11 18

%Neutral 13 15 8 12

%Agree 68 61 81 70

S9
I think fees might be too
expensive 4

.2
0

0
.1

6

1
.8

6

4

%Disagree 32 33 24 41

%Neutral 31 33 30 24

%Agree 38 34 46 35

S10
I don’t want to add to my
fee/help debt 4

.1
5

0
.1

7

1
.9

5

4

%Disagree 38 37 35 53

%Neutral 18 20 19 6

%Agree 44 43 46 41

S11
I think scholarships are too
small to live on 4

.1
4

0
.1

3

1
.4

9

4

%Disagree 24 29 19 12

%Neutral 44 39 49 53

%Agree 32 32 32 35

S12
I think employers don't want
people who are too highly
qualified

3
.7

8

0
.1

5

1
.7

6

4

%Disagree 38 38 32 47

%Neutral 32 33 27 41

%Agree 30 29 41 12

S13
I don't want to work in a
university, so do not need a
PhD

3
.8

2

0
.1

6

1
.7

9

4

%Disagree 38 41 27 47

%Neutral 28 24 32 35

%Agree 35 35 41 18

Table 3: Barriers to pursuing a research degree

CRPIT Volume 160 - Computing Education 2015

76

4 Barriers to doctoral study

The reasons for deciding not to continue studying in a

research degree are shown in Table 3. The most common

reason given was the desire to start earning money (S1)

with 85% of respondents being in broad agreement with

this statement, and most commonly representing this at 7

on the Likert scale. This was followed by being tired of

studying and wanting a change (67% of respondents),

which most commonly scored 6.

The least common response in this section was “I

never thought about it” (21% in broad agreement), while

two thirds (66%) were in broad disagreement with this

statement. This suggests that many of the respondents

have considered embarking on a research degree, but

decided against it. Interestingly, 38% of respondents

expressed broad agreement with the statement “I don’t

really know what it would involve” and that 31% of

respondents were in broad agreement with “I don’t know

anything about research”. Perhaps students do not

consider the possibility of undertaking research because

of a lack of knowledge or understanding about what form

that might take in ICT.

4.1 Effect of Institution

Comparing results between universities reveals some

interesting patterns (Table 3). The most common barrier

to pursuing a research degree for all institutions was

overwhelmingly the desire (or need) to earn money, in

line with the findings of Crede and Borrego (2011) that

financial reasons pose a major barrier to postgraduate

study in the US context. Some students (especially those

from ATN University Two) also seem to believe that

employers may not want people who are too highly

qualified (S12). A higher percentage (65%) of the IRU

University Three students were in broad agreement that

they do not know what research would really involve

compared to the students of Go8 University One (33%)

and students of University Two (38%); in a possibly

related finding, a h igher proportion of University Three

students thought their grades would not be high enough to

allow them to pursue doctoral study. When added to those

students at Universities Two and Three who report a lack

of knowledge about research being a barrier, this may

indicate that options for postgraduate study in ICT are not

presented effectively at any of the three institutions

studied here, regardless of the broader institution’s

priorities regarding research. Furthermore, 80% of

students at the ATN, 70% of the students at the IRU and

61% of students at the Go8 university were in broad

agreement that they are tired of studying and want a

change.

5 Factors influencing decisions not to pursue

research degrees

In seeking to uncover the underlying structure of the

barriers to undertaking a research degree, we conducted

an Exploratory Factor Analysis. This involves a series of

sequential steps (e.g., selection of the number of factors,

selection of the factor rotation method) that also involve

evaluating mult iple options. This procedure is exp lained

in detail in our previous work (Guerin et al., 2014).

Although sample size is important in factor analysis,

there is no agreement as to the optimum or minimum

number and a variety of opinions can be found in the

literature. Hair et al. (1995) suggest that sample sizes

should be 100 or greater. For Comrey and Lee (1992),

200 is seen as a fair sample size. However, MacCallum et

al. (1999) take the view that such rules of thumb can be

misleading, exp laining that they often fail to take into

account the complex dynamics of a factor analysis. As an

example, when communalities are high (greater than .60)

and each factor is defined by several items, appropriate

minimum sample sizes can actually be relat ively small

(Henson, 2006). In our study, as presented in Table 4,

most of the communality values are greater than 0.6. It is

also worth noting that Sapnas and Zeller (2002) point out

that even as few as 50 cases may be adequate for factor

analysis.

The ratio of subject-to-variable is an important aspect

to be considered before conducting an EFA. When total

sample size increases, this ratio becomes less important;

on the other hand, the subject-to-variable matters more

when the sample size is relatively low (Osborne &

Costello, 2004). Further, for a large sample size or large

ratio, the results will be more reliable (Osborne &

Costello, 2004). In our study, even though the sample size

was 133, a significant case-to-variable ratio of

approximately 10:1 was present, allowing us to make

strong claims from the data.

The correlation matrix was inspected for correlations

in excess of 0.3. The literature warns that, if no

correlation exceeds this, the applicability of factor

analysis should be reconsidered (Tabachnick & Fidell,

2007). The Kaiser-Meyer-Olkin measure of sampling

adequacy tests whether the partial correlations among

variables are s mall and this was 0.65, above the

recommended value of 0.6 (Hair et al., 2009). Bart lett’s

test of Sphericity tests whether the correlation matrix is

an identity matrix, hence can be used to determine

whether the factor model is appropriate. This value was

significant (p<0.05) (c
2

= 443.1, df=78, Sig.=0.000),

indicating the possibility of using factor analysis with the

data.

For the 13 items used in the questionnaire, a Principal

Component Analysis (PCA) was conducted. To

determine the number of factors to retain, we used

Parallel Analysis (PA). In recent research, PA is often

recommended as the best method to assess the number of

factors (Lance, 2006; O’Connor, 2000; Velicer et al.,

2000). PA takes into account sampling error and retains

factors when actual eigenvalues surpass random ordered

eigenvalues. Parallel Analysis indicated that four factors

should be retained. Initially, the four factors accounted

for approximately 61% of the total variance; this is in line

with the heuristic recommended by Hair et al. (2009),

which states more than 50% of the variance should be

explained by the retained factors.

Factor rotation maximises high item loadings and

minimises low item loadings, therefore producing a more

interpretable and simplified solution. As suggested by

Tabachnick and Fiddell (2007), we undertook an oblique

rotation first and inspected the correlation of factors.

Since no correlat ion exceeds the threshold of 0.32,

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

77

varimax rotation was used. To further simplify

interpretation and develop an efficient measure, only

those items that loaded highly and uniquely on each

factor were retained. Thus, we omitted items that loaded

less than 0.4 on all the factors and the items that cross-

loaded on more than one factor. Item 2 (I don’t expect

high enough grades to go on to a research degree) failed

to load highly on any of the factors. Item 3 (I never

thought about it) and item 6 (I think research would be

boring) cross-loaded on more than one factor.

Four factors emerged from the analysis: 1) Finance; 2)

Perceptions of research; 3) Desire for change; and 4)

Career orientation. The rotated component matrix and the

communality values are presented in Table 4. The four

factors accounted for 26%, 18%, 13%. and 11% of the

total variance, respectively. Internal consistency was

measured using Cronbach’s alpha (Cronbach, 1951). The

alpha values for the factors were 0.8, 0.7, 0.6, 0.5,

respectively. Cronbach’s alpha is grounded on the theory

of the ‘tau equivalent model’ which assumes that each test

item measures the same latent trait on the same scale

(Tavakol & Dennick 2011). The alpha value can be over-

or under-estimated based on the test length. Our previous

work (Guerin et al. 2014) exp lains the dynamics of

Cronbach’s alpha value in detail. Loewenthal (2001) has

stated that a high alpha level is unlikely with a small

number of items (test length of Factor 3 and Factor 4 is

two). Nevertheless, we can consider accepting lower

alpha values if there are good theoretical and/or practical

reasons for all items in a given dimension, and the

number of items in that dimension is small (less than

about 10 items).

Following an exploratory factor analysis, factor scores

may be computed and used in subsequent analyses. A

factor score is a numerical value that is meant to indicate

a person’s relative spacing or standing on a latent factor.

Therefore, factor scores were computed for every

participant based on Bartlett factor coefficients. The

Bart lett method is considered to be a redefined method of

computing factor scores. Redefined methods aim to

maximize validity by producing factor scores that are

highly correlated with a given factor and also attempt to

maintain the existing relat ionships between factors. In

order to identify whether there are any significant

differences among the four factors and to identify the

most important factor, repeated measures ANOVA

(Analysis of Variance) was carried out.

Basically, ANOVA provides a statistical test to determine

if the means of several groups are equal or not. This can

be seen as a generalizat ion of the t-test for more than two

groups. The reason for carrying out a repeated measures

ANOVA test as opposed to multiple t-tests is as follows.

Every time one conducts a t-test there is chance of

making a type 1 error that corresponds to the confidence

interval. Therefore, when more hypothesis tests are

carried out, there can be more risk of making a Type 1

error and the power of the test can be significantly

reduced. However, the ANOVA test controls these errors

and the Type 1 error remains at 5%.

Repeated measures of ANOVA indicated significant

differences among the four factor scores (F(3,396)=39.41,

p<0.05). The ‘Change orientation’ was shown as the most

important for the participants (mean=5.7). This was

followed by the ‘Perception of research’ factor

(mean=4.3), ‘Financial Factor’ (mean=4.1) and the

‘Career Orientation Factor’ (mean=3.6). However,

repeated measures of ANOVA do not indicate where

these differences occur exactly. Therefore, we conducted

a post hoc test using the Bonferroni technique which

indicated significance (p<0.05) differences between

‘Change Orientation’ and all other factors.

6 Discussion and Conclusions

The results reveal interesting variations and similarities

across the university groups considered in this study. The

large majority of students surveyed across the three

universities intended to leave the university system and

find a job on completing their current undergraduate or

Masters degree. Their readiness in expecting to be able to

get a job suggests that these students believe their

qualifications will be adequate and that there are

reasonable employment prospects available to them.

Indeed, some evidently think that a further qualification

might render them less attractive in the eyes of some

employers. However, around a quarter did express an

interest in continuing into a research degree, the highest

proportion of these being at the Innovative Research

University institution (University Three), with the

Australian Technology Network and Group of Eight

institutions having lower (but similar) proportions

considering this option.

There was also a group of students (17%) who were

interested in both leaving university and starting to earn

and also possibly pursuing a research degree. Two

Items 1 2 3 4 h2

I think fees might be
too expensive

0.877 0.789

I don't want to add to

my fee/help debt
0.871 0.759

I think scholarships
are too small

0.756 0.631

I don’t really know

what it would involve
 0.832 0.732

I don’t know anything
about research

 0.854 0.763

I think research would

be too difficult
 0.602 0.399

I want to start earning
money

 0.734 0.714

I'm tired of studying
and want a change

 0.884 0.809

I think employers don't
want people who are

too highly qualified
 0.734 0.629

I don't want to work in
an university, so do
not need a PhD

 0.811 0.699

Table 4: Factor loadings (EFA through the

principal component analysis with varimax

rotation).

Notes: values < 0.4 are suppressed; Abbreviations: h2 =

Communality; Factor 1=Finance; Factor 2=Perceptions of

research; Factor 3=Desire for change; Factor 4=Career

orientation.

CRPIT Volume 160 - Computing Education 2015

78

important tentative conclusions can be drawn from this

finding. Firstly, these may be the individuals who are

most likely to come back to study after a period of

working in industry (Baytiyeh and Naja (2011). If this is

so, the data suggest that universities would be wise to

create easy pathways for such “returners” (Peters and

Daly 2013) to re-enter the university system as doctoral

candidates; universities should also actively promote this

possibility to undergraduates and coursework Masters

students.

The second conclusion (and this is supported by a

broader range of data as is reported earlier in the paper) is

that students’ decision-making about undertaking a

research degree is something which is fluid rather than

fixed. There is evidence in the responses that some

students are not interested in undertaking a research

degree because they are not sure what ‘research’

involves. Approximately one third of respondents

expressed uncertainty about the form this could take in

ICT, and we believe students would benefit from hearing

more about their lecturers’ own research experience and

research projects, as well as the cutting-edge research

being undertaken in their areas . Again, the EFA identified

that ICT students’ perception of research was an

important barrier to choosing the research pathway on

complet ing their current degrees. Other studies have

shown that positive undergraduate experiences of

research can influence the choices students make in this

regard in related fields (Guerin and Ranasinghe 2010).

Because students are expressing a degree of fluidity in

their decision-making regarding research degrees,

universities would be well advised to make sure that

undergraduates understand the nature of research in their

disciplines, think of research as a legitimate career path,

and know how to pursue such a course of action. The

widening participation discourse has promoted this

approach in undergraduate education; it is time to apply

these insights to doctoral study (McCulloch and Thomas

2013). This type of activity would also contribute to

strengthening the teaching–research nexus that has been

the subject of considerable discussion in higher education

over the last decade (Jenkins et al. 2003, Barnett 2005,

Brew 2006, Healey and Jenkins 2006, Simons and Elen

2007, Verburgh et al. 2007, Trowler and Wareham 2008,

Brew 2010).

To conclude, the vast majority of students in ICT

want to move into the workforce on completing their

degrees rather than continuing into research degrees. This

may be motivated largely by a desire to start earning

money, but there is evidence here (mirroring that found

by Crede and Borrego (2011)) that many also find their

courses demanding and feel that they need a break from

study. Many identify that they are tired of studying and

want a change. This is reflected by the high means as a

whole in Table 3 (I want to earn money at 5.71; I’m t ired

of studying at 5.11) and is further supported by the EFA

that not only links these two elements as one of the

factors, but also indicates that this is the most important

factor in the decision-making of th is group.

Nevertheless, there is clearly a substantial group who

are interested in pursuing a research degree after a break

from h igher education; ICT departments should make it

clear to undergraduate students that this is a possibility,

and should also find ways to create smooth pathways

back into study for this group. This is particularly

important in view of the fluidity in decision-making that

we have identified here.

The experiences students have of research during their

undergraduate study may be the inspiration that brings

them back to study later in their careers. If research can

establish what motivates ICT students to continue their

studies, including what kinds of undergraduate

experience of the teaching–research nexus might

influence their decisions, we will be in a good position to

support greater numbers of students to pursue research

degrees in ICT.

7 Acknowledgements

The authors wish to gratefully acknowledge the support

of the Australian Council of Deans of ICT (ACDICT)

Learn ing and Teaching grant (ALTA) which made this

research possible.

8 References

Barnett, R. (Ed.). (2005). Reshaping the university: New

relationships between research, scholarship and

teaching. McGraw-Hill Education/Open

University Press.

Baytiyeh, H. and Naja, M.K. (2011). Contributing factors

in pursuit of a phd in engineering: The case of

Lebanon. The International Journal Of

Engineering Education, 27 (2): 422–430.

Brew, A. (2006). Research and teaching. Palgrave

Macmillan.

Brew, A. (2010). Imperatives and challenges in

integrating teaching and research. Higher

Education Research & Development , 29 (2):

139–150.

Comrey, A.L. and Lee, H.B. (1992). A first course in

factor analysis. L. Erlbaum Associates.

Crede, E. and Borrego, M.J. (2011). Undergraduate

engineering student perceptions of graduate

school and the decision to enroll. American

Society for Engineering Education.

Cronbach, L.J. (1951). Coefficient alpha and the internal

structure of tests. Psychometrika, 16(3): 297–

334.

Gorard, S. (2006). Review of widening participation

research: Addressing the barriers to

participation in higher education: A report to

HEFCE by the University of York, higher

education academy and institute for access

studies: HEFCE.

Graduate Careers Australia (2013). GCA home page

[online]. Graduate Careers Australia. Availab le

from: http://www.graduatecareers.com.au

[Accessed Access Date 24 August 2014].

Guerin, C. and Ranasinghe, D. (2010). Why I wanted

more: Inspirational experiences of the teaching-

research nexus for engineering undergraduates.

University Teaching & Learning Practice, 7(2)

Available: http://ro.uow.edu.au/jutlp/vol7/iss2/8.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

79

Guerin, C., Jayatilaka, A. and Ranasinghe, D. (2014).

Why start a higher degree by research? An

exploratory factor analysis of motivations to

undertake doctoral studies. Higher Education

Research & Development (HERD). DOI:

10.1080/07294360.2014.934663..

Hair, J.F., Black, W.C., Bab in, B.J., and Anderson, R.E.

(1995; 2009). Multivariate data analysis (7th

ed.). Prentice Hall.

Healey, M. and Jenkins, A. (2006). Strengthening the

teaching-research linkage in undergraduate

courses and programs. New Directions for

Teaching and Learning, 107, 43–53.

Henson, R.K. (2006). Use of exploratory factor analysis

in published research: Common errors and some

comment on improved practice. Educational and

Psychological Measurement, 66(3), 393–416.

Jenkins, A., Breen, R. and Lindsay, R. (2003). Reshaping

teaching in higher education: Linking teaching

with research. London: SEDA and Routledge.

Jiang, A. and Loui, M.C. (2012). What should I do next?

How advanced engineering students decide their

post-baccalaureate plans. Frontiers in Education

Conference (FIE). Seattle, 3-6 October 2012:

IEEE, 1-6.

Klein, G. (2008). Naturalistic decision making. Human

Factors. The Journal of the Human Factors and

Ergonomics Society, 50(3): 456–460.

Lance, C.E. (2006). The sources of four commonly

reported cutoff criteria: What did they really

say? Organizational Research Methods, 9(2),

202–220.

Loewenthal, K.M. 2001. An introduction to psychological

tests and scales. Psychology Press.

O’Connor, B.P. (2000). SPSS and SAS programs fo r

determining the number o f components using

parallel analysis and velicer’s MAP test.

Behavior Research Methods, Instruments, &

Computers. Journal of the Psychonomic Society,

32(3), 396–402.

Osborne, J.W., and Costello, A.B. (2004). Sample size

and subject to item ratio in principal components

analysis. Practical Assessment, Research &

Evaluation, 9(11).

MacCallum, R. C., W idaman, K. F., Zhang, S., and Hong,

S. (1999). Sample size in factor analysis.

Psychological Methods, 4(1): 84–99.

McCulloch, A. and Thomas, L. (2013). Widening

participation to doctoral education and research

degrees: A research agenda for an emerging

policy issue. Higher Education Research &

Development, 32(2): 214–227.

Osborne, J.W., and Costello, A.B. (2004). Sample size

and subject to item ratio in principal components

analysis. Practical Assessment, Research &

Evaluation, 9(11).

Peters, D.L. and Daly, S.R. (2013). Returning to graduate

school: Expectations of success, values of the

degree, and managing the costs. Journal of

Engineering Education, 102(2), 244–268.

Sapnas, K. G., and Zeller, R. A. (2002). Min imizing

Sample Size When Using Exploratory Factor

Analysis for Measurement. Journal of Nursing

Measurement, 10(2): 135–154.

Shaw, K., Holbrook, A. and Bourke, S. (2013). Student

experience of final-year undergraduate research

projects: An exploration of ‘research

preparedness’. Studies in Higher Education ,

38(5): 711–727.

Simons, M. and Elen, J. (2007). The ‘research–teaching

nexus’ and ‘education through research’: An

exploration of ambivalences. Studies in Higher

Education, 32(5): 617–631.

Tabachnick, B.G., & Fidell, L.S. (2007). Using

multivariate statistics (5th ed.). Boston, MA:

Allyn and Bacon.

Tavakol, M., & Dennick, R. (2011). Making sense of

Cronbach’s alpha. International Journal of

Medical Education, 2: 53–55.

Trowler, P. & Wareham, T., 2008. Tribes, territories,

research and teaching enhancing the teaching-

research nexus. York: The Higher Education

Academy.

Velicer, W., Eaton, C., & Fava, J. (2000). Construct

explication through factor or component

analysis: A review and evaluation of alternative

procedures for determining the number of

factors or components. New York, NY, US:

Kluwer Academic/Plenum Publishers. Retrieved

January 19, 2014, from

http://ezproxy.library.yorku.ca/login?url=http://s

earch.proquest.com/docview/619671749?accoun

tid=15182

Verburgh, A., Elen, J. & Lindblom-Ylänne, S. (2007).

Investigating the myth of the relationship

between teaching and research in higher

education: A review of empirical research.

Studies in Philosophy and Education , 26(5):

449–465.

CRPIT Volume 160 - Computing Education 2015

80

Teaching in First-Year ICT Education in Australia: Research and
Practice

 Michael Morgan Judy Sheard Matthew Butler
 Monash University Monash University Monash University
 Australia Australia Australia
 michael.morgan@monash.edu judy.sheard@monash.edu matthew.butler@monash.edu

 Katrina Falkner Simon Amali Weerasinghe
 University of Adelaide University of Newcastle University of Adelaide
 Australia Australia Australia
katrina.falkner@adelaide.edu.au simon@newcastle.edu.au amali.weerasinghe@adelaide.edu.au

Abstract
This paper details current research and teaching practice
for first-year Information and Communications
Technology (ICT) students at Australian universities. The
project aims to record and disseminate good practice in
first-year ICT teaching in Australia. The aim of the paper
is to examine how academics are addressing the challenge
of engaging first-year ICT students in the learning
process. Two sources of data are used, a systematic
survey of research literature from the last five years and
detailed interviews of 30 academics involved in first-year
teaching duties. Academics from 25 Australian
universities represented a range of universities, including
six from the Go8 group, three from the ATN group, and
five from the IRU group. The paper highlights current
areas of research, any gaps in the research literature,
examples of current good teaching practices, and
recommendations for further research. .
 Keywords: First Year; Student Experience; Teaching.

1 Introduction
This paper presents a survey of current research

literature and current practice in Australian universities
for the teaching of first-year ICT students. It is motivated
by the unique challenges facing ICT educators as they
design and deliver educational experiences for first-year
students in the ICT domain. The challenges faced by ICT
students in the transition from secondary education are
evidenced by the relatively high rate of attrition in ICT
courses, a reduced engagement in on-campus learning
experiences and a perceived lack of relevance to some
potential student groups (Sheard, Carbone, & Hurst,
2010). In a search of the literature we found few
examples that addressed these issues in the ICT context
and in the Australian setting. While a lot of worthwhile
research is being conducted into specific teaching
practices in specific contexts, there is a need to properly
collate and review this research in order to drive change

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D. D’Souza and K. Falkner,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

in practice more broadly across the Australian Higher
Education sector.

 To investigate current research and practices in first-
year ICT courses in the Australian context, the authors
investigated six broad themes that together describe the
learning experience: “what we teach”, “where we teach”,
“how we teach”, “how we assess”, “learning support” and
“student support”. Only the “how we teach” theme is
presented in this paper due to space considerations.
Within this theme the different aspects of teaching are
discussed in relation to issues such as student
engagement, student retention, learning outcomes and
broadening the relevance of ICT courses to a wider range
of students.

2 Research Approach
The research team (the authors of this paper) designed

two phases for this project: a review of research literature
from the last five years, and interviews of academics
involved in the delivery of first-year programs to survey
current practice. A detailed description of the
methodology used in this project is reported in
Experiences of first-year students in ICT courses: good
teaching practices: Final Report: ICT student first year
experiences (http://www.acdict.edu.au/ALTA.htm).
Accordingly, a brief summary is presented below, with
focus placed on the “how we teach” theme.

In phase 1 a systematic review was conducted of the
literature from 2009 to 2014 in the area of computing
education. Keyword searches were carried out in Google
Scholar and the IEEE Xplore and ACM Digital Library
databases, along with manual searches of key computing
education journals and conference proceedings.

In phase 2, semi-structured phone interviews were
conducted with academics from Australian universities
between February and March 2014. Participants were
identified as key staff involved with the design and/or
delivery of ICT courses to first-year students. Thirty
academics from 25 Australian universities were
interviewed. These included six Group of Eight (Go8),
three Australian Technology Network (ATN), six
Innovative Research (IRU) universities and three
Regional University Network (RUN). The interviews
averaged 53 minutes, with detailed notes being taken.
They were audio recorded so that relevant comments
could be transcribed at a later time. The interview script

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

81

focused on six key themes and all interviewees were sent
the interview questions before the interview. Questions
were devised to elicit responses about initiatives in
teaching practice; for example, “Do you use any ‘novel’
teaching practices, such as peer instruction, flipped
classroom, students contributing to the learning of others,
e.g. through Peerwise, student seminars, etc?”. Follow up
questions on specific issues were also asked where
appropriate.

3 How we teach
The investigation of teaching in first-year ICT courses

in Australian universities was concerned with all aspects
of the design and delivery of university-level learning
experiences to first-year ICT students, and associated
supporting academic activities. We begin our
investigation of teaching in first-year ICT courses with a
review of the literature. This gives a broad perspective of
assessment in first-year ICT courses during the past five
years, highlighting Australian studies. Following this, an
analysis of our interviews of academics provides insights
into teaching practices in Australian courses.

3.1 Literature Perspectives in ICT Teaching
Practice

The systematic literature review identified 57 papers
that were considered relevant to the theme of “how we
teach”, grouped into four main topics:

1. theories and models of teaching and learning
2. approaches to teaching
3. cooperative and collaborative learning
4. social media and learning communities
All papers were set in the higher education sector and

in the ICT discipline. Most papers were focused on
teaching in first-year courses. Fifty papers (88%) dealt
with teaching programming, particularly introductory
programming. Eleven were Australian studies.

Theories and models of learning

A number of researchers have explored theoretical
bases for teaching and learning in the ICT discipline, all
in the context of introductory programming.

An Australian study by Mason and Cooper (2012)
investigated lecturers’ perceptions of the mental effort
required for different aspects of their programming units.
Interpreting the findings using cognitive load theory
(Sweller, 1999), the authors propose that many low-
performance students fail to learn due to cognitive
overload. Skudder and Luxton-Reilly (2014) reviewed the
use of worked examples in computer science. They
evaluated different types of worked examples in terms of
the cognitive load on the learner, and recommend
example-problem pairs and faded worked examples as
most suitable for novices.

A number of researchers have challenged the
‘programming gene’ view that people are either
inherently programmers or have great difficulty picking
up programming fundamentals. Robins (2010)
investigated possible reasons for the bimodal grade
distribution that some believe is typically found in
introductory programming courses. He proposes that this
is caused by the ‘learning edge momentum’ (LEM) effect
whereby success in learning a concept helps in learning

subsequent closely related concepts. In the programming
domain, where concepts are tightly integrated, the LEM
effect drives students to extreme learning outcomes.

A group of Australian researchers have explored the
learning of programming from a neo-Piagetian
perspective (Lister, 2011; Corney et al., 2012; Teague &
Lister, 2014). From a series of empirical studies they
propose that novice programming students pass through
neo-Piagetian stages of sensorimotor, preoperational, and
concrete operational before reaching the formal
operational stage where they can operate as competent
programmers. They recommend that introductory
programming teachers use a neo-Piagetian perspective in
their instruction where they consider the reasoning levels
of their students.

A couple of studies have used Dweck’s (2000)
‘mindset’ theory in introductory programming teaching
programs. Dweck identified that learners may have
‘fixed’ or ‘growth’ mindsets, which have implications for
their learning. Students with a growth mindset focus on
learning goals and continue to focus on learning, even
after failures. By contrast, students with a fixed mindset
focus on performance goals, and want to be seen as
achieving well at all times. Through several interventions
implemented in an introductory programming course,
Cutts et al. (2010) found that they were able to shift
students from fixed to growth mindsets, resulting in a
significant improvement in their learning. An intervention
program by Hanks et al. (2009) reported less success.

Dann et al. (2012) report an application of the theory
of ‘mediated transfer’ (Salomon & Perkins, 1988) in the
design of an introductory programming course. The
purpose was to aid students in transferring their
knowledge of programming concepts learnt in Alice 3 to
the Java context. Using this approach they found dramatic
improvement in students’ final exam performances.

A couple of papers report the use of Biggs’ model of
‘constructive alignment’ (Biggs, 1996) as a framework
for design of introductory programming units. Thota and
Whitfield (2010) and Australian researchers Cain and
Woodward (2012) describe the design of their courses
and present results from action research studies. They
discuss the implications of the use of constructive
alignment as a framework for course design.

A comprehensive review by Sorva (2013) summarises
the research on challenges faced by novice programmers
in understanding program execution. Based on findings,
he proposes that the ‘notional machine’ should be used
explicitly in introductory programming to help novices
understand the runtime dynamics of programs. Ma et al.
(2011) investigated novice students’ mental models of
programming concepts, finding that many held non-
viable mental models of key concepts. Through a
teaching approach using visualisation of program
execution they found that they could challenge and
change students’ misconceptions and help them develop a
better understanding of key concepts.

Approaches to teaching

Different approaches to teaching form a broad topic
encompassing the use of techniques, tools, technologies
and games in teaching first-year ICT courses.

CRPIT Volume 160 - Computing Education 2015

82

1. Teaching Techniques
A variety of teaching techniques for first-year ICT

courses were found, all but one in the context of
programming. These were typically introduced to
improve students’ skills and knowledge of a particular
learning outcome and/or to motivate and engage students
in the learning process.

Caspersen and Kölling (2009) present STREAM, a
programming process for novice programmers. This
process was derived from a stepwise improvement
framework that the authors developed by unifying current
good practices in software development. STREAM has
been used in two universities, and a study indicates that it
helped in the development of students’ software
development competencies.

Apiola, Lattu & Pasanen (2012) present CSLE
(Creative-Supporting Learning Environment), a
theoretical framework for designing a course to support
students’ creative activities. The framework was trialled
with a programming course using robotics, and an
evaluation indicated that students gained many creative
experiences during the course.

Hu, Winikoff & Cranefield (2012; 2013) describe an
approach to teaching introductory programming using the
concepts of ‘goals’ and ‘plans’. They propose a notation
and a programming process incorporating these concepts.
An evaluation of the approach using an experimental
method indicates a positive improvement in students’
performance in their programming exam.

Pears (2010) discusses the concept of program quality
and students’ conceptions of program quality. He
describes an approach used in an introductory computing
course designed to give students an understanding of
program quality. An assessment of student code produced
for their project work indicated a level of quality above
what is normally produced by first-year students.

Hertz and Jump (2013) present ‘program memory
traces’, a paper-based approach for code tracing that
models program execution in the computer’s memory. A
study of the use of this approach in an introductory
programming class showed improvement in students’
programming ability, decrease in dropout rates and
significant improvement in students’ grades.

The only example found outside the programming
context was NEMESIS (Marsa-Maestre et al., 2013), a
framework for generating scenarios for teaching network
and security systems. An evaluation of the framework
with a first-year Internet security systems course found
that the students and teachers were positive about the use
of the framework and the scenarios generated.

2. Games

Game-based learning and assessment tasks are often
used to motivate and engage students in the learning
process. Eagle and Barnes (2009) and Morazán (2010)
describe their use of games in introductory programming
courses. They report findings of studies that show that
learning activities based on games are useful tools to
interest and enthuse students in programming. However a
study of the use of mobile games by Kurkovsky (2013)
found mixed results in terms of student engagement and
motivation.

Bayzick et al. (2013) present ALE (AndEngine Lehigh
Extension), a platform for Android game development.
ALE emphasises code reading before students attempt
code writing. Experiences with using the platform in an
introductory programming course found that students
responded positively to the tool and wrote “compelling
mobile games in under 18 hours” (p.213).

3. Tools and technologies

A range of tools and technologies have been
developed or adapted for use in computing education, all
but one in the context of programming.

Anderson and Gavan (2012) report on the introduction
of LEGO Mindstorms NXT into an introductory
programming course. They found that students’ results on
assignment work and exams improved, and concluded
from a student evaluation that the activities were a
stimulating and engaging challenge for the students.
Apiola, Lattu & Pasanen (2010) also describe a
programming course that uses LEGO Mindstorms robotic
activities. On the basis of many positive student
comments during and after the course, the authors argue
that robots are powerful tools for motivating students.

These conclusions were not supported by a study by
McWorter and O’Connor (2009) who used the Motivated
Strategies for Learning questionnaire to assess the effect
of LEGO Mindstorms robotic activities on student
motivation in an introductory programming course. An
experimental study showed no difference in intrinsic
motivation between the students using LEGO and non-
LEGO activities, although responses to qualitative
questions indicated that some of the LEGO students
enjoyed the activities.

Summet et al. (2009) describe an introductory
programming course where each student is provided with
a pre-assembled robot which is used as the teaching
context. Results of a comparative study showed that the
robot class students gained significantly higher results
than the non-robot class students.

Daniels (2009) reports on an application of Nintendo
Wii Remote (wiimote) technology in an introductory
computer engineering and problem-solving class, and the
laboratory exercises designed to use the technology.
Following a study of the use of the technology, the
authors believe that the activities helped students achieve
the core learning objectives of the course and that student
engagement improved.

A common application of technology in computing
education is program or algorithm visualisation, which is
used to clarify and explain concepts.

Sorva, Karavirta & Malmi (2013) reviewed
visualisation systems designed to help introductory
computing students understand the runtime behaviour of
computer programs. Evaluations of the systems provided
indicate that they are generally useful in helping students
learning programming; however, the influence on learner
engagement is not clear.

Pears and Rogalli (2011) present an extension to the
widely used program visualisation tool Jeliot, where
students are able to receive and respond to Jeliot-
generated questions on their mobile phones. They
propose that this can be used interactively in a lecture,
providing an alternative to clicker technology.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

83

Australian researchers Heinsen Egan and McDonald
(2014) describe systems for visualising runtime memory
state and their integration into the SeeC system. This
system will be used initially in a first-year Operation
Systems course and the C Programming Language
course.

The only example of a tool or technology found
outside the programming context was an intelligent
tutoring system for learning Rapid Application
Development in a database environment. An Australian
study by Risco and Reye (2012) describes the Personal
Access Tutor (PAT) and an evaluation of the tool in a
first-year database course, showing that students and staff
found it easy to use and that it was beneficial for
students’ learning.

Cooperative and collaborative learning

Various teaching approaches have been developed to
encourage collaborative and cooperative work behaviour
in first-year computing students, often with the aim of
developing and fostering learning communities.

Hamer et al. (2012) provide a concise overview of
current research perspectives on learning communities by
exploring the concept of ‘contributing student pedagogy’
(CSP). The concept of CSP was developed by Collis and
Moonen (2005) who emphasise the process of learning by
engaging students as co-creators of learning resources.
CSP incorporates social constructivism in a practical
manner, combining both content learning and inter-
personal skills acquisition in a meaningful way (Hamer et
al., 2012, p 315). The learning benefits of engaging
learners as active co-creators of the learning experience
have been demonstrated in a number of subject domains.
Collaborative learning has been used as one of the
primary methods of implementing CSP as it requires
learners to externalise their understanding in order to
work with their peers.

Collaborative learning describes a range of practices
where students work in groups sharing knowledge or
work on a project. An example of a teaching approach
that uses collaborative learning is the ‘peer-led team
learning’ (PLTL) approach as described by Murphy et al.
(2011). PLTL involves a small group of students working
collaboratively to solve problems. Each group is led by an
undergraduate workshop leader who has been specially
trained in PLTL techniques. Murphy et al. claim that their
PLTL program was highly beneficial for peer leaders,
who also benefit from the program as they gain
confidence in themselves as computer scientists.

A couple of studies discuss collaborative learning
techniques used to increase engagement in lectures.
Simon et al. (2010) report on an application of peer
instruction (PI) using clicker technology in two
introductory programming units. PI is a teaching
technique that involves students answering a question on
a vote-discuss-revote model. An evaluation found that
students were generally very positive about this approach
and that the accuracy of the responses increased after a
follow-up discussion. The instructor reported value in
being able to identify concepts that students had not yet
mastered. Kothiyal et al. (2013) describe the
implementation of a similar active learning strategy,
think-pair-share (TPS), in a large introductory

programming class. TPS involves students working on an
instructor-led activity individually, then in pairs, and then
as a whole class. The authors report levels of student
engagement for each activity ranging from 70% to 90%.

Cooperative learning, a specific kind of collaborative
learning, is a teaching strategy requiring students to work
together to improve their understanding or to complete a
task. At an Australian university, Falkner and Palmer
(2009) integrated cooperative learning techniques into an
introductory computer science course, resulting in
increased class attendance, improved learning outcomes
and increased student motivation. Beck and Chizhik
(2013) report on the implementation of cooperative
learning in an introductory computing course and also
found an improvement in students’ exam results.

Lasserre and Szostak (2011) used a team-based
learning (TBL) approach, requiring students to work on
exercises in teams. The approach had a positive outcome
on student learning: 20% more students completed the
course and 20% more students passed the final exam.
Informal inspections of the final exam answers suggest
that students who learnt using the TBL approach had
increased confidence in writing programs. Another team-
based approach, reported by Hundhausen, Agrawal &
Agrawal (2013), involved peer-reviewing code with the
help of a moderator. A series of studies showed that
pedagogical code reviews (PCR) facilitated multi-level
discussions of code practices, providing opportunities to
develop soft skills in introductory computing courses.
The study also showed that the online implementation of
PCR was not as effective as the face-to-face PCR.

Many studies have investigated the effectiveness of
pair programming as a form of cooperative learning for
introductory programming students. Pair programming is
a programming technique where two people work
together to write a program, alternating between ‘driver’
and ‘navigator’ roles. Australian researchers Corney,
Teague & Thomas (2010) implemented pair
programming in an introductory programming course at
an Australian university and report that it was well
received by students. Wood et al. (2013) describe the use
of pair programming in the early weeks of an
introductory programming course. Students were paired
based on comparable levels of confidence, and it was
found that students with the lowest level of confidence
performed better working in a pair than individually.
Staff observed increased engagement, motivation and
performance. Radermacher, Walia & Rummelt (2012)
investigated the formation of pairs using Dehnadi’s
mental model consistency (MMC) test and found
evidence supporting the approach of matching students
according to their mental models. Salleh et al. (2010)
explored the effect of the personality trait of neuroticism
on pair programming and reported that students’
performance is not affected by different levels of
neuroticism. Zacharis (2011) and Edwards, Stewart &
Ferati (2010) investigated the effectiveness of online pair
programming for introductory programming students.
Zacharis found that students working online using pair
programming produced code of better quality and more
efficiently than students working individually. However,
Edwards, Stewart & Ferati found that students were less

CRPIT Volume 160 - Computing Education 2015

84

satisfied with the experience of online pair programming
than when co-located.

O’Grady (2012) reviewed the literature on the use of
problem-based learning (PBL). More than a third of the
59 cases reviewed were first-year computing courses, and
more than half of these were programming courses.
O’Grady found that both teachers and students were
largely positive about their PBL experiences. However,
he found that the adoption of PBL into computing courses
was largely ad hoc and random and concluded that if it is
to be successfully used then “motivations, objectives,
learning outcomes, and graduate outcomes must be
clearly defined” (p 10). Sancho-Thomas, Fuentes-
Fernández & Fernández-Manjón (2009) present the
NUCLEO e-learning framework, a PBL-based
environment for teaching computing courses. From the
results of three different studies on the use of this
framework the authors conclude that NUCLEO had a
positive influence in decreasing dropout rates, raising
exam pass rates, and improving team formation.

Social media and learning communities

Recently, various forms of social media (web 2.0)
have been used in education programs to encourage
collaborative work and the formation of learning
communities. Using social media is also seen as a way to
engage students in learning. A number of the
implementations of contributing student pedagogy
involve the use of social media (Hamer et al., 2011).

Pieterse and van Rooyen (2011) report the use of
Facebook in a large first-year computer science unit. A
closed Facebook group was set up as an informal online
discussion forum complementing a formal discussion
forum set up on the department website. Analysis of the
usage of the forums showed greater use of the formal
forum; however, there was more evidence of an online
community on the Facebook forum. The authors’
impressionistic view was that students were more
engaged than in previous offerings of the course.

Two studies investigated the use of blogs to support
learning communities. McDermott, Brindley & Eccleston
(2010) describe the use of blogs in a collaborative and
professional skills unit of a first-year computing course.
Students were required to use a blog for a reflective diary
and to post comments on other students’ blog postings.
The authors report that most students used their blogs in
an educationally constructive way and the postings gave
valuable insights into the students’ experiences.
Robertson (2011) describes the use of blogs in an
introductory interactive systems course. Students were
required to keep a design diary as a blog and to comment
on the blogs of other group members. Analysis of the
blogs gave insights into students’ self-directed learning
strategies and the support they provided to peers.

At an Australian university, Terrell, Richardson &
Hamilton (2011) required students to record their
reflections and learning activities on a blog. Analysis of
the blogs provided indications as to how well the course
objectives had been met. At another Australian
university, Guo and Stevens (2011) used wikis for
collaborative assignment work in an introductory
information systems course. From the results of a student
survey they provide recommendations for instructors who

are considering using web 2.0 technology in their
teaching programs.

Summary

There is a significant body of literature devoted to the
theories and models of learning, various approaches to
teaching, cooperative and collaborative learning
techniques, and the use of social media. These were
frequently discussed in terms of influences on student
learning, motivation, and engagement.

A large proportion of this material was highly focused
on the programming domain and only a small portion
related specifically to the Australian context.

3.2 Current Practice in Australia

The interviews of Australian academics sought
information about teaching practices in first-year ICT
courses. The responses gave insights into current teaching
practices and issues faced by teaching staff. Thematic
analysis was used to extract and code the responses and to
identify and define the major issues raised. The responses
are discussed below under the main topics that were
identified from the analysis of the interview data:
“approaches to teaching”, “cooperative and collaborative
learning” and “social media and learning communities”.
These broadly align with three of the four topics from the
literature search. An underlying theme across all topics is
the response of academics to the perceived lack of student
engagement with traditional methods of on-campus
course delivery in universities, in particular the traditional
lecture model of content delivery.

Approaches to teaching

A common element in this topic was the aim of
increasing learner engagement through converting the
learning experience from a passive activity of absorbing
information to an active process whereby the learner must
engage and process the content in order to construct
meaning from the experience. The most dominant
concerns regarding teaching were the issues involving
lecture delivery and responses to the lack of student
engagement with learning in this space.

Several interviewees raised the issue of lack of student
attendance at lectures, and were making attempts to
address this. For example, interviewee U7b indicated
with regard to their lectures:

“Deliberate change to improve engagement. ... A
complete change of staff, a complete change of pedagogy,
a restructure of the delivery approach, etc. ... Because we
found that the engagement and therefore the attendance
and the interest ... is dropping off with this sort of
generation. We’ve made a conscious decision to put our
brightest performers, you might say, on first-year units.”

In another example interviewee U15b discussed the
rationale for the introduction of clicker technology into
several first-year units:

“The other thing that is impacting the first-years is the
use of clicker technology, ... And that has been in part to
try and improve the lecture experience and also get
attendance back up. You know that lecture attendance is
the first thing that kind of goes when students are under
pressure so we try to be quite compelling in having them

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

85

in there and them knowing why it is important and what
they can get from it.”

The consensus of comments indicated that it was
important to provide students with an engaging and active
lecture experience in order to motivate them to attend and
participate in learning.

Lecture approaches that focus on transmitting content
were seen as problematic since other sources of high
quality information were available online in formats that
could be accessed more conveniently off campus. A
number of high quality MOOCs have focused on
computing and ICT and are an example of the increased
availability of resources of this type. The strengths of on-
campus delivery were seen as being the ability to
encourage active student participation, the responsiveness
of lecturers in providing quality student feedback on
progress, the social learning context involving their peers,
and personalised feedback to students. Recently, lecture
techniques and pedagogies have been developing to take
advantage of these strengths.

One example of this process is the technique of the
flipped classroom (Porter, Bailey-Lee & Simon, 2013;
Simon et al., 2013) incorporating the use of clicker
technologies. Interviewees U15a and U15b described the
use of flipped classroom techniques and clicker
technology specifically targeted at first-year students:

“Clickers were implemented...Pre-reading is expected.
The way those lectures work is that there will be a quick
summary and then there will be some sort of question
posed to the class, they tend to discuss it in small groups,
.... Students will get into small groups to discuss it and
then they re-answer and then you can get a sense for how
their understanding is shifting through a bit of discussion
and prompting.”

The aim of these techniques is to get students to
actively engage with the fundamental concepts through a
process of discussion and responses undertaken in
conjunction with their peers. This also allows the lecturer
to better judge the current state of understanding
demonstrated by the class through their electronically
submitted responses.

Interviewees U15a and U15b went on to indicate that
the Faculty involved intended to expand the flipped
classroom and clickers program further:

“What we found, which was actually quite good, is
that it brought the tail up a bit. So we thought it might
have a bit of an impact on students at risk ... ” (U15b)

“It encourages them to actually attend. We’re starting
to have more units using clickers this semester.” (U15a)

However, other interviewees indicated that they had
implemented some components of the flipped classroom
model but that it had proved problematic to motivate
students to do the required pre-reading, so the approach
was discarded. Further research is required on the impact
of these techniques and technologies in the ICT domain
and in the Australian context.

A variety of other approaches are used in lectures to
engage students in learning experiences. Interviewee U24
uses live code writing and demonstrations to increase the
interactivity of lectures. Interviewee U12 uses online
quizzes within Moodle:

“Students can either use their phone, their computer
or the tablet I provide to ensure that everyone has access.

It’s an online quiz so they get instant feedback as to how
they’ve gone and I get the individualised feedback so I
know who’s struggling”.

Role-playing is a novel approach used by two
lecturers. Interviewee U23 explains:

“I do a lot of role play in lectures to try to reinforce
some of the concepts. So I have people acting out
variables and loops and things like that. It’s a bit of a
giggle, but students who struggle initially to try to
understand these concepts seem to find that really helps”.

Interviewee U23 shared his experience on having
guest lectures in his course:

“We have guest lecturers every second week in the
subject and try to mix them up across different fields so
you get very engaging, inspiring people. ... We’re very
selective about who we approach to do [the lecture] and
students love it. Of course we make that examinable so
they actually have to come along to the guest lectures.”

Despite many efforts to improve the lecture
experience, some interviewees expressed strong negative
views about it. Interviewee U5 encapsulates these ideas:

“I think the future of the lecture is in significant
danger... students get very little value from lectures. The
attendance is poor, the interaction is virtually all one way
and today’s students really don’t see it as any benefit
whatsoever... and the students are far busier now than
they were 20 years ago when university may have been a
priority. University isn’t a priority anymore. The majority
of our domestic students are working at least 20 hours a
week and they see uni having to fit around them, not the
other way round. I understand the challenges and there
does have to be a nice balance but the changes have been
quite dramatic and the universities are still teaching to
the students as they were 30 years ago when students
would come to class.”

Although discussion of how teaching is approached
was focused on the lecture environment during the
interviews, a variety of other teaching techniques were
mentioned that were appropriate for tutorial classes or
online learning, often involving the use of specific tools
and technologies. The motivation for these was to engage
students in interesting and meaningful experiences.

Interviewee U9 explains how she focuses on students’
interest to increase engagement:

“Every single week we have two or three 3-minute
oral presentations by students on any topic of interest to
them. Other students give feedback, because we’re
scaffolding their learning about how to present at the end
of the semester. And that’s great fun. They don’t get
marked on it; it’ s formative”.

Interviewee U6 argues that project work needs to be
authentic to promote student engagement:

“The students engage in projects that are fascinating
and do authentic tasks of real world challenges and
coming up and creating something new. Not just learning
by rote.”

Similarly, interviewee U20 stresses the importance of
providing opportunities to do meaningful and motivating
work in his programming unit.

Interviewee U7b discusses the use of visual
programming techniques based on a Stanford University
model in which students learn to program by moving
objects around a screen in a game-like environment in

CRPIT Volume 160 - Computing Education 2015

86

which the effects of the code and its successful execution
are immediately apparent to the novice programmer.

“The ladybug is very visual. The aim is to run the code
and see the ladybug move in the correct way instead of
the old way of running the code and not getting an error
and maybe producing a report. What you are seeing is a
visual representation of your result. Quite a bit different
to the old pedagogy.”

Interviewee U10 describes the media computation
introductory programming technique where students learn
to program using the manipulation of images and sounds
as the context for learning about programming.

“Media computation [is] really new. Introduced three
years ago, [as a] first course for people who do not know
anything about computing. People learn to program by
manipulating images and sounds.” Part of the rationale
for this change was wider audience appeal, including for
non-ICT students. So far, results have been positive.

“The students do seem to be more engaged, they are
more enthusiastic, they are attending more classes, so we
are taking that as a win enough at the moment.”

Again there is a sense that there is not really an
improvement at the higher end of student performance
but more engagement at the lower end, with a possible
consequence that more students are able to pass the
introductory programming unit.

There were several comments in the interviews
regarding the creation and use of educational resources.
Interviewee U7a described an open educational resources
(OER) scheme. This was a learning object repository of
submitted student work that was created and maintained
on a formal basis.

“Previous students’ work can be referenced, can be
extended, can be reused, and can be enhanced. That
means the currently enrolled students can make use of
previous students’ work for improvements, for extensions
and for some other kinds of extra work; however, students
need to follow the OER scheme.”

The aim was to build up a rich repository of student-
generated content, and participation was voluntary.

Another interviewee, U15a, described an e-publishing
initiative called Alexandria, based on WordPress
infrastructure. The aim was to create dynamic and
interactive learning objects that could be distributed on a
variety of platforms. This is a type of e-publishing with
interactive elements embedded, such as quizzes, applets
and discussion forums.

“We have another project taking [the] online learning
repository type thing and creating kind of learning
modules. Again trying to do them in a more dynamic way,
so short videos with interactive applets students can
experiment with and stuff.”

Cooperative and collaborative teaching

This topic is concerned with teaching approaches that
involve students in collaborative or cooperative learning
activities. Cooperative and collaborative learning
activities were highlighted in the interviews as examples
of active learning pedagogies for first-year students.
Interviewee U10 explains:

“We do a lot of student contribution work in first year.
... it is very much based upon peer assessment and peer
review, peers working together in collaboration. Our

curriculum was restructured about 4 years ago now. We
completely rebuilt the first-year curriculum around
collaborative learning.”

The aim here is to recast learning from being an
isolated and solitary activity to being an intensely social
activity where students are engaged and motivated by
negotiating shared goals, responsibilities, and cooperative
tasks involving their peers. The social nature of this
learning experience and the intense engagement is
intended to reduce the social isolation of students, which
has been shown to be one of the significant risk factors
for students dropping out of courses. Interviewee U10
elaborates: “In the collaborative workshop sessions
students do a lot of very active learning, they have little
mini-lectures, that are interjected between collaborative
learning activities where the students are often asked to
build upon each others’ work, to share each others’ work
and do peer review and peer assessment.”

Here the aim is to foster a range of skills related to the
ability to plan solutions, negotiate roles, and evaluate
progress, rather than just to absorb specific information.
These social skills are deemed to be important in the
context of future employment in the ICT field and tend to
produce a more engaging learning experience.

According to interviewee U10, however, these
collaborative learning techniques require a range of
specific teaching techniques in order to ensure their
successful implementation.

“They are very heavily guided through the workshops
... all face-to-face, so we have quite a lot of workshop
supervisors who work with the groups. So the workshop
supervisors go through training every year to sort of
guide them into how to work with the student groups.”

Further research is needed to formally describe and
evaluate the impact of these techniques in the Australian
ICT context.

A related active learning pedagogy is focused on
problem-solving skills and in setting the frame of
reference for learning activities in authentic problem
contexts relevant to the ICT domain. Interviewee U9
provides an example:

“We have got peer collaboration within classes and
some topics use partnership learning. And there is a
student focus of what is going to be taught. There is a
topic in which students undertake an external challenge
of a real-world scenario for Engineers without borders ...
our Computer Science, Engineering, and our ICT
students participate in that, where they design real-world
solutions for ICT problems in third-world countries. They
design their own solution and it is incredible what they do
in first year.”

The innovation in this example is that this experience
is targeted at first-year students in a professional skills
unit rather than being delivered in a capstone unit in the
third year. Students are motivated to gain skills as they go
to complete the current project, rather than completing a
series of units to gain a set of decontextualised
prerequisite skills to be used at a later time.

Social media and learning communities

This topic is concerned with use of social media for
learning activities in first-year ICT. Interviewee U24
describes the use of social networking software UCROO

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

87

to support learning communities. UCROO is a social
networking application for Australian universities only,
and was developed by post-graduate students from
Deakin University (which is not the university of
interviewee U24). It is an educational social networking
site based on Facebook.

“Looks a lot like Facebook, acts a lot like Facebook.
The students are very familiar with it. They know how to
use it immediately. It is unit specific, so you set a unit up
in this. It definitely has an educational focus because you
can set up assessment dates and the like. Each unit has a
wall on which you can post, do a poll, ask questions, put
up a file, link to a web page. But students can, too, so you
get connections like you get Facebook friends. Everyone
who is your friend, you have one common wall that you
can see.”

UCROO has a rich tool set of features to promote
social connections and to allow posting of news and
resources. This is very different from the limited tool set
available in the current generation of LMSs. According to
interviewee U24 the software was:

“Introduced 18 months, 2 years ago, to the
introductory programming class, because they of course
are a really quiet class because they are programmers,
they tend to be quiet. They tend to be not so out there
socially, and I also wanted my external students to get to
know my internal students and for my internal students to
be reminded that the class does not only consist of them.”

The initial results have been positive:
“It has been magnificent, students have loved it and I

have had an enormous amount of student interactivity as
in [...] between students on UCROO each time I have
used it. ... it actually really surprised me how these
people just took to it like ducks would take to water.”

The lecturer is also starting to build social networking
tools more broadly into the unit, such as Skype for
external presentations and web-based clicker systems for
in-class polling.

However, several interviewees cautioned against the
use of social media. As U4 explains:

“It is difficult to encourage students to use it because
they think this is just another burden on what they’re
required to do.”

Interviewee U7b remarked:
“The university is moving towards more social media

but I think there are a few issues in using that extensively
in teaching because students don’t really distinguish
between whether the social media contact is social or
educational. It kind of blurs the boundaries for them.”

The use of social networking has shown the potential
to increase peer feedback, and to integrate online and on-
campus students if implemented correctly. Further
research and evaluation is required on the impact of
social networking techniques on the ICT domain.

4 Discussion
Our analysis of recent literature shows that while there

is a significant body of literature devoted to teaching in
the first year of ICT courses, much of this literature is
focused in the programming context. We propose that
further research is needed to explore other aspects of the
first-year ICT curriculum to gain a better understanding
of the first-year ICT student experience.

The topics that emerged from an analysis of the
interview data broadly align with those found in the
literature. Most interviewees highlighted rapid changes in
traditional methods of on-campus course delivery due to a
perceived lack of student engagement, in particular
changes to the lecture format and to the balance between
lectures and practical labs. Practices such as active
learning approaches, flipped classrooms, peer,
cooperative, and collaborative techniques, and problem-
based learning were frequently discussed, along with the
integration of social networking tools to support the
formation of learning communities. Again, the focus was
predominantly on the programming context, so we
propose that other areas of the first-year curriculum and
the integration of the curriculum of the whole first year
merit future consideration.

Finally there is a need to formally evaluate the effects
of many of the innovative teaching practices described in
this paper. Substantial work has been documented on
efforts to improve the relevance and appeal of the ICT
curriculum to a wider range of students, including non-
ICT students, using social media, visual programming,
and problem-based learning techniques. In many cases
the initial reports of the techniques are positive, but more
rigorous evaluation is required to support evidence-based
decision-making on which techniques should be further
developed to drive improvements in the first-year
learning experience of ICT students.

5 Conclusion and future work
From this study we have documented a number of

initiatives aimed at increasing ICT student engagement in
the learning process. The study raises a number of key
research areas that need further investigation. There is a
clear need for more formal evaluations of the effects of
these teaching initiatives in the Australian ICT context
and for the collation of examples of good practice for
wider dissemination. While initial results in many cases
are positive, more evidence is required to justify sector-
wide change. The amount of published literature on
programming education also highlights a need to conduct
research in other areas of ICT curriculum, to ensure a
better overall first-year experience for ICT students.

6 Acknowledgements
This project was undertaken with the support of the

Australian Council of Deans of Information and
Communication Technology through the ALTA Good
Practice Reports Commissioned for 2013–2014 grant
scheme (http://www.acdict.edu.au/ALTA.htm).

The project team would like to acknowledge the work
of Dr Beth Cook who worked as a research assistant to
conduct the interviews and to prepare the detailed
interview notes.

7 References
Anderson, M., & Gavan, C. (2012). Engaging

undergraduate programming students: experiences
using LEGO Mindstorms NXT. 13th Conference on
Information Technology Education, 139-144.

Apiola, M., Lattu, M., & Pasanen, T. A. (2010).
Creativity and intrinsic motivation in computer science
education    : experimenting with robots. 15th

CRPIT Volume 160 - Computing Education 2015

88

Conference on Innovation and Technology in
Computer Science Education, 199-203.

Apiola, M., Lattu, M., & Pasanen, T. A. (2012).
Creativity-supporting learning environment – CSLE.
ACM Transactions on Computing Education, 12(3), 11.

Bayzick, J., Askins, B., Kalafut, S., & Spear, M. (2013).
Reading mobile games throughout the curriculum. 44th
ACM Technical Symposium on Computer Science
Education, 209-214.

Beck, L., & Chizhik, A. (2013). Cooperative learning
instructional methods for CS1    : design,
implementation, and evaluation. ACM Transactions on
Computing Education, 13(3), 10.

Biggs, J. (1996). Enhancing teaching through
constructive alignment, Higher Education, 32(3), 347-
364.

Cain, A., & Woodward, C. J. (2012). Toward
constructive alignment with portfolio assessment for
introductory programming. IEEE International
Conference on Teaching, Assessment, and Learning for
Engineering 2012, H1B-11.

Caspersen, M. E., & Kolling, M. (2009). STREAM: A
first programming process. ACM Transactions on
Computing Education, 9(1), 4.

Collis, B. and Moonen, J. (2005). An On-Going Journey:
Technology as a Learning Workbench, University of
Twente, Enschede, The Netherlands.

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012).
Some empirical results for neo-Piagetian reasoning in
novice programmers and the relationship to code
explanation questions. 14th Australasian Computing
Education Conference, 77-86.

Corney, M., Teague, D., & Thomas, R. N. (2010).
Engaging students in programming. 12th Australasian
Computing Education Conference, 63-72.

Cutts, Q., Cutts, E., Draper, S., O’Donnell, P., & Saffrey,
P. (2010). Manipulating mindset to positively influence
introductory programming performance. 41st ACM
Technical Symposium on Computer Science Education,
431-435.

Daniels, T. E. (2009). Integrating engagement and first
year problem solving using game controller
technology. 39th IEEE Frontiers in Education
Conference, 2009, 1-6.

Dann, W., Cosgrove, D., Slater, D., Culyba, D., &
Cooper, S. (2012). Mediated transfer: Alice 3 to Java.
43rd ACM Technical Symposium on Computer Science
Education, 141-146.

Dweck, C. S. (2000). Self-theories: Their role in
motivation, personality, and development. Psychology
Press.

Eagle, M., & Barnes, T. (2009). Evaluation of a game-
based lab assignment. 4th International Conference on
Foundations of Digital Games, 64-70.

Edwards, R. L., Stewart, J. K., & Ferati, M. (2010).
Assessing the effectiveness of distributed pair
programming for an online informatics curriculum.
ACM Inroads, 1(1), 48-54.

Falkner, K., & Palmer, E. (2009). Developing authentic
problem solving skills in introductory computing
classes. ACM SIGCSE Bulletin, 41(1), 4-8.

Guo, Z., & Stevens, K. J. (2011). Factors influencing
perceived usefulness of wikis for group collaborative
learning by first year students. Australasian Journal of
Educational Technology, 27(2), 221-242.

Hamer, J., Luxton-Reilly, A., Purchase, H. C., & Sheard,
J. (2011). Tools for contributing student learning. ACM
Inroads, 2(2), 78-91.

Hamer, J., Sheard, J., Purchase, H., & Luxton-Reilly, A.
(2012). Contributing student pedagogy. Computer
Science Education, 22(4), 315-318.

Hanks, B., Murphy, L., Simon, B., McCauley, R., &
Zander, C. (2009). CS1 students speak: advice for
students by students. ACM SIGCSE Bulletin, 41(1), 19-
23.

Heinsen Egan, M., & McDonald, C. (2014). Program
visualization and explanation for novice C
programmers. 16th Australasian Computing Education
Conference, 51-57.

Hertz, M., & Jump, M. (2013). Trace-based teaching in
early programming courses. 44th ACM Technical
Symposium on Computer Science Education, 561-566.

Hu, M., Winikoff, M., & Cranefield, S. (2012). Teaching
novice programming using goals and plans in a visual
notation. 14th Australasian Computing Education
Conference, 43-52.

Hu, M., Winikoff, M., & Cranefield, S. (2013). A process
for novice programming using goals and plans. 15th
Conference on Innovation and Technology in
Computer Science Education, 3-12.

Hundhausen, C. D., Agrawal, A., & Agrawal, P. (2013).
Talking about code: integrating pedagogical code
reviews into early computing courses. ACM
Transactions on Computing Education, 13(3), 14.

Kothiyal, A., Majumdar, R., Murthy, S., & Iyer, S.
(2013). Effect of think-pair-share in a large CS1 class:
83% sustained engagement. 9th International
Computing Education Research Conference, 137-144.

Kurkovsky, S. (2013). Mobile game development:
improving student engagement and motivation in
introductory computing courses. Computer Science
Education, 23(2), 138-157.

Lasserre, P., & Szostak, C. (2011). Effects of team-based
learning on a CS1 course. 16th Conference on
Innovation and Technology in Computer Science
Education, 133-137.

Lister, R. (2011). Concrete and other neo-Piagetian forms
of reasoning in the novice programmer. 13th
Australasian Computing Education Conference, 9-18.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011).
Investigating and improving the models of
programming concepts held by novice programmers.
Computer Science Education, 21(1), 57-80.

Marsa-Maestre, I., De La Hoz, E., Gimenez-Guzman, J.
M., & Lopez-Carmona, M. A. (2013). Design and
evaluation of a learning environment to effectively

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

89

provide network security skills. Computers &
Education, 69, 225-236.

Mason, R., & Cooper, G. (2012). Why the bottom 10 %
just can’t do it – mental effort measures and
implications for introductory programming courses.
14th Australasian Computing Education Conference,
187-196.

McDermott, R., Brindley, G., & Eccleston, G. (2010).
Developing tools to encourage reflection in first year
students blogs. 15th Conference on Innovation and
Technology in Computer Science Education, 147-151.

McWhorter, W. I., & O’Connor, B. C. (2009). Do
LEGO® Mindstorms® motivate students in CS1?
ACM SIGCSE Bulletin, 41(1), 438-442.

Morazán, M. T. (2010). Functional video games in the
CS1 classroom. Trends in Functional Programming,
166-183. Springer Berlin Heidelberg.

Murphy, C., Powell, R., Parton, K., & Cannon, A. (2011).
Lessons learned from a PLTL-CS program. 42nd ACM
Technical Symposium on Computer Science Education,
207-212.

O’Grady, M. J. (2012). Practical problem-based learning
in computing education. ACM Transactions on
Computing Education, 12(3), 10.

Pears, A. (2010). Conveying conceptions of quality
through instruction. 7th International Conference on
the Quality of Information and Communications
Technology, 7-14.

Pears, A., & Rogalli, M. (2011). mJeliot: A tool for
enhanced interactivity in programming instruction.
11th Koli Calling International Conference on
Computing Education Research, 16-22.

Pieterse, V., & van Rooyen, I. J. (2011). Student
discussion forums: what is in it for them? Computer
Science Education Research Conference, 59-70. Open
Universiteit, Heerlen.

Porter, L., Bailey-Lee, C., & Simon, B. (2013). Halving
fail rates using peer instruction: a study of four
computer science courses. 44th ACM Technical
Symposium on Computer Science Education, 177-182.

Radermacher, A., Walia, G., & Rummelt, R. (2012).
Improving student learning outcomes with pair
programming. 9th International Computing Education
Research Conference, 87-92.

Risco, S., & Reye, J. (2012). Evaluation of an intelligent
tutoring system used for teaching RAD in a database
environment. 14th Australasian Computing Education
Conference, 131-140).

Robertson, J. (2011). The educational affordances of
blogs for self-directed learning. Computers &
Education, 57 (2), 1628-1644.

Robins, A. (2010). Learning edge momentum: a new
account of outcomes in CS1. Computer Science
Education, 20(1), 37-71.

Salleh, N., Mendes, E., Grundy, J., & Burch, G. S. J.
(2010). The effects of neuroticism on pair
programming: an empirical study in the higher
education context. 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and
Measurement, 22.

Salomon, G., & Perkins, D. (1988). Teaching for transfer.
Educational leadership, 46(1), 22-32.

Sancho-Thomas, P., Fuentes-Fernández, R., &
Fernández-Manjón, B. (2009). Learning teamwork
skills in university programming courses. Computers &
Education, 53, 517-531.

Sheard, J., Carbone, A., & Hurst, A. J. (2010). Student
engagement in first year of an ICT degree: staff and
student perceptions. Computer Science Education,
20(1), 1-16.

Simon, B., Esper, S., Porter, L., & Cutts, Q. (2013).
Student experience in a student-centered peer
instruction classroom. 9th International Computing
Education Research Conference, 129-136.

Simon, B., Kohanfars, M., Lee, J., Tamayo, K., & Cutts,
Q. (2010). Experience report: peer instruction in
introductory computing. 41st ACM Technical
Symposium on Computer Science Education, 341-345.

Skudder, B., & Luxton-Reilly, A. (2014). Worked
examples in computer science. 16th Australasian
Computing Education Conference, 59-64.

Sorva, J. (2013). Notional machines and introductory
programming education. ACM Transactions on
Computing Education, 13(2), 8.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of
generic program visualization systems for introductory
programming education. ACM Transactions on
Computing Education, 13(4), 15.

Summet, J., Kumar, D., Hara, K. O., Walker, D., Ni, L.,
Blank, D., & Balch, T. (2009). Personalizing CS1 with
robots. ACM SIGCSE Bulletin, 41(1), 433-437.

Sweller, J. (1999). Instructional Design in Technical
Areas. Melbourne, Australia, ACER Press.

Teague, D., & Lister, R. (2014). Longitudinal think aloud
study of a novice programmer. 16th Australasian
Computing Education Conference, 41-50).

Terrell, J., Richardson, J., & Hamilton, M. (2011). Using
web 2.0 to teach web 2.0: a case study in aligning
teaching, learning and assessment with professional
practice. Australasian Journal of Educational
Technology, 27(5), 846-862.

Thota, N., & Whitfield, R. (2010). Holistic approach to
learning and teaching introductory object-oriented
programming. Computer Science Education, 20(2),
103-127.

Wood, K., Parsons, D., Gasson, J., & Haden, P. (2013).
It’s never too early    : pair programming in CS1. 15th
Australasian Computing Education Conference, 13-21.

Zacharis, N. Z. (2011). Measuring the effects of virtual
pair programming in an introductory programming
Java course. IEEE Transactions on Education, 54(1),
168-170.

CRPIT Volume 160 - Computing Education 2015

90

Assessment in First-Year ICT Education in Australia: Research and
Practice

 Judy Sheard Michael Morgan Matthew Butler
 Monash University Monash University Monash University
 Australia Australia Australia
 michael.morgan@monash.edu judy.sheard@monash.edu matthew.butler@monash.edu

 Katrina Falkner Simon Amali Weerasinghe
 University of Adelaide University of Newcastle University of Adelaide
 Australia Australia Australia
katrina.falkner@adelaide.edu.au simon@newcastle.edu.au amali.weerasinghe@adelaide.edu.au

Abstract
This paper presents an investigation of assessment in first-
year Information and Communications Technology (ICT)
courses with a focus on Australian universities. This study
was part of a project that aimed to identify and
disseminate good practices in first-year ICT teaching in
Australian universities. Through a systematic review of
the last five years of research literature and interviewing
30 academics who were involved in the design and
delivery of the first-year learning experience in Australian
universities, we have formed a comprehensive view of
current assessment practices, and outlined the unique
challenges faced by teachers when designing assessment
for their first-year ICT students. Key findings of the
literature survey and the insights gained from the
academic participants have been collated to provide
examples of good practice in the field and to recommend
areas for further investigation..
Keywords: First Year; Student Experience; Assessment;
Academic Integrity.

1 Introduction
Assessment is a key component of the learning
experience of university students. Assessment is used to
measure the level of knowledge and skills that students
have obtained, and determines their grades and course
progression. Assessment can be used during the learning
process to give students feedback on their work. An
important consideration is that the form of assessment
influences how students approach their study, with a
consequent influence on learning outcomes (Biggs,
1996).

There are a variety of ways that students may be
assessed, and the form of assessment used is often
discipline-specific. For example, students learning to
program may be assessed by a practical task on a
computer. With recent moves to blended learning and

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D. D’Souza and K. Falkner,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

technology-enhanced learning environments there are
now new imperatives and opportunities for different
forms of assessment.

Considering the central role of assessment in the
student learning experience, it is critical that teachers
choose the form of assessment that is appropriate for the
learning situation and desired learning outcomes. In first-
year courses it is also important to consider that students
may not have encountered some forms of assessment in
their previous education. The transition from secondary to
tertiary studies is a difficult process for many students,
first-year courses have high rates of attrition (Sheard,
Carbone, & Hurst, 2010) and it is important to consider
any possible influences on this experience.

In this paper we report findings of a study that
investigated assessment practices in first-year
Information and Communications Technology (ICT)
courses in Australia. The study comprised a review of
recent literature on assessment practices in ICT courses
and a survey of Australian academics involved in
teaching first-year ICT courses. The aims of the study
were: 1) to gain a comprehensive view of how students in
first-year ICT courses are assessed; 2) to determine
factors influencing choice of assessment used; and 3) to
identify examples of good practice in assessment in first-
year ICT courses in Australia that could be adopted and
disseminated widely. This study is part of a larger project
exploring teaching practices in first-year ICT courses.

2 Research Approach
This section describes the approach used to investigate
research and current practices in assessment in the first
year of ICT courses in Australia. The investigation was
conducted by the authors as part of a project that
investigated the broader topic of research and practice in
teaching ICT courses in Australia. To conduct the project,
the team developed a framework with six themes that
together describe the learning experience: ‘what we
teach’, ‘where we teach’, ‘how we teach’, ‘how we
assess’, ‘learning support’ and ‘student support’. As the
focus of this paper is about assessment, only findings
from the ‘how we assess’ theme will be reported.

Two phases were designed by the authors for this
project; a systematic review of research literature from
the previous five years, and interviews of academics
involved in the delivery of first-year programs in

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

91

Australia. A detailed description of the methodology used
in this project is reported in Experiences of first-year
students in ICT courses: good teaching practices: Final
Report: ICT student first year experiences
(http://www.acdict.edu.au/ALTA.htm); accordingly, only
a brief summary is presented below, focusing on the ‘how
we assess’ theme.

Phase 1 of the project consisted of a systematic review
of literature from 2009 to 2014 in the area of computing
education. Keyword searches were carried out in Google
Scholar and the IEEE Xplore and ACM Digital Library
databases, along with manual searches of key computing
education journals and conference proceedings.

In phase 2, semi-structured phone interviews were
conducted with academics from Australian universities in
February and March 2014. Participants were identified as
key staff involved with the design and/or delivery of ICT
courses to first-year students. Thirty academics from 25
Australian universities were interviewed. These included
six Group of Eight (go8), three Australian Technology
Network (ATN), six Innovative Research (IRU), and
three Regional Universities Network (RUN) universities.
The interviews averaged 53 minutes. Detailed notes were
taken, and the interviews were audio recorded so that
relevant comments could be transcribed at a later time.
The interview script focused on six key themes, and all
interviewees were sent the interview questions before
being interviewed. Questions asked to elicit responses
about initiatives in assessment practice included: ‘What
kinds of assessment items are used in the first-year
courses?’, ‘For which assessment items is feedback given
to students?’, ‘How much of the assessment is assessed
automatically?’, and ‘For work not done in test
conditions, what techniques are used to verify that the
work is the student’s own work?’. Follow-up questions
on specific issues related to the themes were asked where
appropriate.

3 How we assess
The investigation of assessment in first-year ICT courses
in Australian universities covered the areas of assessment
strategies, summative and formative forms of assessment,
and tools to assess student learning or to facilitate the
marking process. We begin our investigation of
assessment in first-year ICT courses with a review of the
literature. This gives a broad perspective of assessment in
first-year ICT courses during the past five years,
highlighting Australian studies. Following this, an
analysis of the interviews of academics provides insights
into assessment practices in Australian courses.

3.1 Literature Perspectives on Assessment in
ICT

The systematic literature review found 38 papers that
were concerned with assessment in university ICT
courses during the previous five years. The literature on
assessment was grouped into five topics:

• assessment design and strategies
• exam assessment
• non-exam assessment
• automated assessment
• assessment instruments and tools

All papers were set in the higher education sector. A
high number of papers (27, 79%) dealt with assessment in
first-year courses or assessment that was applicable to the
first year. Most papers (33, 87%) dealt with issues
concerning assessment of programming, and almost half
(18, 47%) were Australian studies.

Assessment design and strategies
A couple of papers were found that focused on
assessment of first-year students in university courses in
general. A review by Yorke (2011) of assessment and
feedback practices in the first year of university
highlights the importance of early and timely feedback
and a pedagogy that encourages students to reflect on
their learning. A comprehensive report by O’Neill and
Noonan (2011) presents a series of resources to assist in
designing assessment tasks. An underlying principle is to
build first-year students’ confidence with low-stakes
assessment before moving progressively to high-stakes
assessment. Staff are encouraged to restrict the amount of
assessment they build into their units to allow students
time and opportunity for in-depth engagement with the
teaching program. This strategy is based on the idea that
to be successful in learning, students need to be engaged
and empowered.

A number of papers deal specifically with assessment
strategies in ICT courses. Taking a holistic view of the
assessment process in programming courses, Australian
researchers Thomas, Cordiner, and Corney (2010)
propose the ‘teaching and assessment of software
development’ framework (TASD) and give examples of
its use across multiple year levels. Barros (2010)
discusses the importance of assessment strategies in
introductory programming and proposes a set of
techniques and criteria to consider when designing
programming assessment and grading. For assignment
work he incorporates a plagiarism detection tool and oral
assessment, and for the final practical exam, a minimum
acceptable grade. Both papers report positive results in
terms of student satisfaction and higher grades.

A problematic area for assessment in ICT courses is
group work. An Australian researcher (Richards, 2009)
discusses ways of assessing group work, including peer
assessment, and the challenges of providing a fair
distribution of marks to each group member. Hahn,
Mentz, and Meyer (2009) investigated different forms of
assessment for pair programming, and propose that a
combination of self, peer, and facilitator assessment can
increase the amount of feedback to the students, resulting
in higher levels of achievement.

Exam assessment
A final written exam is a common form of summative
assessment in computing courses. A number of papers
reported studies of exam assessment, and these were all in
the context of introductory programming. Much of this
work has been conducted by Australian researchers.

Petersen, Craig, and Zingaro (2011) analysed 15
introductory programming exams to determine the types
of question and the topics they covered. They concluded
that some questions were too difficult for introductory
programming students due to the high number of
concepts students were required to understand in order to
answer each question.

CRPIT Volume 160 - Computing Education 2015

92

A corpus of work led by Australian researchers has
investigated the use of formal examinations for the
summative assessment of programming. The initial phase
of this research investigated the structure of programming
exam instruments, including an in-depth study of the
types of question used. This involved development of a
scheme to classify programming questions on a number
of dimensions including style, course content, skill
required to answer, difficulty, and complexity (Sheard et
al, 2011). The classification scheme was applied to
questions in 20 programming exam papers from multiple
institutions (Simon et al, 2012). The study found that
introductory programming examinations vary greatly in
the coverage of topics, question styles, skill required to
answer questions, and the level of difficulty of questions.
Harland, D’Souza, and Hamilton (2013) used the same
classification scheme to further explore question
difficulty. The next phase extended this work to design a
set of questions suitable for benchmarking in introductory
programming courses (Sheard et al, 2014).

Another aspect of this work was an investigation of
the pedagogical intentions of the educators who construct
exam instruments (Sheard et al, 2013). This involved
interviews with programming teachers to gain an
understanding of how they go about the process of
writing an exam, the design decisions they make, and the
pedagogical foundations for these decisions. The study
found that the process of setting exams relied largely on
intuition and experience rather than explicit learning
theories or models. Exam formats are typically recycled
and questions are often reused. While there is variation in
the approaches taken to writing exams, all of the
academics take a fairly standard approach to preparing
their students for the exam. Although some academics
consider that written exams are not the best way to assess
students, most tend to trust in the validity of their exams
for summative assessment.

Another group of Australian researchers investigated
summative assessment of introductory programming,
focusing on the use of multiple-choice questions in exams
(Shuhidan, Hamilton, and D’Souza, 2009; 2010). Most
instructors in their study considered multiple-choice
questions appropriate for testing questions on the lowest
levels of the Bloom taxonomy (Bloom, 1956), but less
than half were confident that multiple-choice questions
could be used to test understanding of programming
concepts (Shuhidan, Hamilton, and D’Souza, 2009;
2010). A problem faced in the investigation of exam
questions is the difficulty in applying Bloom’s taxonomy
to classify exam questions according to their cognitive
level. An Australian research team has developed an
online tutorial to train researchers in the use of this and
other taxonomies (Gluga et al, 2013).

Another Australian researcher (de Raadt, 2012)
investigated the use of ‘cheat sheets’ in introductory
programming exams and found that students who took
permitted hand-written notes into their exam performed
better than students who did not have notes.

Non-exam assessment
Research studies on forms of assessment other than
examinations focused mainly on assessment of
programming. Studies of both summative and formative

assessment were found, with some reporting innovative
practices.

A common form of in-semester assessment is the
programming assignment. A grounded theory study by
Kinnunen and Simon (2010; 2012) explored introductory
programming students’ experience of their assignments,
and found that students’ self-efficacy is not necessarily
related to their experiences of success in programming.

A novel approach by Lee, Ko, and Kwan (2013)
embedded assessment into an educational computer game
designed to teach programming. A study of students’ use
of this game showed that incorporating assessment
increased students’ use of the game, the levels they
achieved, and the speed at which they played the game.

Portfolio-based assessment is rather less common than
assignments. Australian researchers Cain and Woodward
(2012) describe an introductory programming unit where
students are assessed entirely on a portfolio of work
produced during the semester. The design of the unit was
founded on Biggs’s constructive alignment (Biggs, 1996),
which proposes alignment between the learning activities,
assessment, and intended learning outcomes. An
evaluation showed that students were positive about their
learning experience. Pears (2010) reports on the use of
portfolio assessment in an introductory programming unit
for the purpose of implementing a continuous assessment
model. He found that students who completed the unit
produced code of a higher quality than typically produced
by first-year students.

Peer review is a form of assessment used for both
formative and summative assessment. Assessing the work
of peers can encourage student engagement and deeper
learning (Carter et al, 2011). Peerwise, a collaborative
web-based tool, enables students to create and share
multiple-choice questions and allows students to peer-
review questions submitted by others. Evaluation of the
use of Peerwise has shown that it can foster student
engagement and have a positive impact on learning
(Denny, Hanks, and Simon, 2010; Purchase et al, 2010).

The use of social media (web 2.0) in education has led
to new forms of assessment where students demonstrate
their learning through online tasks that are often co-
created and visible to their peers, and, in some cases, to
wider audiences. These new forms have brought
challenges for students and teachers in using unfamiliar
authoring tools and applying appropriate citation and
referencing to their work. Studies by Australian
researchers Gray et al (2010) investigated examples of
assessment using different web authoring tools and
showed how principles of good assessment practice were
reflected in each case. Further studies investigated the
affordances of web 2.0 technologies for assessment,
along with issues of ownership, privacy, and visibility of
work (Gray et al, 2012; Waycott et al, 2013). A case
study by Terrell, Richardson, and Hamilton (2011)
describes assessment of a web 2.0 task in an introductory
information management course under the framework of
constructive alignment.

Automated assessment
The time-consuming tasks of collecting, marking, and
giving feedback to students on their assessment work has
led to the development of tools to help manage these

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

93

processes. All of the assessment tools that we found were
specifically designed for use in introductory
programming classes.

Law, Lee, and Yu (2010) present PASS – Programing
Assignment aSsessment System. PASS provides feedback
for programming assignments by executing a set of
instructor-prepared test cases and then comparing the
expected output with the actual output. PASS also allows
the teachers to monitor the testing process of students’
submissions in real time and to share with the entire class
examples that demonstrate good practice. A study of
PASS showed a positive impact on students’ self-
efficacy.

Wang et al (2011) discuss the role of automatic
assessment in introductory programming and present a
tool, AutoLEP, for automatic analysis and assessment of
student programs. They describe their use of this tool for
in-semester formative assessment and for end-of-semester
exams. Students and staff were enthusiastic about the
tool, with staff reporting that students showed increased
interest in programming and improvement of their skills.

Llana, Martin-Martin, and Pareja-Flores (2012)
present an online free laboratory of programming
(FLOP), which hosts a repository of programming
problems that students can attempt and have
automatically assessed. Preliminary results indicate
positive improvement in students’ motivation, skills, and
self-efficacy.

Johnson (2012) presents a tool, SpecCheck, for testing
conformance of programs to the assignment specification
prior to submission. A small study showed that students
were willing to accept having to produce highly
structured homework in return for faster grades and
feedback.

Shaffer and Rossen (2013) present the Programming
Learning Evaluation and Assessment System for
Education (PLEASE), a code-checking and submission
system. Using data collected from the system, the
lecturers were able to identify parts of the course where
students were experiencing difficulties and make
adjustments to the teaching program. The results of a
small study indicated that the tool was useful in
optimising course structure.

Assessment instruments
A few studies report the development of specialised
assessment instruments. Ford and Venema (2010) trialled
the use of short objective tests to test students’ knowledge
of fundamental programming concepts after their
introductory programming course. Gouws, Bradshaw, and
Wentworth (2013) designed a test to determine students’
computational thinking ability prior to entering their
computer science course. Elliott Tew and Guzdial (2010)
propose a method for developing a language-independent
assessment instrument for introductory programming.

The apparent prevalence of plagiarism and collusion is
a topic of concern in the assessment of introductory
programming. Australian researchers Nguyen et al (2013)
present a source code similarity reporting tool developed
as a Moodle plugin. Studies of staff and student reaction
to the tool showed its usefulness in deterring and
detecting plagiarism and its potential as an educative tool.

Summary
The literature on assessment in first-year ICT courses
relates predominantly to programming. Nearly half of the
papers found were from the Australian context, indicating
research strength in this area. Although exam assessment
has attracted the most research, a number of other forms
of assessment have been investigated. Underlying
motivations for academics’ choice of assessment were
often pedagogical: to encourage student engagement,
provide timely feedback, or ensure academic integrity; or
they were pragmatic: to ease the burden of marking. With
the trend of an increased reliance by students on online
course materials, further research is suggested on
methods to improve the automation of assessment and
provide quality feedback on students’ work, while
maintaining the academic integrity of the assessment
process.

3.2 Current Assessment Practice in Australia
The interview questions sought information about
assessment practices in first-year ICT courses in
Australia. The responses gave insights into current
assessment practices and issues faced by teaching staff.
Thematic analysis was used to extract and code responses
and to identify the major issues raised. The responses to
these questions are discussed under the main topics that
were identified from the analysis of the interview data:
assessment design and strategies, exam and non-exam
assessment, and automated assessment. The issues of
provision of feedback, verification of student work, and
other issues associated with academic integrity are
discussed in terms of the different forms of summative
and formative assessment. In reporting the findings,
representative quotes have been included to further
elucidate the discussion.

Assessment design and strategies
Students in first-year ICT courses are typically assessed
via an end-of-semester written examination following in-
semester tasks that may include assignments, portfolios,
tests, tutorial exercises, or presentations. The most
common assessment models used are assignment work
and a final exam combined with either a mid-semester
test or tutorial assessment.

A couple of interviewees mentioned their university
having an overall assessment strategy. Interviewee U8
commented that at her university, “assessment revolves
around problem solving – looking at authentic
situations”. An assessment guide based on Biggs’s theory
of constructive alignment (Biggs, 1996) had been
developed at one university. Constructive alignment was
also mentioned as a theoretical basis of portfolio
assessment at another university.

A number of interviewees had designed assessment
strategies to address the issue of lack of student
engagement. Interviewee U7a explains:

“Previously, I have implemented some unit rules for
encouraging student engagement. For example, the
tutorial attendance is no lower than 85%. That will be
recorded. Secondly, students’ tutorial attendance is
marked and also we have some in-class quizzes.”

Most interviewees mentioned assessment policies at
their university. It is common practice to set thresholds

CRPIT Volume 160 - Computing Education 2015

94

that students must reach in exams in order to pass a unit.
Most often the threshold is 50%, but 40% is also used.
Several interviewees mentioned mandated percentages of
supervised work. In order to avoid over-assessment, some
universities limit the number of assessment tasks per
semester. In a couple of cases, a maximum of four
assessment items was allowed; and in another case two
major assignments and an exam were recommended. At
one university it was a policy to provide feedback on an
assessment task within 2 weeks, and to have an
assessment task within the first 5-6 weeks of the semester
in order to give early feedback to students.

Exam assessment
An end-of-semester written exam is the typical form of
summative assessment in first-year ICT courses. Exams
are seen as necessary to verify that it is the student’s own
work that is being assessed; however, some interviewees
expressed concerns that a written exam is not necessarily
a good method for establishing what the students have
learned. One interviewee mentioned a move away from
exams at her institution but not for first-year courses.
Most exams are weighted between 40% and 60% of the
overall mark for a unit, with 50% the most common
weighting. The lowest weighting was 20% and the
highest was 70% of the overall mark.

The use of multiple-choice questions in exams varies,
and appears to be controversial. One interviewee sets
most of the exam (and mid-semester test) as multiple-
choice questions due to a large enrolment (250 students).
Another uses multiple-choice questions in exams but says
that more than 50% of assessment using multiple-choice
questions would be frowned upon at his university.
Interviewee U17 sets an exam of multiple-choice
questions, arguing that: “the only other option I can think
of is to have programming problems on the exam paper
but the exam is not the place where you can do any
thinking.”

Non-exam assessment
In combination with an end-of-semester exam there are a
variety of other forms of summative assessment. The
most common is assignment work, done individually or
sometimes in a group. Often more than one assignment is
set during the semester. Some interviewees mentioned
checkpoints for assignments where students must show
their tutor their progress. Checkpoints are incorporated to
encourage students to start work early and to give them
feedback. However, they are also used to monitor their
work, which can help determine whether the student has
done the work submitted.

Tests held during semester are a common form of
assessment. These may be mid-semester tests worth from
10% to 20% or a series of smaller tests often conducted
online using the LMS or another tool, such as ViLLE
(Rajala et al, 2007). Some interviewees expressed a
preference for continuous assessment, with smaller tests
rather than one larger test. One interviewee commented
that he does not hold a mid-semester test as the semester
is only 11 weeks long.

Another common form of assessment is tutorial work.
This involves assessment of tasks performed in the
tutorial, often on a weekly or fortnightly basis. Typically
this is low-stakes assessment with a few marks (1-2%)

allocated for each assessment item. Interviewees
mentioned that assessment in tutorials is a strategy for
encouraging students to come to class and to work in
class. An additional benefit was that tutors could observe
students working and alert them to possible cases of
plagiarism. However, interviewee U18, while
acknowledging the benefits of lab assessment, found that
it was “more trouble than it was worth”.

Some universities use portfolio assessment. At one
university portfolio assessment is embedded into each
year level, and students are given training in their first
year to help them understand the expectations of this
form of assessment.

At another university portfolio assessment has been
used for the past five years in an introductory
programming unit. The portfolio assessment has been
designed using Biggs’s constructive alignment.
Interviewee U1 explains:

“This has been one of the changes that I think had a
big impact as well on the pass rates for the introductory
programming unit … a large change, moving away from
assignments and exams to submitting a portfolio of
assessments.”

Interviewee U1 describes the process:
“Each week the student will develop pieces of work

that demonstrate how they’ve met one or all of the unit
learning outcomes and each week we have a formative
feedback process. With the portfolio assessment it has
weekly feedback. It’s 100% portfolio assessed so they
don’t get a grade until the end of the semester.”

Interviewee U1 goes on to explain the grading process
at the end of semester:

“Each student has to submit a portfolio that
demonstrates how they have met all of the unit learning
outcomes. Then there is a scale by which they can meet
[the learning objectives]. To meet them to an adequate
level there are criteria. To meet them to a credit level
there are separate criteria, and so on for distinction and
high distinction. This allows students to work to their
expectations. Some students only want to pass the unit
and they’re not interested in doing really well … That’s
not what their goal is in life.”

At this university the portfolio assessment was a big
change in the way the introductory programming is taught
and students are assessed:

“Each week the students submit work to get feedback
so that they can improve that work and thereby improve
their understanding. There’s no punishment for doing
that. Previously if students did an assessment at the
beginning of semester and did poorly they lost those
marks and they can never get them back. ... With this
what we can do is go back and really focus on those very
first things they didn’t understand and make sure they
understand those before they move on to the next thing.
Some people might take a few weeks to get through the
first few tasks they have to complete whereas others
might get them done very quickly.”

Other less common forms of assessment mentioned
were presentations and submitted homework tasks; one
interviewee gave students a mark if they visited the
lecturer to ask a question.

There were indications of a growing use of social
media for assessment tasks. For example, interviewee

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

95

U7a allowed students to use social media to deliver an e-
learning information resource that they developed as an
assignment task. Interviewee U24 discussed how he uses
blogs and UCROO, an educational social-networking site
based on Facebook. However, another interviewee raised
a concern related to plagiarism when using social media:
“We’ve told them not to talk about the assignment but it’s
hard to police so I discourage it because of the
plagiarism issue.”

Automated assessment
Automated assessment is not used to any great extent in
most universities. The most common use is for quizzes
and multiple-choice question components of tests and
exams. There were some examples of automatic testing of
programming assignments. Interviewee U18 said that
automatic assessment was used for: “80% of the marks –
none of it is automatic, but all of it has automated
support.”

Feedback
The comments by interviewees indicate that feedback is
an important part of the assessment process. At most
institutions feedback is given on all forms of in-semester
assessment. Formative feedback on assignments is often
given verbally during tutorials or consultation times.
Portfolio assessment allows for continuous formative
feedback throughout the semester. Feedback on
summative assessment is typically given verbally for
tutorial tasks and is written on assignment work. In the
case of class tests, feedback is usually just a score.

A number of interviewees described providing detailed
critiques for summative assessment of assignment work
involving comments and scores for individual
components. Assignment work is often assessed using
rubrics. A couple of interviewees stated that they give
feedback on assignment work as a summary at a lecture.
In one case feedback on assignment work is given only in
this open forum; however, students are also given the
opportunity to discuss their work individually with their
lecturer.

Some interviewees mentioned particular approaches to
giving feedback for assignments submitted online. The
GradeMark tool from Turnitin was mentioned by some as
facilitating provision of feedback through dragging and
dropping of comments. Interviewee U9 details a
university-wide policy of e-assessment:

“All student work must be submitted online and
returned online, and that was trialled last year and has
gone live this year. So we have been embedding feedback
in online assessment.”

At interviewee U9’s university all assignment
submission times are recorded and therefore the
timeliness of the feedback provided to students is also
recorded. A permanent record of all feedback is also
stored, in case an issue arises. This university-mandated
policy has the potential effect of allowing an audit of the
quality and promptness of the feedback provided to all
students in every course. Therefore a systematic process
may be implemented to improve the standard and
responsiveness of the feedback delivered to students.

Some assessment tasks enable instant feedback on
performance. Examples are online quizzes and
programming assignments with automated assessment.

One interviewee commented that the instant feedback
was very popular with the students.

The only feedback on exams is through viewing the
exam script. Most interviewees indicated that very few
students do this. Interviewee U16 stated that at his
university comments are written on the exam scripts with
the expectation that at least some students will come and
look at them.

Academic integrity
Three subthemes emerged from analysis of the academic
integrity theme.

Verification of work
In trying to determine whether a submitted assessment
task is the work of the student submitting it, the
interviewees use a range of strategies including
interviewing, monitoring and observing.

Most agreed that interviewing students about their
submitted assignment work was an effective way of
verifying that the work was their own and identifying
possible cases of plagiarism or collusion. A couple of
interviewees described thorough interview processes. For
example, interviewee U18 commented “At the interview
they are expected to discuss the code they’ve written and
make changes to it.” Interviewee U15b proposed that an
interview does not have to be long to be effective:

“You can [ask] just a few pointed questions about
their motivation for the design they made, why they did it
that way, and you can start to poke them a bit and say ‘if
we change this what would happen?’; ‘if you wanted to
do this feature how would you do it?’. I’ve used the
interview and they tend to be pretty good at picking up
where it might not be all the student’s own work.”

Despite its acknowledged effectiveness, interviewing
every student as part of the assessment process is used in
only a few institutions, typically in programming units.
Many interviewees claimed that they have too many
students and too few resources to conduct interviews.
Interviewing had recently been abandoned at a couple of
universities. As interviewee U16 explained, interviewing
was “extremely effective but very time-consuming, so we
just couldn’t keep it up.” A number of interviewees said
that they interviewed students only if they were
suspicious of the work. Interviewee U12 said that
interviews are not used in her university because the
previous head of school was concerned that “it could
mean asking different questions of different students and
could cause [equity] issues.”

Sometimes there are opportunities for less formal
verification approaches where students can be questioned
in their tutorials during the formative stages of an
assignment. Some interviewees are alerted to possible
cases of plagiarism through monitoring students’ work
and observing patterns of participation. Interviewee U24
incorporates a tutorial participation mark as part of the
assignment mark, stating that: “it’s actually a way of
encouraging students to work every week and it’s also a
way of controlling plagiarism.”

Tools are sometimes used in verification of student
work. The plagiarism detection tool Turnitin is frequently
used for text-based assignments; however, the use of
plagiarism detection tools for programming assignments
appears less common. Tools such as MOSS (Measure of

CRPIT Volume 160 - Computing Education 2015

96

Software Similarity), JPlag, and ESP were mentioned for
detection of code plagiarism; however, one interviewee
suggested that plagiarism detection tools were not
suitable for first-year programming as there is usually too
much similar code. Interviewee U2 only follows up on
obvious plagiarism, seeing the assignments “as learning
opportunities as much as assessment.”

However, plagiarism detection tools are not useful in
detecting cases where students have commissioned their
assignment work. Some interviewees rely on the
assignment markers noticing disparities either within the
submitted work or between the submitted work and the
student’s normal work. As interviewee U6 explained:

“you get a pretty good eye for it once you’ve marked a
few things and you know the standard or the hallmark of
the student’s work and if something significantly deviates
from that you can start looking into that. I’ll always keep
an eye out for phrases or chunks of text that look like
they’ve been written in a different style.”

However, this becomes more difficult in large classes
with multiple markers, and does not always cover the
cases where someone else has done the work. A couple of
interviewees mentioned that they had found their
assignments advertised on a code-purchasing site. A
strategy used by interviewee U22 is to give each
assignment a unique name to make it easy to do a Google
search to find any plagiarised code. Another interviewee
mentioned a network of universities that monitored code-
purchasing sites to pick up on cases where assignments
had been commissioned.

Discouraging cheating
A number of strategies were used to discourage cheating.
All universities had invigilated assessment in at least the
exam component. As interviewee U20 noted, “the only
thing you can absolutely guarantee are the moderated
parts, which are the exams.” In a number of universities,
students were required to gain a minimum exam mark,
typically 40% or 50%, to pass a unit. A couple of
interviewees commented that they used exams to pick up
on students who had not done their own assignment work.
However, Interviewee U4 noted that his university has a
policy that “exams are not to be for the purpose of
ensuring that people haven’t cheated.”

Interviewees suggested a number of strategies to
encourage students to do their assignment work. These
were seen as preferable to punitive approaches. Some
stress to their students that writing code on their own will
help them with their exam. One interviewee uses careful
assessment design where assignments are not just taken
from the textbook; a couple of others set assignments
tailored to individual students, allowing students to
negotiate their own assignment. There was no consensus
about whether students should work individually or with
others on their assignments. Interviewee U19 permits
students to work their assignments in pairs as he
considered that “this makes it much less likely that they
will seek outside help”; whereas at another university all
first-year assignments are individual.

Two interviewees explained how they use email
messages to discourage plagiarism, either sent from the
lecturer …

“I would send an email to students normally around
that the time the assignment is due because I think most
plagiarism occurs when students get behind and the
assignment is due and they quickly find a friend to copy
from. I tell them that if they have fallen behind to ask me,
not their mate.” (U13)

… or sent from the head of the school every semester:
“…every semester the HoS sends an email to all

students saying there were X number of students found
guilty of plagiarism this semester and you should all be
taking this seriously. So he also gives feedback to
students about what students have been caught
plagiarising to show them that we’re actually catching
them and doing something about it.” (U17)

Two interviewees also mentioned how Turnitin is used
to discourage plagiarism through detection. Interviewee
U25 mentioned: “We advise the students that their
assignments would be put through Turnitin” and
interviewee U5 mentioned: “They’re all very well aware
of Turnitin because when they put their assignment in
they get a report back.”

Penalties for breaches of academic integrity
Every university has a standard procedure to deal with
academic breaches. Most universities have a designated
officer to ensure that standard penalties are imposed
across the school, the faculty, or the university.
Substantial breaches are dealt with at the higher levels of
management outside the particular school. For example, a
dean’s review was required to deal with substantial
breaches in one university. Many universities maintain
details of academic breaches in a central register or in the
individual student’s file.

The penalties imposed depend on the severity of the
breach, the weighting of the assignment, and whether it is
a repeat offence. Penalties range from zero marks for the
specific assessment, to failing the unit, all the way
through to being excluded from the university.
Interviewee U23 said that for repeat offenders “it could
go all the way to a student having their enrolment
terminated, which would be a very rare thing, but it has
happened in the past.”

Interviewee U12 discussed the importance of
understanding the overall situation when an academic
breach occurs:

“However, it’s not just ‘OK, you’ve plagiarised,
you’re going to get this penalty’. It’s looking at the
circumstances around it and what’s happened; whether
they’ve understood what plagiarism is. And whether
they’ve acknowledged what’s happened.”

When asked what would happen to a student who had
copied something from the Internet and it was their first
offence, interviewee U9 explained:

“They would be educated and make sure that they do
the quiz [students are expected to complete an academic
integrity quiz which is 5% of their overall grade]. They
would be told about proper paraphrasing and citing
sources etc.”

4 Discussion and Recommendations
Although a variety of forms of assessment were identified
in the literature, most interviewees mainly discussed
traditional forms of assessment. The few innovative

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

97

assessment practices found were designed to encourage
attendance (e.g. tutorial assessment), engage students in
learning activities (e.g. social media), or encourage good
work habits (e.g. portfolios). Interviewees’ comments
indicated the high importance they place on giving
feedback on work during semester. Academic misconduct
is a problematic area and there are a range of techniques
used to verify students’ work and discourage plagiarism
and collusion.

A number of areas identified concerning assessment
practice warrant further investigation. Overwhelmingly,
the context for research and discussion in assessment was
in the context of programming. There were a variety of
techniques and tools for assessment of programming, but
very few in other areas of study. We suggest that research
on assessment techniques for other areas of the first-year
ICT curriculum might be appropriate. The recent
adoption of social media has led to innovative forms of
assessment and there were reports of its use in a number
of universities; however, few studies were found that
evaluated the use of this assessment form in first-year
ICT courses. This is an area that could be further
investigated.

A key issue raised by interviewees was that the trend
for increased online delivery had placed demands on
academics to create appropriate assessment tasks for this
context and to verify the identity of the student
undertaking the assessment. There is a clear need for
work in this area. Related to this, there was a perceived
need for more tools to automate assessment and facilitate
feedback for large groups. We propose that these issues
require further research in order to ensure valid and fair
assessment for our first-year students.

5 Conclusions and Future Work
Our investigation of assessment in the first year of ICT
courses found that most of the literature is related to
assessment in programming courses. Assessment of
programming is an active area of research in Australia,
although most of the work is focused on exam
assessment. In contrast, the good practices in assessment
identified in Australian ICT courses are concerned with
portfolio assessment, interviewing students to verify
assignment work, and using appropriate tools to facilitate
and expedite provision of feedback for in-semester tasks
and assignments.

Assessment is a key part of the total learning
experience of our ICT students and has a major impact on
their educational outcomes. This study contributes to our
knowledge of assessment practices in first-year ICT
courses and motivations and impediments to their use.

6 Acknowledgements
This project was undertaken with the support of the
Australian Council of Deans of Information and
Communication Technology through the ALTA Good
Practice Reports Commissioned for 2013–2014 grant
scheme (http://www.acdict.edu.au/ALTA.htm).

The project team acknowledges the work of Dr Beth
Cook, who worked as a research assistant to conduct the
interviews and to prepare the detailed interview notes.

7 References
Barros, J.P. (2010). Assessment and grading for CS1:

towards a complete toolbox of criteria and techniques.
10th Koli Calling International Conference on
Computing Education Research, 106-111.

Biggs, J. (1996). Enhancing teaching through
constructive alignment, Higher Education, 32(3), 347-
364.

Bloom, B.S. (1956). Taxonomy of Educational
Objectives: Handbook I: Cognitive Domain.
Longmans, Green and Company.

Cain, A., & Woodward, C.J. (2012). Toward constructive
alignment with portfolio assessment for introductory
programming. IEEE International Conference on
Teaching, Assessment, and Learning for Engineering
2012, H1B-11.

Carter, J., Bouvier, D., Cardell-Oliver, R., Hamilton, M.,
Kurkovsky, S., Markham, S., McClung, O.W.,
McDermott, R., Riedesel, C., Shi, J., & White, S.
(2011). ITiCSE 2010 working group report: motivating
our top students. 16th Conference on Innovation and
Technology in Computer Science Education – Working
Group Reports, 1-18.

Denny, P., Hanks, B., & Simon, B. (2010). Peerwise:
replication study of a student-collaborative self-testing
web service in a US setting. 41st ACM Technical
Symposium on Computer Science Education, 421-425.

de Raadt, M. (2012). Student created cheat-sheets in
examinations: impact on student outcomes. 14th
Australasian Computing Education Conference, 71-76.

Ford, M., & Venema, S. (2010). Assessing the success of
an introductory programming course. Journal of
Information Technology Education, 9, 135-145.

Elliott Tew, A., & Guzdial, M. (2010). Developing a
validated assessment of fundamental CS1 concepts.
41st ACM Technical Symposium on Computer Science
Education, 97-101.

Gluga, R., Kay, J., Lister, R., Simon, & Kleitman, S.
(2013). Mastering cognitive development theory in
computer science education. Computer Science
Education, 23(1), 24-57.

Gouws, L., Bradshaw, K., & Wentworth, P. (2013). First
year student performance in a test for computational
thinking. South African Institute for Computer
Scientists and Information Technologists Conference,
271-277.

Gray, K., Thompson, C., Sheard, J., Clerehan, R., &
Hamilton, M. (2010). Students as web 2.0 authors :
implications for assessment design and conduct.
Australasian Journal of Educational Technology,
26(1), 105-122.

Gray, K., Waycott, J., Clerehan, R., Hamilton, M.,
Richardson, J., Sheard, J., & Thompson, C. (2012).
Worth it? Findings from a study of how academics
assess students’ web 2.0 activities. Research in
Learning Technology, 20(1), 1-15.

Hahn, J.H., Mentz, E., & Meyer, L. (2009). Assessment
strategies for pair programming. Journal of
Information Technology Education, 8.

CRPIT Volume 160 - Computing Education 2015

98

Harland, J., D’Souza, D., & Hamilton, M. (2013). A
comparative analysis of results on programming
exams. 15th Australasian Computing Education
Conference, 117-126.

Johnson, C. (2012). SpecCheck: automated generation of
tests for interface conformance. 17th Conference on
Innovation and Technology in Computer Science
Education, 186-191.

Kinnunen, P., & Simon, B. (2010). Experiencing
programming assignments in CS1: the emotional toll.
6th International Computing Education Research
Conference, 77-86.

Kinnunen, P., & Simon, B. (2012). My program is ok –
am I? Computing freshmen’s experiences of doing
programming assignments. Computer Science
Education, 22(1), 1-28.

Law, K.M.Y., Lee, V.C.S., & Yu, Y.T. (2010). Learning
motivation in e-learning facilitated computer
programming courses. Computers & Education, 55(1),
218-228.

Lee, M.J., Ko, A.J., & Kwan, I. (2013). In-game
assessments increase novice programmers' engagement
and level completion speed. 9th International
Computing Education Research Conference, 153-160.

Llana, L., Martin-Martin, E., & Pareja-Flores, C. (2012).
FLOP, a free laboratory of programming. 12th Koli
Calling International Conference on Computing
Education Research, 93-99.

Nguyen, T.T.L, Carbone, A., Sheard, J., & Schuhmacher,
M. (2013). Integrating source code plagiarism into a
virtual learning environment : benefits for students and
staff. 15th Australasian Computing Education
Conference, 155-164.

O’Neill, G., & Noonan, E., (2011). Designing First Year
Assessment Strategically, 1-46. http://www.ucd.ie/
t4cms/designifyassess.pdf, accessed 24 Jun 2014.

Pears, A. (2010). Conveying conceptions of quality
through instruction. 7th International Conference on
the Quality of Information and Communications
Technology, 7-14.

Petersen, A., Craig, M., & Zingaro, D. (2011). Reviewing
CS1 exam question content. 42nd ACM Technical
Symposium on Computer Science Education, 631-636.

Purchase, H., Hamer, J., Denny, P., & Luxton-Reilly, A.
(2010). The quality of a PeerWise MCQ repository.
12th Australasian Computing Education Conference,
137-146.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T.
(2007). VILLE: a language-independent program
visualization tool. Seventh Baltic Sea Conference on
Computing Education Research, 151-159.

Richards, D. (2009). Designing project-based courses
with a focus on group formation and assessment. ACM
Transactions on Computing Education, 9(1), 2.

Shaffer, S.C. & Rossen, M.B. (2013). Increasing student
success by modifying course delivery based on student
submission data. ACM Inroads, 4(4), 81-86.

Sheard, J., Carbone, A., & Hurst, A. J. (2010). Student
engagement in first year of an ICT degree: staff and
student perceptions. Computer Science Education,
20(1), 1-16.

Sheard, J., Simon, Carbone, A., D’Souza, D., &
Hamilton, M. (2013). Assessment of programming:
pedagogical foundations of exams. 18th Conference on
Innovation and Technology in Computer Science
Education, 141-146.

Sheard, J., Simon, Carbone, A, Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D’Souza, D., Harland, J.,
Lister, R., Philpott, A., & Warburton, G. (2011).
Exploring programming assessment instruments: a
classification scheme for examination questions. 7th
International Computing Education Research
Conference, 33-38.

Sheard, J., Simon, Dermoudy, J., D’Souza, D., Hu, M., &
Parsons, D. (2014). Benchmarking a set of exam
questions for introductory programming. 16th
Australasian Computing Education Conference, 113-
121.

Shuhidan, S., Hamilton, M., & D’Souza, D. (2009). A
taxonomic study of novice programming summative
assessment. 11th Australasian Computing Education
Conference, 147-156.

Shuhidan, S., Hamilton, M., & D’Souza, D. (2010).
Instructor perspectives of multiple-choice questions in
summative assessment for novice programmers.
Computer Science Education, 20(3), 229-259.

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D’Souza, D., Lister, R.,
Philpott, A., Skene, J. & Warburton, G. (2012).
Introductory programming: examining the exams. 14th
Australasian Computing Education Conference, 61-70.

Terrell, J., Richardson, J., & Hamilton, M. (2011). Using
web 2.0 to teach web 2.0: a case study in aligning
teaching, learning and assessment with professional
practice. Australasian Journal of Educational
Technology, 27(5), 846-862.

Thomas, R. N., Cordiner, M., & Corney, D. (2010). An
adaptable framework for the teaching and assessment
of software development across year levels. 12th
Australasian Computing Education Conference, 165-
172.

Wang, T., Su, X., Ma, P., Wang, Y., & Wang, K. (2011).
Ability-training-oriented automated assessment in
introductory programming course. Computers &
Education, 56(1), 220-226.

Waycott, J., Sheard, J., Thompson, C., & Clerehan, R.
(2013). Making students' work visible on the social
web: A blessing or a curse? Computers & Education,
68, 86-95.

Yorke, M. (2011). Assessment and feedback in the first
year : the professional and the personal. 14th Pacific
Rim First Year in Higher Education Conference, 1-31.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

99

CRPIT Volume 160 - Computing Education 2015

100

Understanding the Teaching Context of First Year ICT Education in
Australia

 Matthew Butler Judy Sheard Michael Morgan
 Monash University Monash University Monash University
 Australia Australia Australia
 matthew.butler@monash.edu judy.sheard@monash.edu michael.morgan@monash.edu

 Katrina Falkner Simon Amali Weerasinghe
 University of Adelaide University of Newcastle University of Adelaide
 Australia Australia Australia
katrina.falkner@adelaide.edu.au simon@newcastle.edu.au amali.weerasinghe@adelaide.edu.au

Abstract
This paper reports on an investigation of the teaching
context of first-year Information and Communications
Technology (ICT) courses at Australian universities and
the influences of this on students’ learning experiences.
This is part of a larger project which aimed to identify and
disseminate good practices in ICT teaching at Australian
universities with a specific focus on the first-year
experience. We conducted a systematic review of the
research literature from the previous five years and an
online search of information on existing courses and
content, and interviewed 30 academics concerned with
design and delivery of the first-year learning experience
in 25 Australian universities. From our study of teaching
context we gained a comprehensive view of the current
curricula, teaching models and teaching spaces and were
able to outline the unique challenges that our first-year
ICT students face and to recommend areas for further
investigation..
Keywords: First Year; Student Experience; Curriculum;
Learning Spaces.

1 Introduction
The transition from secondary to tertiary studies is a

difficult process for many students and it is therefore
important to understand the influences on this experience.
The relatively high rate of attrition in ICT courses
indicates that there may be challenges that are unique to
this field. While there are a number of studies of the first-
year experience across the university sector, to investigate
these challenges it is necessary to consider the ICT
context. The volume of the literature concerned with
specific ICT education indicates that a lot of worthwhile
research is being conducted but this research needs to be
properly collated and evaluated in order to drive change
in practice.

In this paper we report findings of a study that
investigated the teaching context in first year Information

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D. D’Souza and K. Falkner,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

and Communications Technology (ICT) courses in
Australia. The study comprised a review of recent
literature on what content is taught in ICT courses, the
teaching delivery models used and where the teaching
takes place; a survey of Australian university websites;
and interviews of Australian academics involved in
teaching first year ICT courses. The aims of the study
were: 1) to gain an overview of what is taught in first year
ICT courses in Australia; 2) to gain understanding of the
teaching delivery models used; 3) to gain understanding
of where teaching is conducted; and 4) to identify
examples of good practice in first year ICT courses in
Australia that could be adopted and disseminated widely.
This study is part of a larger project of teaching practices
in first year ICT courses.

2 Research Approach
This section describes the approach used to investigate

the teaching context in the first year of ICT courses. The
investigation was part of a project that investigated the
broader topic of research and practice in ICT courses in
Australia. To conduct the project, the team developed a
framework with six themes that together describe the
learning experience: “what we teach”, “where we teach”,
“how we teach”, “how we assess”, “learning support” and
“student support”. As the focus of this paper is about
teaching context, only findings from the “what we teach”
and “where we teach” themes will be reported.

The project was conducted in two phases:
Phase 1, Literature review: An examination of

current trends and good practice in ICT education
nationally and internationally was conducted in the form
of a detailed systematic review of relevant research
literature. The review covered national project reports and
key journals and conferences in computing education.

Phase 2, Survey of current practice: Information
about ICT courses in Australia was gathered from a
survey of university websites. In addition, extensive
interviews were conducted with 30 first-year ICT
academics from 25 universities in Australia, using an
interview script based upon the six themes. All
universities that delivered ICT courses were approached.
Exemplars of good practice were identified from the the
interviews.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

101

2.1 Literature Review
In order to identify current research trends and issues

concerning the first-year experience of ICT students in
higher education, particularly in the Australian context, a
detailed and systematic review of the available literature
was conducted. To ensure currency, the scope of the
literature was limited to research papers published
between 2009 and 2014. Full peer-reviewed research
papers published in high-quality academic journals and
conferences relevant to the area of study were targeted.

The review began with a series of keyword searches in
Google Scholar of relevant terms in the date range from
2009 to 2014.	 Combinations of keyword searches were
carried out in Google Scholar and the searches of
combinations of terms continued until no new relevant
research papers were being identified. Similar keyword
searches were also conducted in the IEEE Xplore and
ACM Digital Library databases. In order to ensure that no
relevant literature was overlooked, a manual search of
selected high-quality research journals and conferences in
the area of computing education was conducted for the
years 2009-2014.

2.2 Survey of current practice
A survey of current practice was conducted via a

survey of online information on ICT courses at all
Australian universities and interviews of relevant
academics. The purpose of the interviews was to collect
detailed information about teaching practices and factors
impacting the first-year experience of ICT students in the
Australian higher education context. In order to gain this
information the project targeted academic staff directly
involved in the design, coordination and delivery of first-
year courses, as these participants were likely to provide
the required insights into the first-year experience and to
be in a position to highlight recent changes and examples
of good practice.

Participants were selected from each participating
university in Australia that delivered an ICT course.
Project members nominated relevant people at various
universities from their knowledge of the ICT education
community. Where this could not be done, the contact
details listed on faculty and degree websites were used to
initiate e-mail contact. Thirty academics from twenty-five
Australian Universities were interviewed. These included
six Group of Eight (Go8), three Australian Technology
Network (ATN), six Innovative Research (IRU)
universities and three Regional University Network
(RUN).

The interview script was designed by the project team
using the six project themes as a framework. The script
consisted of a number of semi-structured questions. The
questions related to this paper can be found in the
Appendix. The interviewer was encouraged to ask follow-
up questions if interesting practices or new issues
emerged. The script was trialed in two pilot phone
interviews, and slight modifications were made to reduce
duplication of the topics covered and to reduce the likely
interview time. The revised script was used for all
subsequent interviews. Interviewees were sent the list of
questions prior to the interview so that they would be
aware of the nature of the questions to be covered. All
interviews were conducted by telephone during February

and March 2014, at a time convenient to the interviewee
concerned. A consistent approach was assured by the fact
that all interviews were conducted by the same person.

Twenty-nine interviews (one interview involved two
participants) were recorded, ranging in duration from 16
to 74 minutes and averaging 53 minutes. Detailed
summary notes were taken during each interview. After
each interview the notes were elaborated upon and
organised into the six themes. The notes were annotated
with the approximate times at which the discussion could
be found in the audio recording. The interview notes were
then examined to find important issues and to identify
possible case studies of good practice for further
investigation. Detailed quotes from relevant interviews
were subsequently transcribed as required. A more
detailed description of the methodology used in this
project can be found at Experiences of first year students
in ICT courses: good teaching practices: Final Report:
ICT student first year experiences
(http://www.acdict.edu.au/ALTA.htm).

The following section reports the results of our
investigation into teaching context. We first describe the
curricula and curriculum designs of first year ICT courses
drawing upon the data gathered from the “what we teach”
theme. Following is an investigation of teaching models
and teaching spaces drawn from the “where we teach”
theme. These themes cover the broad area of the teaching
context.

3 What we teach
Our investigation of what we teach focused on the

core curriculums of the first year of ICT courses in
Australian universities and the process of curriculum
design. Relevant courses from all Australian universities
were identified and the units offered to first-year students
examined to identify similarities between courses and
units as well as key areas of differentiation. The teaching
of computer programming was explored in detail as this
topic is widely researched and discussed in the literature.
Also covered in this theme were factors influencing
course and unit design, such as the guiding principles
adopted from the Australian Computer Society (ACS)
and Association for Computing Machinery (ACM)/
Institute of Electrical and Electronics Engineers (IEEE).

3.1 ICT Courses in Australia
A survey of ICT courses in Australian universities

found that all but one university (University of Notre
Dame) offer an ICT or related degree. While most degree
offerings are located in capital cities, a substantial
number are offered in rural locations, and a number in
off-campus mode.

The faculties that offer ICT degrees are predominantly
Information Technology, Science, Engineering, or
Business (or faculties that are a combination of these
disciplines). There are now very few dedicated ICT
faculties in Australian universities. Different ICT degrees
are in some cases taught within different faculties in the
same university, depending on the context of the degree.
For example, a Computer Science degree may be located
within an Engineering or Science faculty or department,
while an Information Systems degree may be located
within a Business faculty or department. In most cases,

CRPIT Volume 160 - Computing Education 2015

102

however, one faculty takes ownership for all ICT-related
degrees.

The degrees offered by Australian universities
typically fall into one of the following broad
categories/contexts:

• general ICT
• ICT with a major or specialisation. Majors

typically include
o games programming
o software/application development

(including mobile)
o security
o networks
o web design and development
o multimedia

• software engineering
• computer science
• business information systems

General ICT courses, most with majors, make up the
majority of courses offered. Computer science ranks
second, software engineering third, and information
systems / business information systems fourth. There are
also a number of miscellaneous ICT courses focusing on
other specialist areas such as multimedia, game
development, cyber-security and engineering.

In keeping with our focus, we consider units situated
in the first year of a typical progression in these courses.
Units studied in first year depend on the particular course
being taken; however, there is some consistency in units
undertaken by students in their first year of ICT study.
Common units include:

• programming
• database
• systems analysis
• computing fundamentals
• mathematics (predominantly in computer

science courses)
Programming and database are the units most

frequently studied by first-year ICT students.

3.2 Literature Perspectives
In the literature search 28 research papers were found

related to the theme of ‘what we teach’ in the context of
ICT university courses. Thirteen papers were focused on
the first year of ICT courses and ten papers were set in
the Australian context. However, only three papers were
set in both Australian and first-year contexts (Corney,
Teague & Thomas, 2010; Mason, Cooper & de Raadt,
2012; Mason & Cooper, 2014) and all three of these
papers relate specifically to programming.

Approximately half the papers found discuss high-
level curriculum design issues. These papers typically
present guides and frameworks for using noted ICT
charters (such as ACS, ACM, IEEE, and SFIA) in
curriculum design, often highlighting specific case
studies of recently redesigned curriculums
(Adegbehingbe & Obono 2012; Koohang et al, 2010;
Herbert et al, 2013a). Because of this, the literature on
curriculum is often not focused on the first-year context.
While discussion of curriculum design can identify
certain needs for structuring courses with supporting

progressions, these papers typically discuss design of an
entire three- or four-year curriculum.

Moves to adopt SFIA in curriculum design are evident
in the more recent papers. Several Australian universities
appear to have adopted this framework as a key charter in
redesigning their curriculums, with the University of
Tasmania being a well-documented example of this
(Herbert et al, 2013a; 2013b; 2013c; 2014). The SFIA
framework is of importance in its presentation not only of
core skills as they relate to industry but also of levels of
responsibility, which can be aligned to different year
levels in a course (von Konsky, Jones & Miller, 2014).
Consequently, these papers provide some insight into
curriculum design within the first-year context.

The publications relating most closely to the first-year
context deal with narrower fields of study within the first
year. For example, discussion of programming
curriculum and issues in most cases relates specifically to
novice programmers, thus usually the first-year context.
Indeed, programming was clearly the most represented
context, with 11 papers relating specifically to curriculum
issues within this area of study. Mason, Cooper & de
Raadt (2012) and Mason & Cooper (2014) provide a
comprehensive analysis of trends in introductory
programming courses in Australian universities. They
note a fragmentation of choice of the programming
language being used, and a reduction in the use of Java as
a language in introductory programming courses. Issues
raised by other researchers relate mainly to the choice of
programming language and environment (Fincher et al,
2010; Stefik & Siebert, 2013), and restructure of
curriculum to better support novice programmers
(Corney, Teague & Thomas, 2010; Hu, Winikoff &
Cranefield, 2013; Thota & Whitfield, 2010). The
narrower focus suggests that notions of what we teach are
more easily placed in the context of a specific year and
unit, while broader curriculum issues (both design and
content) will focus on whole courses.

Other specific contexts for discussion of curriculum
issues were found, although much less prevalent than
those relating to programming. Subject areas found
include computer systems (Benkrid & Clayton, 2012;
Patitsas et al, 2010) and software development (Thomas,
Cordiner & Corney, 2010). Other sub-themes that were
found in the literature relating to curriculum include
investigation of gender issues (Koppi, Roberts & Naghdy,
2012) and career progression and its implications for
curriculum design (von Konsky, Jones & Miller, 2014).

In summary, there is little recent literature about what
is taught to first-year students in the Australian context.
While there is research relating to curriculum
development in higher-education ICT courses, it tends not
to address specific first-year issues, which are typically
reported on in relation to specific topics such as
programming. This suggests that there is scope for further
research relating to how curriculum is developed in
consideration of the needs of first-year students.

3.3 Current Practice in Australia
The interview questions related to the theme of ‘what

we teach’ sought added insights into the nature of first-
year ICT courses in terms of student demographics, the

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

103

development of the teaching curriculum and, more
specifically, programming languages taught.

Demographics of first year of ICT courses

Enrolments in the first year of ICT courses vary
considerably across Australia, ranging from
approximately 100 to 500 students. According to
interviewees it is often difficult to gauge exactly how
many students are in the first year of a course, as different
students enter the courses by different pathways, some of
which will attract credit for designated units. Many
interviewees made informed estimates of the numbers on
the basis of enrolment numbers in units that were core for
first-year students, along with the course information of
those students. Based on the interviewees’ responses, just
over 5000 first-year students were estimated to be
enrolled in ICT courses across the 25 universities
contacted.

The mix of students also varied considerably across
the universities. Many interviewees were not privy to the
breakdown of local versus international students, but
most were able to give informed estimates, again based
on class demographics. In view of the uncertainty of these
estimates, we present only the broad picture. Six
institutions indicated very low numbers of overseas
students (less than 10%), while another six indicated that
50% or more of their first-year cohort were international
students. Between these extremes, the majority of
interviewees (7) estimated their international enrolments
as 20-30% of their cohorts. There would appear to be
scope for research into the internationalisation of the
teaching curriculum, not only because of these
demographic estimates, but also because of the
international nature of ICT.

Curriculum design

Interviewees were asked whether the design of their
courses was influenced by any external curriculums. Most
interviewees indicated that their courses are accredited by
the Australian Computer Society. Many mentioned that
their course designs were influenced or inspired by
external bodies such as the ACS, ACM, and IEEE as well
as industry companies like CISCO. Although these
organisations played an important role in the
consideration of their curriculum design, interviewees
were often unsure exactly how the frameworks provided
by these organisations were specifically used. An
illustrative response:

“The degree programs are a combination. It is not
directly taken from the ACM/IEEE computer science
curriculum but they were used as input into the design of
the course. So we used the ACM/IEEE curriculum as well
as the ACS guidelines. The courses are ACS accredited.”
(U1)

There is little literature on the exact role of bodies
such as ACS, ACM, and IEEE in curriculum design,
suggesting an opportunity for research to seek greater
insights into the role of such formal bodies in the design
and development of the tertiary curriculum.

The use of SFIA in curriculum design was notably
absent from the interviews. Recent literature suggests that
it can play a major role in the design of courses, so it was
of interest that it was not mentioned by any interviewees.

This is likely to change in the near future, as SFIA gains
awareness through both the ACS and published literature.

Programming languages

Interviewees were asked what programming languages
are introduced to students in their first-year ICT courses.
The most common languages were Java (16) and Python
(12). Java has been well documented as a language used
to teach students programming both at a foundation level
and also as an introduction to object-oriented
programming. While Java remains a popular choice, a
number of interviewees reported recent moves away from
Java as an introductory language, in many cases to
Python. Interviewee U4 explained this shift in languages:

“Java was seen as having too much excess baggage to
get people off the ground that just wanted to learn the
basics. They didn’t go into object-oriented or object-
based programming so the need for all of the concepts
around object-oriented programming weren’t necessary
and so instead they wanted to build the strength in the
fundamentals and the wisdom was that Python would be
better.”

Another interviewee echoed these sentiments, noting
that:

“We are considering at the moment moving away from
Java and maybe going to something like Python. We’ve
used Java for a fair while but it’s losing relevance in a lot
of areas and is a quite bloated language. Something like
Python is more elegant and sophisticated in some ways
and enforces some good program structure and at least
as good at formatting, so it’s better for the first-year
students to introduce them to the programming
concepts.” (U6)

In contrast, interviewee U7b indicated a move from
C++ to Java as the introductory programming language,
“Changed from C++ to Java, very popular in industry,
slightly easier.”

Concerns have been raised in the literature about the
significant learning challenges faced by novice
programmers starting with an object-oriented language
such as Java, and some responses in the interviews appear
to address these concerns. While a number of
interviewees discussed their shift to Python, others had
moved to less traditional languages and environments
such as Processing, Gamemaker, and Scribble (a variant
of the Scratch programming environment). The literature
also includes the move to environments such as Alice.
These examples appear to place the emphasis on problem
solving rather than language syntax or complex
programming paradigms; however, little research has
been found that describes the learning outcomes of these
changes.

One interviewee said that the move from Java to
Scribble, a visual programming language, was to “get
students to focus on solving problems rather than
concentrating on syntax” (U15b). A program is
constructed in Scribble by assembling visual blocks
representing code segments, a process that shields novice
programming students from syntax and code and allows
them to focus on programming logic. This is seen as a
more accessible environment than a traditional
programming language for introducing fundamental

CRPIT Volume 160 - Computing Education 2015

104

programming concepts to novice programmers. As
interviewee U15b explains:

“It was a fair undertaking, and it was a fairly big
decision to say let’s not start students in a syntactic
language like Java. I mean there is always the question of
which language do you choose. So it was a very
concerted effort to get away from that and to say no we
need to focus on creating problem solvers first.”

Interviewee U15b observed that the student
evaluations for the unit have been really good, but the
important consideration is how the students will perform
in subsequent units. Students study at least one more
programming language in their course, for example,
Python, Java or C++. The transition to these subsequent
programming units is currently of some concern, and the
effects of the change are currently being formally
evaluated.

The introduction of programming languages focused
on mobile development platforms is a relatively recent
inclusion in the programming curriculum prompted by
current industry trends. Interviewees U24 (two
interviewees were involved in this interview at the same
time) described the introduction of Objective C and XML
as the programming languages for smartphone/tablet
development in iOS:

“We actually have started introducing some new
programming languages. We now include Objective C
We now also teach XML and we’ve introduced
smartphones and iPads into our learning space too.”

This further demonstrates the diversity of approaches
that are currently being explored in introductory
programming units. “We introduced the Mac to replace
the tablet PCs two years ago and they were introduced so
we could teach iOS languages.” In part this change was
made to appeal to students by targeting a computing
environment, in the form of mobile devices such as
smartphones and tablets, with which the students engaged
on a regular basis. In terms of research, a formal
evaluation and comparison of the range of approaches
currently being trialled in the Australian context would be
of benefit.

Some universities place the introduction to
programming into a web development context, using
web-scripting languages such as Javascript and HTML.
Other languages mentioned included Visual Basic, C, C#
and ActionScript (Flash). One interviewee indicated that
a number of languages are covered across their degrees,
but not in the first programming unit:

“What we do in the first semester. We teach it in a
language neutral fashion… We deliver the material in
language neutral fashion so it’s about the programming
concepts not specifically about the one language. We
teach them the way to do something in general not in a
particular language. Then we have material that helps
them learn how to apply those concepts in a particular
language.” (U1)

3.4 Summary
What the literature and especially the interviews

highlight is that there appears to be little consensus as to
what programming language or environment best
supports novice programmers. Many institutions
recognise the inherent difficulties for novice

programmers, but the quest for the ideal learning
approach appears far from over.

The study of curricula and curriculum design provides
a background for our investigation of teaching context in
terms of teaching models and teaching spaces.

4 Teaching Context
Our investigation of teaching context was drawn from

the ‘where we teach’ theme which focused on the
teaching models and teaching and learning spaces used
for first-year ICT courses in Australian universities. It
considered the design and use of new teaching spaces and
the redesign of existing spaces, either physical or virtual.
For virtual teaching spaces, the theme included teaching
and learning in situations enabled through the use of
mobile and ubiquitous technologies.

4.1 Literature Perspectives
The systematic literature review found 13 papers that

were concerned with the ‘where we teach’ theme. All of
the papers were set in the higher education sector and in
the context of programming – all but one of them in
introductory programming; two were Australian studies.
The papers found for this theme report studies of a variety
of different teaching and learning spaces. Govender
(2009) explored the lecture setting in an investigation of
the influence of the learning context on how students
approach the task of learning to program and their
ultimate success. Cheryan, Meltzoff & Kim (2011)
investigated the effect of virtual learning environment
design on male and female students’ interest and
anticipated success in an introductory computer science
course. Both studies concluded that context was an
important factor in students’ success in learning to
program.

A study by Howles (2009) compared the impact of
different learning environments on student retention. The
findings revealed that a change from a studio
environment (20 students with access to computers) to an
active learning environment (40 students without
computers) did not negatively impact student retention.

Australian researchers Alammary, Carbone & Sheard
(2012) describe the implementation of a virtual ‘smart
lab’ for assisting programming lab class teachers. The
smart lab monitors students’ progress as they perform
programming tasks, enabling instructors to readily
respond to individual students and assess the overall
progress of the class. An evaluation demonstrated the
usefulness of the smart lab in providing timely and
appropriate feedback to the teachers. Another Australian
study by Maleko, Hamilton & D’Souza (2012) explored
novices’ perceptions and experiences of a mobile social
learning environment designed to enhance student-to-
student interactions. A key finding of this study is that
most students engaged more with their learning and with
colleagues in the mobile social environment than in the
face-to-face environment. Small learning communities
were formed, enabling students to interact regardless of
their physical location or the time of day.

Considerable resources have been expended on the
development of environments to support the teaching and
learning of programming, and a number of these have
been specifically designed for introductory programming

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

105

students. There are many studies of the use of these
environments for engaging students in the learning
process and helping them to learn to program. Verginis et
al (2011) studied a web-based learning environment,
SCALE (Supporting Collaboration and Adaption in a
Learning Environment), and found it valuable for
supporting learning in introductory computer science.
Moons and De Backer (2012) present an interactive
programming environment, EVizor (Educational
Visualization of the Object Oriented Run-time),
implemented as a Netbeans plugin. The EVizor system
visualises program execution and incorporates
explanations and embedded quizzes. The system design is
founded on constructivist and cognitivist learning
theories. A series of evaluations and experiments showed
that it is useful in helping students understand program
behaviour.

Fincher and Utting (2010) introduce Alice (Cooper,
2010), Scratch (Maloney et al, 2010) and Greenfoot
(Kölling, 2010), three environments widely used in
introductory programming courses, each of which has a
different focus and approach. The design rationale and
pedagogical approach that each supports are explained in
a series of articles by the designers. Wellman, Davis &
Anderson (2009) introduced Alice into an introductory
programming course to increase students’ interest in
computer science. They report that students were
motivated and engaged in the learning activities.
However, Garlick and Cankaya (2010) had a different
experience. In an experimental study they found that
students who used Alice in their introductory
programming course had lower performance and
responded less favourably compared to students who
were given traditional instruction.

In summary, there are very few examples of recent
literature discussing the first-year ICT learning
environment in the Australian context, therefore further
research is needed in this area. Current research focuses
on specific examples of virtual lab software, the inclusion
of social networking tools to promote learning
communities, web-based collaborative learning
environments, and a variety of introductory programming
environments. There is a need to conduct further research
on both physical and virtual learning environments that
are tailored to the needs of first-year students in the ICT
context.

4.2 Current Teaching Context in Australia
The interview questions related to the teaching context

sought detailed information about teaching spaces in
Australian universities and how they are used. In addition
to describing the physical teaching spaces, interviewees
were asked to provide information about their teaching in
online or blended environments. Their responses gave
insights into current teaching models and into the
physical and virtual spaces where teaching is conducted.
The responses to these questions are discussed under the
main topics that were identified from the analysis of the
interview data.

Teaching models

An important factor in a discussion of ‘where we
teach’ is the teaching model that is used. The most

common teaching models used in the universities in our
study are the traditional lecture/laboratory and
lecture/tutorial/laboratory combinations. However, there
were indications that a number of institutions had moved
or were in the process of moving to different models,
often involving a shift from physical to virtual teaching
spaces. Many interviewees mentioned recent changes to
lectures. Interviewee U21 described a radical change
where a new degree has been implemented with only a
single introductory lecture. Subsequently, students are
provided with audio video clips and a text book in paper
or electronic form. Tutorial classes are either on-campus
or online.

A number of interviewees indicated that the teaching
time devoted to lectures has been reduced. For example,
interviewee U10 stated:

“So we used to have a very standard model of 3
lectures a week and 1 practical session and then we
moved it to 3 lectures a fortnight and 1 practical session
and 1 collaborative workshop session every week.”

In another example interviewee U7b indicated that
they had:

“Cut down lecture 2 hours to 1, less talking at the
students, the boring stuff. Gone with a tutorial and a
practical session, more hands on stuff particularly for the
first-years.”

In addition, “All recordings lectures and materials go
onto an online Blackboard forum,” so students can access
them when convenient.

Several interviewees mentioned the reduction of
lecture time in order to increase practical lab sessions. For
example, interviewee U24 commented:

“first-year programming a special case. … Combined
lecture and practical into a workshop. For online
students they submit weekly tasks to the lecturer and she
checks and gives feedback within 24 or 48 hours”.

In this case the lecturer combined the traditional
lecture and practical session into a 3- or 4-hour session (2
hours, a 1-hour break, then another 1 or 2 hours) and
called it a workshop. Interviewee U24 observes
enigmatically that “Workshop mode equals flipped
classroom minus the pre-class activities.” Although the
reduction in lecture time and the corresponding increase
in practical sessions was seen to be more resource-
intensive it was also seen to be more productive in terms
of increased student engagement and therefore increased
student retention.

The most common teaching innovation discussed by
interviewees was blended learning, and this was having
an influence on the way teaching space is used. From the
interviewees’ comments, however, it is apparent that
there are various understandings of the term ‘blended
learning’ and a variety of ways in which this teaching
model is implemented. A couple of interviewees used the
term to mean the provision of online resources to both on-
campus and online students. Several interviewees were
exploring the ‘flipped classroom’ model, where the
homework and class activities are reversed. Interviewee
U18 said that first-year students had reacted negatively to
this teaching model. She felt that the first-year students
were not organised enough to watch the videos on their
own and she questioned the suitability of this model for
first-year students. In a more extreme example,

CRPIT Volume 160 - Computing Education 2015

106

interviewee U7a indicated that they favoured “Small
lectures, big tutorials. Light presentation and heavy
practicals.” They indicated that they had “Removed face
to face lectures, some years ago” and placed “More
emphasis on tutorials with the support of online modules
using videos”. U7a further explained that “Students need
to look at video lectures and background readings before
[the] tutorial.”

Physical teaching spaces

Interviewees gave descriptions of their various
physical teaching spaces. Lectures are typically held in
theatres with capacities ranging from 100 to 400 students.
Tutorials are usually held in classrooms holding 30 to 40
students. Laboratory classes are typically held in
computer labs with space for 20 to 30 students, although
a couple of interviewees mentioned labs of 40 to 50
students.

Most interviewees agreed that lecture theatres are less
than ideal teaching and learning spaces. Many
interviewees raised the issue of lack of student attendance
at lectures. While there is a general shift towards reducing
time spent in lectures or replacing lectures with more
practical classes, there is also a considerable effort being
made to improve the learning experience in lectures.
Some have introduced new teaching models for lectures
and others employ a variety of techniques to motivate and
engage the students.

Recording of lectures is now commonplace, with half
the interviewees indicating that all lectures are recorded
at their institution. Some interviewees stated that lecture
recording is mandatory while others mentioned an opt-out
policy. At a couple of institutions, where lecture
recording systems are not readily available, some
individuals record their own lectures. Only a couple of
interviewees do not record their lectures in some way.
The most common recording system is Echo360; others
in use are Blackboard Collaborate and Lectopia. The
availability of lecture recordings (and in some cases
tutorial classes) has reduced the impetus for students to
attend on-campus.

Most innovation in the design of physical teaching
spaces is apparent in the computer labs where practical
classes are held. Computer labs are traditionally set up
with straight rows of tables and a computer for each
student. At a couple of institutions there are variations on
this arrangement. In one institution the lab has multiple
fronts and in another the computers are placed around the
four walls of the lab with the teacher in the centre.
However, a number of institutions have made more
radical changes to their computer labs, redesigning them
into collaborative learning spaces. One interviewee
described a room with tables seating 4 to 6 students, each
with a large screen and one keyboard. Another described
a similar teaching space with facilities for displaying the
work of each group on a central screen for the whole
class to view. Some of these labs hold more students than
traditional labs and have been designed as flexible
learning spaces.

A few interviewees mentioned more radical designs in
teaching spaces. At one institution there are dual teaching
spaces where students can move from a classroom setup
to a computer lab in a large room divided by a partition.

Another, smaller, institution uses only one type of
teaching space. The room seats 50-60 students at eight
sets of reconfigurable tables. This flexible teaching space
has multiple fronts with a data display unit, fixed and
mobile white boards and multiple power points around
the perimeter of the room and hanging from the ceiling.
One interviewee, describing a radical shift away from the
traditional teaching model to a blended learning model,
said that their learning spaces include “libraries, site
inspection and even corridor meeting, tearooms and
virtual teaching environments” (U7a).

Virtual teaching spaces

Some interviewees acknowledged the increasing
importance of virtual teaching spaces. Online learning is
happening at most institutions, either with units taught
only in online mode or with units taught online in
combination with on-campus teaching. A number of
interviewees mentioned small cohorts of online students
in their on-campus units. Several indicated that all their
units are available both on-campus and online, with
students having access to teaching resources made
available to both cohorts. They saw no difference
between the resources provided to their on-campus and
off-campus students. As interviewee U24 commented:

“I think we have two main teaching spaces – one is the
physical space and one is virtual space. The virtual space
is constructed with as much care to the design as the
physical space is.”

All institutions use a form of Learning Management
System (LMS) where typically all course materials are
placed. The most commonly used LMS are Blackboard
and Moodle. A couple of interviewees emphasised that
these are not really learning environments but just
delivery platforms for course content. One institution uses
Captivate Workshop for delivery of learning objects. A
couple of interviewees mentioned other online
environments developed for use in specific courses.
ViLLE (a visual learning tool) is a collaborative
education platform developed specifically for learning
programming, and IVLE (Informatics Virtual Learning
Environment) is an online interactive instructional system
for use in teaching programming and algorithmic problem
solving.

4.3 Discussion
The aims of the study were: 1) to gain an overview of

what is taught in first year ICT courses in Australia; 2) to
gain understanding of the teaching delivery models used;
3) to gain understanding of where teaching is conducted;
and 4) to identify examples of good practice in first year
ICT courses in Australia that could be adopted and
disseminated widely. A key finding from our
investigation of what is taught in first years ICT courses
was that there is little consistency with regard to the
programming languages that are introduced to new
programmers in ICT courses. While Java and Python are
very prominent across the universities of the Australian
academics we interviewed, there appears to be no
consensus on the best approach to take with novice
programmers. This is also reflected in the literature, with
research often highlighting the problematic nature of
introducing both programming concepts and syntax.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

107

There has been a perceptible trend towards programming
environments where the focus has moved away from
syntax to problem solving. This is an area that needs
investigation to determine how students respond to
learning programming in these environments.

Further scope for research is in the use of formal skills
frameworks provided by organisations such as ACS,
ACM and IEEE. There is little literature and little
understanding by the interviewees of exactly how course
curriculums are developed with these frameworks in
mind. There are a number of recent publications
regarding SFIA and its role in curriculum development,
and literature such as this may present an opportunity for
more formal acknowledgement of these frameworks in
this area.

Our investigation of the literature on teaching context
found little specific research on the physical and virtual
learning spaces tailored specifically for the needs of first-
year ICT students in the Australian context. This
contrasts strongly with the significant changes to practice
highlighted by the interviewees, including changes to the
balance between lectures and practical labs and the
changing nature of the layout of computing laboratories.
A prominent topic raised by interviewees was the design
and use of teaching spaces to engage students in active
learning experiences. The layout of physical teaching
spaces was reported to be increasingly diverse and
flexible. Various new physical and virtual learning
environments are tailored to the needs of first-year ICT
students. Further research is needed to assess the impact
of these changes to the teaching environment on student
performance and on the student experience.	 	

There were strong indications from the interviewees
that the provision of online resources is more prevalent,
resulting in an increase in flexible study options,
including the integration of social networking tools to
assist the formation of student learning communities.
These changes highlighted the need for further research in
order to assess their impact on the first-year ICT student
experience.

5 Conclusion
Our investigation of teaching context in first-year ICT

courses in Australia has highlighted many new initiatives
in teaching delivery models and the design of teaching
spaces, driven largely by a desire to provide interesting
learning environments and active learning experiences.
The research has identified the need to undertake further
research investigating such areas as curriculum design,
development of graduate attributes, and understanding the
needs of the ICT industry. An imperative now is also to
assess the effectiveness of the innovations identified in
engaging students and enhancing their learning. Evidence
from such evaluations is essential for promotion of these
innovations and driving change in the ICT teaching
sector.

6 Acknowledgements
This project was undertaken with the support of the

Australian Council of Deans of Information and
Communication Technology through the ALTA Good
Practice Reports Commissioned for 2013–2014 grant
scheme (http://www.acdict.edu.au/ALTA.htm).

The project team would like to acknowledge the work
of Beth Cook who worked as a research assistant to
conduct the interviews and to prepare the detailed
interview notes.

7 References
Adegbehingbe, O. D., & Eyono Obono, S. D. E. (2012).

A framework for designing information technology
programmes using ACM/IEEE curriculum guidelines.
World Congress on Engineering and Computer Science
2012.

Alammary, A., Carbone, A., & Sheard, J. (2012).
Implementation of a smart lab for teachers of novice
programmers. 14th Australasian Computing Education
Conference, 121-130.

Benkrid, K., & Clayton, T. (2012). Digital hardware
design teaching: an alternative approach. ACM
Transactions on Computing Education, 12(4), 13.

Cheryan, S., Meltzoff, A. N., & Kim, S. (2011).
Classrooms matter: the design of virtual classrooms
influences gender disparities in computer science
classes. Computers & Education, 57(2), 1825-1835.

Cooper, S. (2010). The design of Alice. ACM
Transactions on Computing Education, 10(4), 15.

Corney, M., Teague, D., & Thomas, R. N. (2010).
Engaging students in programming. 12th Australasian
Computing Education Conference, 63-72.

Fincher, S., Cooper, S., Kölling, M., & Maloney, J.
(2010). Comparing Alice, Greenfoot & Scratch. 41st
ACM Technical Symposium on Computer Science
Education, 192-193.

Fincher, S., & Utting, I. (2010). Machines for thinking.
ACM Transactions on Computing Education, 10(4), 13.

Garlick, R., & Cankaya, E. (2010). Using Alice in CS1: A
quantitative experiment. 15th Conference on
Innovation and Technology in Computer Science
Education, 165-168.

Govender, I. (2009). The learning context: Influence on
learning to program. Computers & Education, 53(4),
1218-1230.

Herbert, N., Dermoudy, J., Ellis, L., Cameron-Jones, M.,
Chinthammit, W., Lewis, I., de Salas, K. L. &
Springer, M. (2013a). Stakeholder-led curriculum
redesign. 15th Australasian Computing Education
Conference, 51-59.

Herbert, N., Lewis, I., & Salas, K. De. (2013b). Career
outcomes and SFIA as tools to design ICT curriculum.
24th Australasian Conference on Information Systems,
1-10.

Herbert, N., Salas, K. De, Lewis, I., Cameron-Jones, M.,
Chinthammit, W., Dermoudy, J., Ellis, L. & Springer,
M. (2013c). Identifying career outcomes as the first
step in ICT curricula development. 15th Australasian
Computing Education Conference, 31-40.

Herbert, N., Salas, K. De, Lewis, I., Dermoudy, J., &
Ellis, L. (2014). ICT curriculum and course structure  :
the great balancing act. 16th Australasian Computing
Education Conference, 21-30.

CRPIT Volume 160 - Computing Education 2015

108

Howles, T. (2009). A study of attrition and the use of
student learning communities in the computer science
introductory programming sequence. Computer
Science Education, 19(1), 1-13.

Hu, M., Winikoff, M., & Cranefield, S. (2013). A process
for novice programming using goals and plans. 15th
Conference on Innovation and Technology in
Computer Science Education, 3-12.

Koohang, A., Riley, L., Smith, T., & Floyd, K. (2010).
Design of an information technology undergraduate
program to produce IT versatilists. Journal of
Information Technology Education, 9, 99-113.

Koppi, T., Roberts, M., & Naghdy, G. (2012).
Perceptions of a gender-inclusive curriculum amongst
Australian information and communications
technology academics. 14th Australasian Computing
Education Conference, 7-14.

Kölling, M. K. (2010). The Greenfoot programming
environment. ACM Transactions on Computing
Education, 10(4), 14.

Maleko, M., Hamilton, M., & D’Souza, D. (2012).
Novices’ perceptions and experiences of a mobile
social learning environment for learning of
programming. 17th Conference on Innovation and
Technology in Computer Science Education, 285-290.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., &
Eastmond, E. (2010). The Scratch programming
language and environment. ACM Transactions on
Computing Education, 10(4), 16.

Mason, R., & Cooper, G. (2014). Introductory
programming courses in Australia and New Zealand in
2013 – trends and reasons. 16th Australasian
Computing Education Conference, 139-147.

Mason, R., Cooper, G., & de Raadt, M. (2012). Trends in
introductory programming courses in Australian
universities: languages, environments and pedagogy.
14th Australasian Computing Education Conference,
33-42.

Moons, J., & De Backer, C. (2013). The design and pilot
evaluation of an interactive learning environment for
introductory programming influenced by cognitive load
theory and constructivism. Computers & Education,
60(1), 368-384.

Patitsas, E., Voll, K., Crowley, M., & Wolfman, S.
(2010). Circuits and logic in the lab: toward a coherent
picture of computation. 15th Western Canadian
Conference on Computing Education, 7.

Stefik, A., & Siebert, S. (2013). An empirical
investigation into programming language syntax. ACM
Transactions on Computing Education, 13(4), 19.

Thomas, R. N., Cordiner, M., & Corney, D. (2010). An
adaptable framework for the teaching and assessment
of software development across year levels. 12th
Australasian Computing Education Conference, 165-
172.

Thota, N., & Whitfield, R. (2010). Holistic approach to
learning and teaching introductory object-oriented
programming. Computer Science Education, 20(2),
103-127.

Verginis, I., Gogoulou, A., Gouli, E., Boubouka, M., &
Grigoriadou, M. (2011). Enhancing learning in
introductory computer science courses through
SCALE: an empirical study. IEEE Transactions on
Education, 54(1), 1-13.

von Konsky, B. R., Jones, A., & Miller, C. (2014).
Visualising career progression for ICT professionals
and the implications for ICT curriculum design in
higher education. 16th Australasian Computing
Education Conference, 13-20.

Wellman, B. L., Davis, J., & Anderson, M. (2009). Alice
and robotics in introductory CS courses. 5th Richard
Tapia Celebration of Diversity in Computing
Conference: Intellect, Initiatives, Insight, and
Innovations, 98-102.

8 Appendix
Below are the indicative interview questions used to

capture current practice regarding student demographics,
curriculum, and teaching spaces:
Demographics
• What undergraduate computing degree(s) do you

offer?
• In which faculty? Or are they multi-faculty?
• How big is the first-year cohort? (We agreed that we

were talking principally here about Australian
campuses, though some respondents with overseas
offerings might also mention those.)

• What’s the demographic profile of the students
(overseas / domestic / distance / full-time / part
time)?

What we teach
• What ICT courses/subjects/units are offered to first-

year students? Briefly describe the content of each
course.

• What programming languages are taught? What
other software packages are taught?

• Is the content of these courses based on some
external curriculum, such as the ACM/IEEE
curriculum, or more on your group’s own design?

Where we teach
• Describe your teaching spaces.
• In addition to physical teaching spaces, what

teaching do you do in blended or online
environments?

• Have you made any changes recently (in the past 5
years)? What? Why? Has it worked?

• How do you know (evaluation)?

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

109

CRPIT Volume 160 - Computing Education 2015

110

Considerations in Automated Marking

Joel Fenwick

The University of Queensland,
Centre for Geoscience Computing

QLD 4072
Australia

joelfenwick@uq.edu.au

Abstract

With large classes and high demands on the time
of teaching academics, (as well as the need to keep
marking budgets under control) evaluating the func-
tional correctness of programming assignments can
be challenging. Entirely automating the evaluation
process may seem desirable but that would deny stu-
dents formative feedback from more experienced pro-
grammers. This in turn reduces their opportunity to
correct errors in their practice.

Instead, this paper contains a discussion of mark-
ing processes where much of the “heavy lifting” or
repetitive work is automated but still allows for hu-
man feedback. We discuss the impact of automated
marking on assessment design, students, and where
the hard work is hidden.

The literature contains descriptions of many
projects for automating various parts of the process
with varying interfaces and levels of integration with
external systems. In the author’s opinion though,
that they are not strictly required, and we describe
a simpler set of requirements.

Keywords: Programming Assessment, Automated
Marking, Assessment Design

1 Introduction

Programming assessment submissions can be evalu-
ated in a number of ways. They can be judged on
how well they have implemented specified function-
ality (either by direct testing or by inspection); how
readable and well structured their source code is; their
algorithmic complexity or runtime performance; or
their design and the process used to produce them
(typically in more advanced courses). In introduc-
tory and intermediate courses, the focus tends to be
on the first two. Marking large numbers of such as-
signments requires significant amounts of time to do
well and risks uneven treatment as markers tire.

While there is still a need for human judgement
when it comes to evaluating things like readability,
repetitive testing of functionality seems to be a suit-
able target for automation. Section 2 looks briefly at
the history and development of automation of pro-
gramming marking. However, whether existing au-
tomation packages are adopted or ad-hoc tools are
employed, not every task which humans can mark is

Copyright c©2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computer Educa-
tion Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 160, Daryl D’Souza and Katrina Falkner,
Ed. Reproduction for academic, not-for-profit purposes per-
mitted provided this text is included.

suitable for simple automation. In this discussion, we
focus on black box testing of programs to be submit-
ted and evaluated against some “well defined” specifi-
cation (as opposed to more open ended “do something
cool” type assignments). We will also assume that the
functionality of the program (rather than the precise
algorithm used to produce it) is the main point of
interest.

Section 3 gives more detail about the course which
provides the main context for this work. Section 4
gives core questions to be asked when evaluating the
functionality of a programming assignment submis-
sion. Section 5 gives an example of simple automa-
tion work flow in terms of basic primitives. While
arbitrarily complex ad-hoc solutions are possible, we
limit the discussion to what can be achieved with sim-
ple tools and small amounts of custom coding.

Sections 6 and 7 discuss the impacts of this style
of automation on students and on the design and de-
scription of programming assessment. Section 8 looks
at some security/integrity considerations. Section 9
concludes with a summary of where the work hides
when this type of automation is employed.

2 Some history

Very early work was done by Hollingsworth (1960),
who described automated marking for a class of 80
students. A few years later, Forsythe & Wirth (1965),
followed suit. There are quite a few common features
between these works: The technical details of get-
ting the tests to run are a significant issue. In order
for these early graders to work, the student programs
must have a particular structure (a trait mirrored in
later “unit test” style testers). The authors of both
systems acknowledge the possibility of student code
interfering with the testing infrastructure but do not
consider it to be a major issue. Both systems require
manual intervention in the case of badly behaved pro-
grams. Douce et al. (2005) would later classify these
types of systems as first generation systems.

Deimel & Clarkson (1978) discuss the merits of
running student assignment submissions against un-
seen test data. Gathering student submissions was
still an issue at this point. They also state a chal-
lenge which is still with us today: that students’ real
goal ‘irrespective of the problem statement, is to pro-
duce “correct” output for the supplied input’.

Later, Benson (1985) described a system where
students would use email to submit files. These would
then be processed against a batch of tests with the re-
sults being available to students the next day. This
was done before the deadline so that students had a
chance to fix errors. These tests were made available
“several days before the due date.” More detailed
tests were used to determine marks once the deadline

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

111

passed. An interesting approach adopted by Benson
was that students could appeal their marks if they
could demonstrate that proper testing on their part
could not have detected the fault.

Harris et al. (2004) took the pre-testing approach
even further with a system where assignments could
not be submitted at all unless they passed a set of
supplied tests. This requirement was enforced by the
submission tool itself. This way only fully functional
assignments are considered for further grading.

In this document, we will refer to automated tests
accessible before the assignment deadline as public
tests. Whereas tests used for marking will be de-
noted hidden tests. In the interests of transparency,
this second set of tests should also be revealed even-
tually. As an aside, it is also possible not to provide
sample tests, but instead to make the production of
tests by students, part of the assessment (Edwards
2003).

The survey by Douce et al. (2005) divides auto-
mated testing systems into three generations. First
generation systems which relied on technical tricks
to operate. Second generation systems used tools al-
ready available from the operating system. Third gen-
eration systems made use of the web and included a
wider variety of testing approaches.

One example (from many) of these third genera-
tion type systems is BOSS (Joy et al. 2005). It pro-
vides both a web interface and network client appli-
cation to allow students to lodge code to be tested.
This allowed both student testing against a public test
set with the possibility of re-submission and testing
against the hidden set for staff assessing final submis-
sions. Of particular note here, is the remoteness of
the testing. The tool is accessed from a client ma-
chine (eg student laptop) but the tests are executed
on a server.

Ihantola et al. (2010) carried out a follow up survey
covering the years 2006–2010. They identify classifi-
cations of testing: using a framework such as JUnit;
comparing the output of running programs; scripting
the build, test and comparison; and experimental ap-
proaches. They concluded “too many new systems
are developed” but that a reason this occurred was
that tools were complete enough to meet the needs of
the course they were created for but not necessarily
general enough to be applied elsewhere1.

2.1 Isn’t this a solved problem?

After literature spread over 50 years, isn’t automation
of programming assignment marking a solved prob-
lem by now? Not really, no. The developments be-
hind the generations described in the 2005 survey are
not monotonic improvements towards a fixed goal.
Moving from the first generation to the second, the
ability to construct and run tests at all became less
of a problem because there was now greater support
from the operating system. Writing comparison based
tests became simpler. Similarly, there are less trou-
blesome ways to gather assignment submissions than
collecting punch cards or individual emails. Some
systems incorporate the submission mechanism (eg
BOSS).

The main characteristics of interest in the third
generation are greater levels of integration with other
systems, and other interfaces to the testing system
(typically web interfaces). Systems in this generation
aim for reusability between assessments and applica-
bility to a variety of languages. There is still work

1They also note that experimental systems tend to disappear
from the web.

to be done here though. Tests must still be designed
for each assessment (even if just in the form of in-
put:output pairs). Also language flexibility typically
means one of three options:

• The system already has some support for the cho-
sen language.

• Output matching is being done at a level where
the language is irrelevant. For example: captur-
ing text output at the OS level; examining file
contents after a run is completed or exchanging
messages across a network.

• The system provides an interface to write plu-
gins or subclasses for the chosen language (eg
GAME (Blumenstein et al. 2008)).

In their survey, Ihantola et al. (2010) distinguished
between automation for marking programming com-
petitions versus “systems for (introductory) program-
ming education.” While competition marking is an
interesting area, formative feedback does not seem
to be a consideration there. On the education side,
the parenthesis around “introductory” are important
here. More advanced courses have additional require-
ments or make use of lower level features which are
not needed in introductory courses. For example,
Solomon et al. (2006) describe the LinuxGym tool
for assessing and training students in the use of shell
and scripting. They draw a distinction between Lin-
uxGym and BOSS (Joy et al. 2005) due to the fact
that their tasks require modification of system state
rather than producing output.

2.2 What about xUnit?

A number of automated testing systems (eg BOSS)
can make use of libraries from the “xUnit” family.
These include PyUnit for Python and JUnit for Java
and are derived from a Smalltalk testing library writ-
ten by Kent Beck (Fowler 2014, Python developers
2014b, JUnit project 2014). Individual tests are writ-
ten as methods of classes which inherit from a class in
the xUnit library. These methods can throw excep-
tions to indicate that a test has failed. After a batch
of tests has run, a report can be presented indicating
which tests passed and which failed.

In the author’s experience, with well written tests,
xUnit is an effective means to test an API. In assign-
ments however, this would indicate a library is being
written or where the internals of the code have been
specified. For example, the assignment is written as:
you must write a class X which has

• a method int thing(int x, int y, int z)
which returns the median of its arguments.

• a method String meth(String a, String b)
which . . .

In more advanced assessments, it may not be desir-
able to specify implementation details at this granu-
larity. Students could be expected to make their own
design decisions rather than be constrained by tests of
internals. In these cases, tests using reflection might
not naturally fit with specified functionality. They
also do not test the external interface. An additional
test interface would need to be specified. Now, it is
possible to use the xUnit structure to describe tests
against external programs (the test functions can con-
tain arbitrary statements in the relevant language),
but there does not seem to be any special advantage
in doing so.

CRPIT Volume 160 - Computing Education 2015

112

3 Context

The driver for this work is a course with the dual pur-
poses of teaching systems programming concepts and
improving programming skill. The previous run of
the course had over 300 students and the current of-
fering has over 400. The assessment consists primar-
ily of traditional programming assignments. Mark-
ing has two components: functionality (∼ 85%) and
style (∼ 15%). The functionality mark is based solely
on whether the program produces the correct results
and system interactions. It must not only say the
right things but also not leave processes running or
consume unacceptable amounts of system resources.
But, apart from a criterion of not “taking too long”
to run, the performance of the algorithms used is not
a concern. This part of the marking is done entirely
with automated black box testing using simple bash
scripts. While a single staff member needs to check
on the process occasionally, performing this part of
the marking is fairly undemanding.

The style component requires attention from hu-
man markers who grade submissions on clarity, struc-
ture and adherence to a supplied style guide. How-
ever, the relatively small fraction of the overall marks
means that fine gradations in readability and struc-
ture are not required and markers don’t need to spend
a lot of time doing it. This process ensures that stu-
dents still receive feedback about how humans read
their code.

While the course doesn’t go as far as Harris et al.
(2004) in rejecting submissions which aren’t function-
ally perfect; submissions which don’t pass at least
some functionality tests are not marked.

The assignment tasks typically consist of se-
quences of interactions or commands for users. For
example, various card or grid based games; agents in-
teracting with a simulation environment; or system
automation. This requires student programs to both
be able to recognise valid interactions and to maintain
state.

As discussed later, this lends itself to rubrics where
marks for more complex tasks depend on successful
completion of earlier subtasks. For example: “make
a single valid move” leads to “play a complete game”.

Assignment submission is done by committing
code to a version control repository (subversion in
this case). This neatly handles re-submission and
time stamping as well as exposing students to pro-
fessionally useful tools. Gathering submissions for
marking only requires: a list of students, two version
control commands2 and a bash for loop.

In terms of testing, students are given access to
public tests soon after the release of assignment spec-
ifications. These can be tested using two supplied
commands, the first checks the student’s current ver-
sion. The second checks out the student’s most recent
commit and tests that. This acts as a check that the
students are committing correctly (and haven’t for-
gotten to add files) and that they committed what
they thought they did.

4 Questions

Three main questions to be considered when deter-
mining a functionality mark:

1. To what extent does the code give the correct
answer/results in response to valid input?

2svn checkout for source code and svn log for time stamp infor-
mation.

2. To what extent does the code handle bad input
or bad system states gracefully?

3. What does the code do while processing? / How
does the code arrive at that answer?

4.1 Question 1 — How does the code behave
under good conditions?

All that is required here is a means to provide pre-
pared “good” inputs; a means to capture and exam-
ine the output and actions of the system; and a set
of matched inputs and outputs to indicate the correct
response.

4.2 Question 2 — How does the code behave
under bad conditions?

At its most basic, this just means ensuring that your
test collection checks that error messages are prop-
erly triggered. Depending on the level of the course,
there may be other things which should be tested.
For example, empty lines (or empty input entirely)
should not cause programs to loop or terminate un-
gracefully. There are also failures in the environment
to be considered. Checking how a program responds
to an instruction to read from a non-existent file is rel-
atively easy; forcing failure to create a file because the
directory is readonly requires a little more work; in-
ducing a system call failure due to “out of resources”
requires more work.

4.3 Question 3 — What does the code do
while processing?

In some assessments, there may be other considera-
tions beyond whether the code produced the correct
answer. This may include whether the code:

• used forbidden calls.

• has the correct asymptotic complexity.

• has acceptable run time.

• is “safe” (eg in terms of concurrency).

• “leaks” resources.

If the assessment required that students use par-
ticular approaches, it may be possible for students to
use alternate approaches or libraries which dodge the
point of the assessment or avoid the work. For ex-
ample reading and writing from/to disk files instead
of pipes or calling built in sort functions instead of
writing their own. Simple text searches for particular
strings will catch some abuses but are not guaran-
teed to stop the truly determined (especially if the
language in use is amenable to obfuscation). How-
ever, since human markers would still be looking at
the code, use of obfuscation techniques would hope-
fully be noticed. It is up to the individual assessor
how much time should be devoted to searching for
this type of abuse.

Determining asymptotic complexity by sampling
could be attempted programatically, provided that
worst case instances are known, but is beyond the
scope of this work. More general timing runs could
also be used as an assessment criteria but could much
more simply be used as a proxy for “must not loop
indefinitely”. In that case, stopping programs which
“take too long” is sufficient (and a necessary self de-
fence measure as well).

Testing safe operation under concurrency (where
this is a reasonable expectation of students) would

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

113

be difficult to achieve without special tools, but a
rough test may be possible by testing with number of
clients/requests/actions simultaneously. It will not
guarantee that the code is thread safe but it may
catch some instances which aren’t.

Detecting resource usage generally, may be tricky
or require extra tools. However, for the specific case
of memory leaks, valgind could be employed on a
number of platforms (Valgrind developers 2014).

5 Simple Automation

For this discussion, we are assuming that the follow-
ing capabilities are available in some form:

1. A means to extract student submissions and
compile them (where required).

2. A means to execute submitted programs progra-
matically and to specify inputs fed to those pro-
grams.

3. A means to capture output from the executing
programs.

4. A means to compare text or the contents of files
with other files.

5. A means to report the results of the above.

6. A means to gather the above into a command or
batch.

For example, the first item depends on the submis-
sion system, but the rest of the above can be done
relatively easily with simple shell scripting or us-
ing Python’s subprocess module (Python developers
2014a). Additional primitives which may be “nice to
have” but not required include:

7. A mechanism to compare prefixes of files (eg the
first 200 bytes) rather than whole files.

8. A means to automatically terminate programs
which run for more than a specified number of
seconds.

In more advanced settings where a number of pro-
grams may need to run simultaneously, Item 2 may
require that this task doesn’t block. It will also be
desirable to ensure that all the started programs ter-
minate at the conclusion of the test.

Work by Isaacson & Scott (1989) gives some ex-
amples of simple shell operations which may be useful
here and also an example script. However, that script
may be more detailed than is required for simple test-
ing and would need to be customised.

With those primitives in place, the workflow for
an assignment will look something like:

Pre-submission

After coming up with a concept and an initial speci-
fication:

1. Write a working “reference” implementation of
the assignment. This allows problem areas or
tasks that are harder than intended, to be identi-
fied before they stress the students unnecessarily.
It also means that a sample solution will be avail-
able later without relying on the student body to
produce one.

2. Refine the specification (and implementation) to
fix problems as they are discovered.

3. Create the private test set.

4. Create the public test set. The “expected” out-
puts for both sets should be generated from the
reference implementation to ensure consistency.

5. Release assignment specification and public tests.

6. Update the specification and public tests. This
will be necessary if ambiguities or errors are dis-
covered in either. To avoid problems discussed
later in Section 6, it is a good idea to state that
the specification trumps public tests (but that
students should report contradictions so they can
be fixed). If changes are made, it is important
to correct the reference implementation and the
private tests at the same time.

Marking

1. Gather assignment submissions
The details will depend on the submission sys-
tem, but a collection of subdirectories (one per
student is ideal).

2. Filter pass
Search for forbidden calls or commands. This is
an opportunity to check the assignments for any-
thing really nasty before compilation. See Sec-
tion 8 for possible considerations.

3. Compile submissions
This is quicker where the compiler has a com-
mand line interface3. If a build management tool
such as make or scons is available then having
the students submit the relevant files4 may be
helpful. Submissions which do not compile can
be removed from consideration or repaired (de-
pending on the rules of the course) at this stage.

4. Run tests for each student
It will probably be necessary to monitor this pro-
cess in order to restart it if one of the programs
hangs5 or kills the tester (in the case of systems
programming assignments). In the case of trou-
ble, testing can be resumed with the next submis-
sion. The problematic submission can be sepa-
rated out for more cautious testing.

In the author’s experience, only a small fraction
of assignment submissions ever cause problems
which require manual intervention.

5. Collate test results.
This is significantly easier if the per-student
script/batch outputs something like a comma
separated list of results (and an id) which can
be concatenated and loaded into a spreadsheet
for easy viewing.

As well as being necessary for determining a
grade, this can serve as a sanity check for tests. If
very few submissions pass a given test, it should
be reviewed to ensure the “expected answer” is
correct.

6. Rerun tests if required.

3Some suites such as Visual Studio have a command line inter-
faces as well, but they are not always immediately obvious.

4Or for simple projects with known files and structure, copying
a standard build file into the directory.

5This will only be a problem if you don’t have timeouts in place.

CRPIT Volume 160 - Computing Education 2015

114

7. Make results and tests available to students
It is important to note that this does not mean
that all mark components must be released at
the same time. The results of automated testing
can be released well before the human marked
components are finished. This means that stu-
dents can have an idea about how they performed
quickly.

The trick here is to find a way to make the in-
formation available in a human readable way.
Adding forty columns (one for each test) per as-
signment to a coursework management system’s
marks return feature does not produce particu-
larly readable results. An alternative would be
to just make the private tests available at this
point. This is not the same as the students know-
ing exactly what the marker recorded though. In
the author’s course, a simple additional program
makes this fine grained information available to
the students.

8. Complete remainder of marking
That is, the non-automated parts.

6 Impacts/Challenges — Students

Employing this type of approach can have an impact
on students. In the author’s experience, three ways
students can be affected (positively or negatively) are:

• There can be a collision between a strict ap-
plication of a specification, and the expectation
among (some) students that specifications are
merely “advisory”.

• Students are exposed to methodical testing and
the idea of test driven development.

• Students can work “to the tests” rather than the
specification.

6.1 “Advisory” versus strict specifications

Some students seem to take the view that results
which vaguely match the specification are sufficient.
If the students are accustomed to vague rubrics, en-
countering something requiring strict compliance can
be a shock. While looking approximately correct may
fool human markers, who have strictly limited re-
serves of time and alertness; the same can not be said
for machine checking.

On the other hand, it may be that human markers
decide to take a flexible view of matching. It is tricky
though, to describe programatically the wide vari-
ety of answers which a human would consider “close
enough” (eg using regular expressions). Doesn’t this
indicate a weakness with automated marking in that
it lacks the required flexibility? Not necessarily. In
many cases it is easier to specify that something
should be “exactly this” instead of “something like
this”. It may also be that following the requirements
exactly, takes no more coding effort than following
them approximately.

Trying to help students by allowing greater flexi-
bility can be counter-productive, since it often leads
to students wanting a formal specification of precisely
what variance is permitted and what is not. However,
one way to allow some flexibility without very com-
plex specification is to define acceptable behaviour
in terms of the behaviour of standard functions and
tools. For example, “if scanf can get the correct in-
teger from it, then it is valid input”.

Another way the warped view of the importance
of following specifications manifests is in students
substituting their own measures of partial success.
Deimel & Pozefsky (1979) argued that “programs
have to do more than just work” but the work as-
pect seems to have been deprecated. Now, students
adopt measures like “hours spent” or “having written
lots of code” as substitutes for doing what the spec-
ification says. This situation is certainly not unique
to situations of automated marking, but it definitely
occurs here.

6.2 Methodical testing

Automated marking emphasises the importance of
testing for students because they are told that
their marks depend on being able to produce exact
matches. Some students may not have seen how ef-
fective disciplined testing can be in identifying flaws
and regressions.

To allay concerns about strictness of testing,
batches of public tests can be provided to students
prior to the assessment deadlines. If the test mech-
anism is exposed to students as well, then there are
additional benefits.

• The sufficiently keen students can create their
own test batches and share them with fellow stu-
dents.

• It is easier for students to reproduce the circum-
stances of a failing test in order to debug their
code.

• Formative feedback and transparency: After
marking, students can reproduce the marking
process in order to check their marks or under-
stand where they went wrong.

• The test mechanism can be used as an example
program (especially if programs which interact
with other programs are discussed in the course).

6.3 Tests versus specification

In some instances, students misuse the public tests by
replacing the goal of writing a program which com-
plies with the specification with a “simpler” goal of
writing a program which passes the tests. Isaacson
& Scott (1989) note that this can discourage stu-
dents from considering for themselves what test in-
puts would be appropriate to confirm the correctness
of the program.

Aside from thwarting the educational purpose of
the assessment, this reliance solely on public tests is
flawed on two counts: First, it can result in trying
to debug a program without understanding what it
is supposed to do and why. This in turn increases
the risk of regressions. Second, the public tests and
the hidden tests are different. Code which produces
correct responses to one set without properly imple-
menting the underlying functionality has no guaran-
tee of doing well against a different set. Even when
these facts are made known to students, the wrong
emphasis seems hard to shift.

7 Impacts/Challenges — Assessment Design

As well as having impact on students, applying au-
tomation has impacts on assessment design as well.

The first consideration if automation is to used is
whether the assigned task is amenable to black box
testing at all. In work done in the context of pro-
gramming competitions (but applicable here), Forǐsek

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

115

(2006) describes come features which make a task un-
suitable.

• The set of possible correct answers is (relatively)
large.

• Only a small amount of output is required — and
that small amount of output is statistically likely
to be correct.

• There is a simple but incorrect heuristic for the
problem.

For example, in combinatorial problems, a program
could pick an answer at random and have a non-trivial
chance of getting marks. Where programs need to
produce more output (which must all be coherent),
this will likely be less of a problem. The last point
however, has wider applicability since it is roughly
equivalent to avoiding the work as described in 4.3.

Assuming that the task admits automated mark-
ing, the following factors need to be considered when
describing the task and choosing what to assign marks
to:

1. Precision

2. Visibility

3. Isolation

4. Determinism

5. Recognition of partial success

7.1 Precision

If something is not described sufficiently precisely and
unambiguously, then it can’t be tested effectively. For
example, consider a program where the communica-
tion protocol between client and server for networking
or IPC assessments is left for students to design; while
the interface to the client (and possibly the server)
is specified. This may well be desirable in more ad-
vanced assessments where students are expected to be
able to do such things. However, it does mean that
the network/IPC can’t be tested in isolation and that
both components are required to function in order for
marks to be awarded. Depending on the difficulty of
the task this may or may not be acceptable.

If components are to be tested separately, then a
reference implementation or test rig simulating the
corresponding component will be required.

7.2 Visibility

In contrast to a human marking code by inspection,
with automated testing, if an event is not visible then
it can’t be assigned marks. Intermediate steps needed
to produce results may not naturally produce output.
For example, opening a network connection or suc-
cessfully reading data from a file. Depending on the
complexity of the overall task, it may be desirable to
allocate some marks to these steps.

Actions which interact with the system (kernel)
state may be visible with the right tools6 but they
seem to be either unreliable for short lived events
or not simple to employ7. A rough test could be
to produce output when each stage of the process is
performed successfully. Merely outputting “Success”
does not mean it actually happened though, so the

6Possibilities include: polling with system tools or library inter-
posing.

7This is not to say that they lack merit, merely that they fall
outside the scope of “simple automation”.

code would also need to be tested to see if it accu-
rately reports failures. Practically, it seems fairer to
explicitly test for failures and leave successes to be
assessed in later steps.

In the case of intermediate results, there may be
ways to expose them but that exposure must also be
specified. This may enlarge/complicate the assess-
ment specification further. The presence of extra in-
ternal state information may distort the output of
the program with clutter. It may also give students
an unrealistic view of programming practice.

7.3 Isolation

If an event or result can’t be isolated from other out-
put, then it can’t be marked. If a result is indicated
by the presence of an easily extracted string in the
output, then this may not present much of a chal-
lenge. However, if the test is equivalent to “is the
first part of the output is correct?”, it is a bit more
fiddly. Two solutions here are either:

1. compare only prefixes of the output and ignore
any differences after a certain threshold.

2. Ensure that the program/system can be stopped
as soon as possible after the event of interest.

The first option is not difficult to code but we want to
minimise any custom coding required so let’s consider
the second one. A simple way to have natural stop-
ping points is to have programs which process distinct
operations and prompt between them. Then specify
what should happen at end of input / disconnection.
This means that the most basic unit of simple testing
is “empty input”8. More sophisticated tests can then
be built up from that starting point: one interaction
then stop; two interactions then stop, . . .

The importance of handling end of input prop-
erly should be emphasised to students, but if public
tests are available, then failures in this aspect will
be readily apparent. There is a side benefit here in
that handling end of input properly is not something
which students seem to consider when left to their
own devices.

7.4 Determinism

To keep testing simple and transparent, the behaviour
of (correctly written) programs being tested should
be deterministic. This does limit the use of things
like random numbers unless a pseudo-random num-
ber generator is specified and the seed can be easily
specified. Rather than do this, a simpler option is
to read streams of values from files rather than the
randomiser. For example, instead of shuffling cards,
specify a file which contains a pre-ordered deck.

Where a number of processes or threads are in-
volved, accidents of scheduling can lead to race con-
ditions. Two cases to consider here:

1. The ordering/interleaving of output varies, but
the decisions made by the programs are the same.
If success can be determined by the presence of
particular strings in the output, then a search
could be made just for those strings. If the out-
put from different parties can be distinguished
somehow (eg relevant lines have a known prefix),
then the relevant lines can be filtered. Alter-
natively, simply sorting the lines of text before
comparison deals with the ordering issue quite
neatly9.

8After argument checking to allow the program to start at all.
9Assuming that any ordering is equally valid

CRPIT Volume 160 - Computing Education 2015

116

2. The programs make different decisions under dif-
ferent event orderings. This occurs in situations
like networking assignments where a number of
clients need to start and connect to a server. For
example, the clients represent players in a game
and which “seat” the player occupies is signifi-
cant. Introducing pauses after starting the server
and between each client start would seem to be
a solution here. However,

• determining the time to wait can be tricky.
Too long a delay and the tests will take a
long time to run, frustrate users and slow
down the testing unnecessarily. If the delay
is too short, the tests may react erratically
on a heavily loaded machine.

• forcing the testing to operate in serial, re-
moves the need for students to write thread-
safe code.

An alternative solution is to make the ordering
depend on something predictable. For example,
requiring each player to give their name and then
seating players in lexicographic order, gives pre-
dictable results10 but does not force connections
to be spaced out.

7.5 Recognition of partial success

Testing for matching output does not leave much
room for “part marks”. Either the program passes
the test or it doesn’t. This can mean that a program
which has 90% of a task perfectly correct could still
record a “fail” for that task. Alternatively, a program
could behave correctly under most but not all correct
inputs. To mitigate this risk:

• A number of tests should be employed to mark
against each subtask to help recognise programs
which are capable of completing that task under
some conditions.

• The tasks for the assignment should be examined
in the light of precision, visibility and isolation to
see whether they should be subdivided. This may
require interface changes, such as extra output.

The subdivision of tasks needs to be appropriate for
the level of the course. A balance needs to be struck
here between rewarding partial progress versus the
need for programmers to produce working code.

8 Security and Integrity Considerations

The preceding discussion assumes that the marker
runs student code or build instructions in a context
other than the student’s account. This will always
be risky to some degree: Programs could be submit-
ted which attempt to gain access to system privileges
or to course information; or to disrupt the marking
process itself. Alternatively, programs may simply be
badly written and abuse system resources.

Possible approaches to mitigate risks could be
some combination of:

• Identifying problem programs before running
them. This will never be possible in the com-
pletely general case but simple checks can be
made for calls to external programs. Depending
on the programming language, any uses of inline
assembly language or unusual compiler directives
are candidates for further examination.

10Yes, this assumes one agrees not to test with duplicate identi-
fiers.

• Preventing programs from being able to do un-
desirable things. Approaches such as library in-
terposing or automated code substitution to re-
place “potentially dangerous” calls with more re-
stricted ones. The author has employed this in
the past to protect against fork bombs. In the
general case, this would be harder because all of
the valid ways a call could be used would need
to be accounted for.

• Isolating “bad” code so there is nothing for it to
attack. This could include running code in a sep-
arate/limited account but could extend to run-
ning in a separate environment. For example, a
virtual machine or a chroot/jail. Steps in this
category may require help from systems admin-
istrators.

Care needs to be taken however that the environ-
ment used for marking does not differ significantly
from the one accessible to students. If the test envi-
ronment is protected in ways that cause it to behave
significantly differently to the students’ environment
under normal conditions, then questions of fairness
must be considered. On the other hand, if the devel-
opment environment is “too safe”, students will not
learn how to recognise and debug problems “in the
wild”. With this in mind, where possible, protec-
tion measures should be optional in that they can be
applied (or not) without affecting the main results.
See (Ihantola et al. 2010) for other possibilities.

9 Conclusion — Where is the work hiding?

Now that we have these primitives and workflow for
assignments which will be marked programatically,
we now summarise the important question of “where
is the work hiding?”. After all, the fact that simple
tests can be administered programatically, does not
make the process trivial.

Much of the work in dealing with this type of as-
signment is front-loaded. The specification, reference
implementation11 and public tests are all needed be-
fore the assignment is released. Decisions about pre-
cisely how programs will be evaluated can’t be de-
ferred until a time after the assignments have been
submitted. This work requires a greater amount
of the teacher’s time, with reduced amount of tu-
tor/teaching assistant time. The net budgetary affect
of this shift needs to be considered.

Significant detail is required in the specification. It
must describe precisely how the program is to behave
and what the output and side effects are to be. Exam-
ples of interactions will probably be needed. All this
means that while specifications may not actually be
more complicated, they may be large. In the author’s
case for a second year course, this results in specifica-
tions of (roughly) between five and eight pages once
common boiler-plate text is removed.

In conclusion, while simple automation (however
it is accomplished) does move some work earlier in
the course, it can significantly reduce the marking
burden. Further, because of the reduced academic
effort involved when dealing with submissions, scales
quite well.

References

Benson, M. (1985), ‘Machine assisted marking of pro-
gramming assignments’, SIGCSE Bull. 17(3), 24–

11While it is possible to start with a partially complete imple-
mentation, doing so creates problems later.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

117

25.
URL: http://doi.acm.org/10.1145/382208.382516

Blumenstein, M., Green, S., Fogelman, S., Nguyen,
A. & Muthukkumarasamy, V. (2008), ‘Performance
analysis of game: A generic automated marking en-
vironment’, Computers and Education 50(4), 1203–
1216.

Deimel, Jr., L. E. & Clarkson, B. A. (1978), The
todisk-watload system: A convenient tool for evalu-
ating student programs, in ‘Proceedings of the 16th
Annual Southeast Regional Conference’, ACM-SE
16, ACM, New York, NY, USA, pp. 168–171.
URL: http://doi.acm.org/10.1145/503643.503681

Deimel, Jr., L. E. & Pozefsky, M. (1979), ‘Require-
ments for student programs in the undergradu-
ate computer science curriculum: How much is
enough?’, SIGCSE Bull. 11(1), 14–17.
URL: http://doi.acm.org/10.1145/953030.809543

Douce, C., Livingstone, D. & Orwell, J. (2005),
‘Automatic test-based assessment of programming:
A review’, J. Educ. Resour. Comput. 5(3).
URL: http://doi.acm.org/10.1145/1163405.1163409

Edwards, S. H. (2003), Teaching software testing: Au-
tomatic grading meets test-first coding, in ‘Com-
panion of the 18th Annual ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems,
Languages, and Applications’, OOPSLA ’03, ACM,
New York, NY, USA, pp. 318–319.
URL: http://doi.acm.org/10.1145/949344.949431

Forǐsek, M. (2006), ‘On the suitability of program-
ming tasks for automated evaluation’, Informatics
in Education 5(1), 63–73. Copyright - Copyright In-
stitute of Mathematics and Informatics 2006; Doc-
ument feature - ; Last updated - 2011-06-03.

Forsythe, G. E. & Wirth, N. (1965), ‘Automatic grad-
ing programs’, Commun. ACM 8(5), 275–278.
URL: http://doi.acm.org/10.1145/364914.364937

Fowler, M. (2014), ‘Xunit’.
URL: http://www.martinfowler.com/bliki/Xunit.html

Harris, J. A., Adams, E. S. & Harris, N. L. (2004),
‘Making program grading easier: But not totally
automatic’, J. Comput. Sci. Coll. 20(1), 248–261.
URL: http://dl.acm.org/citation.cfm?id=1040231.1040264

Hollingsworth, J. (1960), ‘Automatic graders for pro-
gramming classes’, Commun. ACM 3(10), 528–529.
URL: http://doi.acm.org/10.1145/367415.367422

Ihantola, P., Ahoniemi, T., Karavirta, V. & Seppälä,
O. (2010), Review of recent systems for automatic
assessment of programming assignments, in ‘Pro-
ceedings of the 10th Koli Calling International
Conference on Computing Education Research’,
Koli Calling ’10, ACM, New York, NY, USA,
pp. 86–93.
URL: http://doi.acm.org/10.1145/1930464.1930480

Isaacson, P. C. & Scott, T. A. (1989), ‘Automating
the execution of student programs’, SIGCSE Bull.
21(2), 15–22.
URL: http://doi.acm.org/10.1145/65738.65741

Joy, M., Griffiths, N. & Boyatt, R. (2005), ‘The
boss online submission and assessment system’, J.
Educ. Resour. Comput. 5(3).
URL: http://doi.acm.org/10.1145/1163405.1163407

JUnit project (2014), ‘JUnit FAQ’.
URL: https://github.com/junit-
team/junit/wiki/FAQ

Python developers (2014a), ‘17.1. subprocess
Subprocess management Python v2.7.7 documen-
tation’.
URL: https://docs.python.org/2/library/subprocess.html

Python developers (2014b), ‘25.3. unittest — Unit
testing framework — Python v2.7.7 documenta-
tion’.
URL: https://docs.python.org/2/library/unittest.html

Solomon, A., Santamaria, D. & Lister, R. (2006), Au-
tomated testing of unix command-line and script-
ing skills, in ‘Information Technology Based Higher
Education and Training, 2006. ITHET ’06. 7th In-
ternational Conference on’, pp. 120–125.

Valgrind developers (2014), ‘Valgrind: Supported
platforms’.
URL: http://valgrind.org/info/platforms.html

CRPIT Volume 160 - Computing Education 2015

118

What Are We Doing When We Assess Programming?

 Dale Parsons Krissi Wood Patricia Haden
School of ICT School of ICT School of ICT

Otago Polytechnic Otago Polytechnic Otago Polytechnic
Dunedin, New Zealand Dunedin, New Zealand Dunedin, New Zealand

 Dale.Parsons@op.ac.nz Krissi.Wood@op.ac.nz Patricia.Haden@op.ac.nz

Abstract
Considerable research has been devoted in recent decades
to identifying optimal pedagogical strategies for teaching
computer programming. Often the result of these efforts
has been to conclude that we have made little progress, as
our students consistently perform poorly on the
assessments we apply to measure teaching efficacy. In
this paper, we suggest that a significant contributor to this
poor performance may be the methods of assessment,
which do not reflect the knowledge and skills that a real
programmer needs to write real code. We propose an
alternative assessment format using Activity Diagrams
that better reflects true programming ability. Our
preliminary results indicate that these assessments
correlate well with the ability to produce working code,
while more traditional question formats do not.1

Keywords: Programming Education, Programming
Assessment.

1 Introduction
In her seminal 1999 paper, Sally Fincher asked "What are
we doing when we teach programming?" (Fincher, 1999)
Fincher noted that there had been a shift in the perception
of computer programming from a mechanical skill to an
essential element of computer science theory, without a
consensus on the implications of this shift for pedagogy.
This discussion helped to launch CS Education as a
formal area of academic research.

In the intervening 15 years there has been extensive
exploration of approaches to the teaching of
programming, comparing languages, tools and conceptual
methodologies (e.g. Sajaniemi, Kuittinen and Tikansalo,
2008; Pears, Seidman, Malmi, et al., 2007).

Unfortunately, the most consistent conclusion drawn
from this body of research is that in spite of all this effort
we still don't know how to teach programming, because
large numbers of our students fail our introductory
programming courses (Bergin and Reilly, 2005;
Gonzalez, 2006; Lahtinen, Ala-Mutka and Järvinen,
2005) and even those who pass don't seem to be able to
program very well (Ford and Venema, 2010; Thomas,
Ratcliffe, Woodbury, et al., 2002; Bornat, Dehnadi and
Simon, 2008).

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE2015), Sydney, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 160. D. D'Souza and K. Falkner, Eds. Reproduction for
academic, not-for-profit purposes permitted provided this text is
included.

It seems illogical that after so much study, and after
having produced a sufficient number of skilled
programmers to drive the computing industry beyond
recognition in the last two decades, we still conclude that
our students can't program. Perhaps an alternative is
possible: we're teaching successfully -- but we're
assessing badly. Specifically, when we assess, we are
confusing programming with the abstractions of computer
science and symbolic manipulation. Students fare poorly
on our assessments not because they can't program but
because we are not testing their programming ability. A
cow makes a terrible racehorse, but that doesn't mean
she's not a very good cow.

1.1 The Role of Assessment
Accurate assessment of programming ability has multiple
roles in programming education and programming
education research. Primarily, of course, we wish to
measure programming ability in the classroom to evaluate
and rank students, deciding who passes and who does not
pass our programming courses. In programming
education research, we also use measures of
programming ability as our dependent variables. We may,
for example, wish to evaluate a teaching intervention by
comparing students' programming ability with and
without the technique. This requires an accurate measure
of individual programming ability.

Often these two roles overlap. For example, in studies
of teaching efficacy, researchers often use final course
mark as a reflection of programming ability. Cardell-
Oliver has clearly articulated the potential weakness of
this approach, (Cardell-Oliver, 2011) but it remains
extremely common (cf. Clear, 2008).

Thus our ability to accurately measure an individual's
programming skill underpins both our educational and
scientific endeavours.

The critical nature of assessment in both of these roles
-- teaching and research -- is recognised by the CS
Education community. Simon, Sheard, and their
colleagues (e.g. Sheard, 2012; Simon, Sheard, Carbone,
et al., 2012) have undertaken exhaustive descriptive
studies of the types of questions used in examinations in
programming courses. Various authors have carefully
mapped individual exam questions to the Bloom and
SOLO taxonomies (e.g. Lister, Simon, Thompson, et al.,
2006; Whalley, Lister, Thompson, et al., 2006) in order to
determine more precisely what is being tested by
programming exams.

Discussion of metrics in research is also vigorous.
Considerable debate has touched on whether
McKracken’s seminal "our students can't program" study
(McCracken, Almstrum, Diaz, et al. 2001) was biased by

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

119

the use of an invalid metric of programming ability
(Utting, Tew, McCracken, et al., 2013; McCartney,
Boustedt, Eckerdal, et al., 2013). An assortment of tools
have been proposed, explored and validated for use in
research studies of programming education.

Study of this body of research gives clear insight into
how we are assessing. It is our contention, however, that
further analysis is required into what we are assessing.

1.2 Programming or Computer Science?
Fincher (Fincher, 1999) originally made the distinction
between programming as a means to an end, and
programming as a component of a theoretical discipline.
She noted that before Computer Science existed as the
unique theoretical discipline underpinning computation
and computation systems, practitioners of engineering,
chemistry and mathematics used programming as a way
"to get the computer to do something". As Computer
Science matured, programming became an area for
theoretical exploration in its own right in the contexts of
automata theory, language design, and compiler
construction. It remained, however, the essential tool for
getting computers to do things. Since 1999, computers
and computing have become so ubiquitous that in nearly
every academic and commercial discipline, getting
computers to do things is indispensable. Not only the
software development industry, but many associated
disciplines that rely on computer software require people
with advanced abilities in, specifically, computer
programming. We contend then, that Fincher's maturation
process has come full circle -- we now have two fully
mature, separate but intertwined disciplines: computer
programming and theoretical computer science.
Computer programming is the ability to produce working
digital artefacts to the standards dictated by industrial best
practice. Computer science is the study of the underlying
principles of computing and computation.

It is possible to find tertiary degree programmes that
quite clearly direct their students in one or the other of
these disciplines. One group seeks to produce graduates
who are prepared to step into the information technology
industry as software developers versed in the skills and
techniques required of a professional programmer. The
other seeks to prepare students for further study in
experimental and theoretical areas of computer science.
Both of these disciplines are relevant and challenging
and, while they share many fundamentals, they clearly
place different emphasis on the elements of computer
science.

We believe that in many attempts to assess
programming ability, both as an educational evaluation
and as a performance metric in quantitative research,
these two disciplines are becoming entangled. For
example, Lister and his colleagues (Lister, Adams,
Fitzgerald, et al., 2004) describe a suite of multiple choice
questions that can be used to evaluate a student's ability
to read code, an essential part of the ability to program
(i.e. to generate working digital artefacts with a
programming language). Among the questions is the
following code fragment:

int[] x = {0, 1, 2, 3};

int temp;

int i = 0;

int j = x.length-1;

while (i < j)

{

 temp = x[i];

 [i] = x[j];

 [j] = 2*temp;

 i++;

 j--;

}

Students are asked to identify the contents of the array

x after these statements are executed. This code fragment
is written in syntactically correct Java and it is
semantically coherent, but it isn't a piece of code that a
professional programmer would ever write. It performs
no logically delineated task; it provides no context for the
purpose of the computation. Not being able to answer this
question doesn't necessarily demonstrate that one is
unable to write code to iterate over and modify the
contents of an array, it merely indicates that this abstract
and tortuous piece of code is difficult to understand.

Similarly, Dehnadi (Dehnadi, 2006) presents a suite of
questions to test understanding of the concept of
assignment in programming. Among the Dehnadi
questions is this one:

int a = 5;

int b = 3;

int c = 7;

a = c;

b = a;

c = b;

The student is asked the values of a, b, and c after

execution of these statements. Again, this is syntactically
correct code, and it is certainly possible to work out the
values of the variables. But it is very difficult to come up
with a realistic scenario under which a programmer
would actually write this fragment.

 Questions such as these therefore attempt to test the
ability to perform the act of programming by requiring an
understanding of something that would never be done
while performing that act. Students traditionally score
very badly on these questions (the question from Lister
had only a 73% success rate, even though it was a 5-item
multiple choice, and this was actually the highest success
rate of the entire suite). Under the assumption that these
questions are testing the ability to program, we conclude,
dispiritedly, that our students cannot program. However,
if we accept that the ability to program is the ability to
write digital artefacts to an industrial standard, this
pessimism may be unwarranted. Since no one would need
to produce such code to be a capable programmer, our
students' failure to correctly answer these questions does
not mean that they cannot program. It simply means that
they cannot do whatever it is that these questions require.

This disconnect can be seen in authors' descriptions of
their measurement tools. For example, Ford and

CRPIT Volume 160 - Computing Education 2015

120

Venema's oft-cited work on assessment (Ford and
Venema, 2010) is entitled "Assessing the Success of an
Introductory Programming Course". However, the
authors state quite specifically that they are not trying to
assess the ability to program as we have defined it (i.e.
the ability to produce working digital artefacts following
current standards of best practice). Instead, they propose a
suite of tests "to examine whether students who have
passed an introductory course have achieved an
understanding of fundamental concepts in programming”
(pg. 1). That is, they wish to measure the mastery of
fundamental concepts, rather than the specific skill of
programming. Note that the former is not sufficient to
demonstrate the latter -- that is, I may have a detailed
understanding of the physical principles of flying, but still
not be able to safely launch myself into the air. One
might argue that mastery of fundamental concepts is at
least necessary to demonstrate the skill of programming,
but this presupposes that what has been identified as
fundamental concepts are, in fact, fundamental and, more
critically in this context, that they are being tested in
ways that are relevant to the skill we are attempting to
quantify.

Ford and Venema focus specifically on the concepts of
"assignment and sequencing". These are clearly
fundamental to the act of programming because modern
programming languages provide constructs for both
assignment and sequencing and all digital artefacts of
nontrivial complexity must include these elements. Ford
and Venema explore a number of existing metrics which
test comprehension of the principles of assignment and
sequencing, but which do so at a very high level of
abstraction. For example, in addition to the questions of
Dehnadi described above, and a similar suite from Ma
(Ma, Ferguson, Roper, et al., 2007), they include the
"Reges question":

 If b is a Boolean variable, then the statement
 b = (b = = false);

 has what effect?

This item certainly requires an understanding of the
rules of assignment and sequencing, but it is not typical
of the constructs working programmers ordinarily
produce and thus, we suggest, does not pragmatically test
the ability to program.

Ford and Venema observed generally poor
performance on all of their metrics and concluded "that
many students who had passed an introductory
programming course had little or no understanding of
fundamental concepts” (pg. 1). We would suggest that
this conclusion does not necessarily follow. What one can
conclude from the poor performance on such tools is that
many students who had passed an introductory
programming course were unable to solve these complex
and abstract problems involving the assignment
operation. They might still understand the fundamental
concepts of programming, and perhaps, be able to
program quite adequately for their level of experience.
Being able to solve complex, abstract symbolic
manipulation exercises is an extremely valuable skill, and
one a person might certainly wish, in some

circumstances, to be able to measure, but it is not
equivalent to the skill of programming.

1.3 How to Measure the Ability to Program
We have argued that often, the traditional pencil-and-
paper approaches to programming assessment
(particularly code reading problems) are presented at a
level of abstraction that makes them poor indicators of
the ability to actually write good, working code. We need
an alternative method to assess programming ability. The
obvious suggestion is to have students create digital
artefacts and assess them for functional accuracy and
code quality via industrially approved metrics. We do, in
fact, contend that this should be the Gold Standard for
judging one's ability to program. Unfortunately, in the
practical contexts of both student evaluation and
educational research, this approach has its own significant
shortcomings.

First, in many situations, using artefacts for
assessment is prohibitively expensive. In large classes, it
may simply be impossible to hand mark the large number
of pieces of code that would be required. Even in our own
institution, where courses are limited to no more than 48
students per semester, marking of coding assignments is a
huge burden on teaching staff. Promising work is being
done in the area of automated assessment of code
(Ihantola, Ahoniemi and Karavirta, 2010), but it is not a
problem that has yet been completely resolved. The same
objection would apply to any research study that wished
to incorporate artefact assessment as a measure of
efficacy.

Second, in the classroom situation, issues of
authorship arise when assessment is performed outside of
controlled examination conditions. Many educators have
noted concerns about plagiarism in student coding
projects. While there are some tools that can be used to
help detect plagiarism (e.g. Vamplew and Dermoudy,
2005) it again makes artefact marking a questionable
choice, at least as the sole means of evaluation.

Third, artefact evaluation is impractical until actual
artefacts can be produced, that is, until a certain level of
coding skill has been attained. In the face of increasingly
compelling evidence for the importance of effective
pedagogy and the detection of difficulties in the very
earliest weeks of programming education (Robins, 2010),
it would be very risky to delay evaluation until students
are experienced enough to write substantial pieces of
software.

There are two steps that can be taken to ameliorate
these difficulties. Most obviously, in a classroom
situation, one can compose a course mark from a mixture
of code artefacts and assessments performed under exam
conditions. In our own introductory programming
courses, we use a combination of code projects developed
outside of class, written examination, and practical
coding exercises conducted under examination
conditions.

Further, when conducting written examinations, one
can attempt to construct questions which reflect, as
accurately as possible, skills used by real programmers in
writing real code. To this end, it can be helpful to refine
our notion of the fundamental concepts and capabilities of
computer programming.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

121

1.4 Programming Fundamentals
We have argued for computer programming as a
profession distinguished from theoretical computer
science, based on the ubiquity in the modern world of
computer artefacts and computation. A related argument
is increasingly made for not only the act of programming,
but the act of "thinking like a programmer." The term
generally used in this discussion is "computational
thinking" (Wing, 2006). Although there is some
variability amongst authors, the basic tenet of the
computational thinking movement is that computers are
used as aids to problem-solving in most professions,
activities and endeavours in modern Western society.
Further, that there is a common underlying style for
solving problems with a computer based on problem
decomposition and algorithmic construction -- effectively
translating our human solutions into something a
computer can do. It has been argued that being able to
perform this style of problem solving, i.e. being able to
think computationally, is as integral in modern society as
literacy and numeracy. Computer programming -- by
definition, getting a computer to do things -- naturally
exhibits the computational thinking template. In this
context, we view the process of producing a computer
program to solve a specific problem as being comprised
of three steps:

1. Conceptualising a solution to the problem in the
domain of human cognition (the way a human
would do it).

2. Symbolic translation of the human solution into
computer operations (the way a computer could
do it).

3. Concrete translation of the computational
solution into a specific programming language
(the generation of running code).

For example, if one wishes to implement a greedy

algorithm for the Knapsack problem, the human solution
would be expressed as "pick the highest value item that
will fit"; the computer's solution would be something akin
to "sort all items descending by value; iterate over the
sorted list; compare each item's size to that remaining in
the knapsack; choose the first one that fits". Note the
much more decomposed and sequential nature of the
computer's solution. Finally, the computer's solution
would need to be written out in whatever programming
language was being used, incorporating the particular
syntactic rules and features of that language.

These three steps all involve both comprehension and
production. For example, a programmer must be able to
produce the computer's solution in step 2, and must be
able to understand the logic of a computer's solution in
order to translate it into code for step 3.

After identifying these three core activities of
programming, we can then attempt to develop assessment
tools that require these activities to be performed. In the
next section, we present the technique we are currently
exploring, and some preliminary evidence of its accuracy.

1.5 Assessment with Activity Diagrams
In recent offerings of our first programming course, we
have begun using Activity Diagrams (e.g. Schmuller,
2004) as both a teaching and an assessment tool. Our
preliminary data indicate that performance on these
problems may correlate better with our Gold Standard
(evaluation of artefacts) than do more traditional
multiple-choice code reading questions.

Activity Diagrams are a component of the UML
methodology for software development (e.g. Schmuller,
2004). They are used to diagram spatially the logical flow
of a computer program, and have a notation for sequence,
conditionals and looping. They do not depend on the
syntactic details of any particular programming language.
For our novice students, we use a simplified version of
the full UML technique that eliminates some elements
and requirements that are extraneous to the code written
in a first programming course. An example for a program
to play a simple "card game" is shown in Figure 1.

Figure 1: Activity Diagram for Simple Card Game
Program

Activity Diagrams are similar to the traditional
flowchart, which has been used to represent code
structure for decades. In the early years of computer
programming, the flowchart was studied extensively as a
tool for program documentation, with mixed, sometimes
controversial, results. After their introduction in the late
1940s (Goldstein and von Neumann, 1947) flowcharts
rose rapidly in popularity to become an expected part of
every programmer's skill set (cf. Schneiderman, Mayer,
McKay et al., 1977). Flowcharts in these decades were
used primarily as documentation tools. That is, a
flowchart was produced to illustrate the structure and
logic of a piece of software. Flowcharts were also used as
an educational tool to illustrate complex algorithms (cf.
Scanlan, 1987). Unfortunately, human factors studies
performed in the 1980s demonstrated that flowcharts
provided no advantage over an actual code listing for
comprehension, debugging or modification (see e.g.
Shneiderman, 1982). It was suggested that modern (for
the time) high-level programming languages were more
useful for representing program logic than were the
graphical techniques of flowcharting (Ramsey, Atwood
and Van Doren, 1983).

CRPIT Volume 160 - Computing Education 2015

122

We use Activity Diagrams not for code
documentation, but as teaching tools and for both
formative and summative assessment. We have found
them promising in all three contexts. However, in this
discussion we will consider only their role in summative
assessment or, equivalently, as a measure of
programming ability in a research situation.

Previously, we described the journey from problem
statement to working program as involving three steps:
generating the human solution; translating to the
computer's solution; translating into a specific language.
Because Activity Diagrams are relatively language-
agnostic, they give the student an opportunity to express
the first two of these steps with a reduced burden of
syntactic detail. By having the student translate an
Activity Diagram into a specific programming language,
we can test the third step.

In assessment, by selectively controlling the role of the
activity diagram, we can isolate the three steps of digital
artefact generation, and can assess both code production
and comprehension. For example, if we give a student a
problem statement in English and ask him or her to draw
the corresponding Activity Diagram, we can observe the
student's ability to produce the output of steps 1 and 2
(make a human solution; translate it into something the
computer can do) from the procedure outlined above. If
we give the student an Activity Diagram and ask him or
her to explain the purpose of the resulting code, we are
testing comprehension (code reading) of the same steps.
Each of the various combinations of question content and
task can serve to exercise one or more aspects of the
programming process.

We believe that examination questions involving
Activity Diagramming measure more accurately what real
programmers do than the often abstract (and sometime
artificial) code reading problems discussed above. In the
present study, we wished to measure the relationships
between student performance on a manually marked large
programming project, assessment items involving
Activity Diagramming, and assessment items using more
traditional multiple-choice and short answer formats.
Under the assumption that the project mark is the best
available measure of true programming ability, we
anticipated stronger correlations between project mark
and scores on the Activity Diagram problems than
between project mark and scores on the traditional
problems.

2 METHODOLOGY
In two recent offerings of our CS1 first programming
course, students' final course marks were computed as the
weighted average of a) a set of in-class practical
exercises; b) an in-class programming task under exam
conditions; c) a large individual programming project and
d) a written theory test performed under exam conditions.
The in-class practicals were performed throughout the
semester and the in-class programming task was
performed half-way through the semester. These
components were treated as both summative and
formative assessment, with the students receiving detailed
feedback on their progress, and additional tutorial support
for any identified difficulties.

The out-of-class programming project was assigned
four weeks before the end of the semester and was due on
the last day. The written exam was given in the final
week of the semester. These components were used for
summative assessment.

The out-of-class programming project was a simple
trivia game that required file I/O, random selection, and
comparison. Upon submission, each student’s solution
was marked by an experienced programming teacher by
hand using a detailed grading rubric1, which assesses for
both correct functionality and code quality. The marker
checked carefully for instances of excess similarity
between pairs of assignments, and no detectable
incidences of plagiarism were identified. We
acknowledge that stronger protection against plagiarism
would be preferable (to insure, for example, that students
are not getting help from more experienced
programmers), but it is not practical to simultaneously
provide an opportunity for a substantial programming
exercise and to rigorously observe each moment of that
programming process. For the present analysis, the marks
on the out-of-class project serve as each student’s Gold
Standard. That is, the mark on a student's project is taken
to be the most accurate reflection available of his or her
true ability to produce a working digital artefact at the
finish of this introductory programming course.

The written theory exam2 contained 15 questions using
a variety of formats including traditional multiple-choice
code reading and writing questions, short code production
exercises, and one Parsons Puzzle (Parsons and Haden,
2006). In addition, in one question (Question 12),
students were given a syntactically correct code sample
and asked to draw the corresponding Activity Diagram.
In one question (Question 13), students were given a
problem statement in English and asked to draw the
corresponding Activity Diagram. All exams were marked
by a single, experienced programming tutor.

72 students completed both the written theory exam
and the out-of-class project, and their results are included
in the following analyses.

3 RESULTS
Pearson-product moment correlations (point-biserial
correlations for dichotomous problems) between the out-
of-class project mark and question score were computed
for each of the fifteen questions on the written theory
exam. The results, along with the format of each exam
question, are shown in Table 1.

1 & 2Available from Dale.Parsons@op.ac.nz

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

123

Table 1: Correlations between exam questions and
out-of-class project mark

Significant positive correlations with out-of-class project
mark were found for two of the nine traditional MCQ or
short answer questions (Questions 4 and 7). All three
problems that required code writing were significantly
(Questions 11 and 14) or marginally significantly
(Question 10) correlated with project mark. Both Activity
Diagram questions (Questions 12 and 13) were
significantly correlated with project mark. All other
observed correlations were non-significant.

The observed correlation between performance on the
code writing questions (10, 11 & 14) and earned mark on
the major code writing assignment is to be expected. One
would assume that students who can write code well out
of class are more likely to write code well on an exam.
This correlation provides encouraging support for the
validity of project mark as our "Gold Standard" of
programming ability. It should be noted, however, that
explicit code writing questions may be unable to
discriminate between the three steps of the programming
process proposed above. A student's failure to
successfully write code on an exam might be due to
difficulty translating his or her solution into computer
operations, or due to difficulty expressing computer
operations in syntactically correct programming
language, or to some combination of the two. The
complexity of explicit code writing exercises must also be
severely restricted in the earliest weeks of a programming
course, where syntactic mastery has not been achieved.

Among the best predictors of out-of-class project mark
were the two questions where students were given a code
sample or a problem statement and asked to generate an
Activity Diagram.

This type of problem maps directly to our posited
process for generating working code. It captures a
student’s ability to perform critical computational
thinking, with a reduced burden on syntactic accuracy. It
tests this aspect of their ability to program in a way that is
neither artificially complex nor artificially abstract. And,
at least for this sample, it correlates significantly with the
ability to produce a nontrivial working application (i.e.
the ability to program).

While it is of interest to note that performance on the
Activity Diagram questions is significantly correlated
with the score on the out-of-class project, it is equally
interesting to note that performance on the majority of the
traditional format questions is not. For example, question
2 is a standard multiple-choice code reading question:

What are the values of girls, boys, and children after the
following code has been executed?

 int girls = 0;
 int boys = 0;
 int children = 0;
 children = girls + boys;
 girls = 15;
 boys = 12;

(a) 0, 0, 0
(b) 0, 0, 27
(c) 15, 12, 0
(d) 15, 12, 27

The observed correlation between marks on Question
2 and our Gold Standard measure of programming ability
is small -- only 0.149 -- and nonsignificant.

Non-significant correlations between performance on a
test item and mark on the out-of-class project can be
caused by a variety of numerical patterns. Most
obviously, a low correlation occurs when success on the
test item is not consistently associated with a high mark
on the project, and symmetrically, failure on the test item
is not consistently associated with a low mark on the
project. However, a low correlation will also occur if the
test item is so easy that most students get it right (ceiling
effect) or so difficult that most students get it wrong
(floor effect). In this case, performance on the item is
largely the same for all students regardless of
performance on the project, and the Pearson-product
moment correlation will be near zero. In either of these
scenarios, score on the test item is not a sensitive measure
of programming ability.

A summary of performance for each exam question is
shown in Table 2. The nine traditional format questions
(Q1 to Q9) are graded "all or nothing", that is, no partial
credit is given. For those items, Table 2 presents the
percent of correct responses across all students. Note that
the multiple-choice questions (numbers 1, 2, 4, 6, 7 & 9)
each provide four response alternatives, so one would
expect a 25% correct response rate simply due to chance.
Problems 10 to 15 are marked out of a fixed number of
points, and partial credit is given. For those problems,
Table 2 shows the average proportion of available marks
earned, across all students.

Question Question type Correlation with
Project Mark

p-value

Q01 MCQ code writing 0.068 ns

Q02 MCQ code reading 0.149 ns

Q03
Short answer code

reading
0.133 ns

Q04 MCQ code writing 0.252 p <.05

Q05
Short answer code

reading
0.143 ns

Q06 MCQ code reading 0.216 ns

Q07 MCQ code reading 0.330 p<.01

Q08
Short answer code

reading
0.183 ns

Q09 MCQ code reading 0.063 ns

Q10
Problem statement ->

Code
0.224

marginal
p=.059

Q11
Problem statement ->

Code
0.423 p<.01

Q12
Code -> Activity

Diagram
0.258 p<.05

Q13
Problem Statement ->

Activity Diagram
0.352 p<.01

Q14
Short answer problem

statement -> Code
0.279 p<.05

Q15 Parsons Puzzle 0.118 ns

CRPIT Volume 160 - Computing Education 2015

124

Table 2: Performance summary for all exam
questions.

The values in Table 2 suggest that both sources of low
correlation described above are present in our results.
Question 3, for example, shows a 93% correct response
rate and a non-significant correlation of 0.133 with the
out-of-class project. Since most students answered this
question correctly, it fails to discriminate between those
students who perform well on the out-of-class project and
those who do not. Question 6, in contrast, shows a
moderate 60% correct response rate and a non-significant
correlation of 0.216. This question does not appear to
suffer from a floor or ceiling effect, so performance on it
is simply not well-correlated with assignment mark. In
both cases, these traditional format questions are not
usefully predictive of performance on the out-of-class
project.

Our Questions 1 to 9 are representative of the type
often used to assess programming ability in computer
science education research, including those studies which
conclude that our students cannot program because of low
success rates on these test items. If in fact, the ability to
solve this kind of test item is not well correlated with the
ability to program, we may be encouraged to posit that
our students may, in fact, be able to program, but that this
type of question does not accurately measure that ability.

These results are of course only preliminary. The
sample size is only moderate, and one should not infer
too much from individual, possibly pathological, exam
questions. Nonetheless, there is a clearly detectable
pattern that encourages us to believe that through the use
of Activity Diagram questions, we might be able to obtain
an acceptably accurate measure of true programming
ability without the often prohibitive cost of hand-marking
complete software artefacts.

4 DISCUSSION
In recent decades, computer programming has progressed
from an isolated esoteric tool, to a critical element of a
scientific discipline, to a vocational practice on which
many of the world’s systems and institutions now depend.
Throughout this process, programming pedagogy has
struggled to achieve an always successful delivery of
what is an inherently difficult subject to teach. This
difficulty has led to the gloomy conclusions that we can’t
teach it, and our students can’t do it.

In this paper, we have suggested that this sad situation
may be due, at least in part, to the methods we use to
assess programming ability, both in research and in the
classroom. We propose that the types of questions often
used to assess programming ability are not measuring its
most essential aspect – the ability to produce good quality
working code. As an alternative, we propose the use of a
spatial representation of coding logic – the Activity
Diagram – that may more accurately reflect what we
mean when we ask “can our students program”? Our
early experience with this technique indicates that it
correlates better with the ability to produce quality
working code than do traditional multiple choice and
short answer questions.

One of the reasons that our students score so poorly on
traditional written programming questions is that they are
often confusing. In order to avoid trivially simple non-
discriminatory assessments, we must make these
questions convoluted and abstract, often to the point
where they no longer represent the realistic cognitive
behaviours of real programming. Activity Diagram
questions, in comparison, are inherently complex. To
generate an Activity Diagram, the student must generate a
computationally appropriate solution to a problem, and
express that solution using the Activity Diagram notation.
There is enough challenge in this activity that we do not
need to artificially complicate the problem to avoid
triviality. We can use realistic programming contexts to
assess real programming skill.

Our results, while preliminary, encourage us to hope
that perhaps we haven’t really been doing such a bad job
of teaching programming, although we may have been
doing a questionable job of assessing it.

5 REFERENCES
Bergin, S. and Reilly, R. (2005): The influence of

motivation and comfort level on learning to program.
Proceedings of the 17th Annual Workshop on the
Psychology of Programming Interest Group pp 293-
304, University of Sussex, Brighton UK 29, June – 1
July, 2005.

Bornat, R., Dehnadi, S., and Simon (2008): Mental
models, consistency and programming aptitude. ACE
'08: Proceedings of the tenth conference on
Australasian computing education Vol. 78.

Cardell-Oliver, R. (2011): How can software metrics help
novice programmers? ACE 2011, Proceedings of the
14th Australasian conference on Computing education,
Perth.

Question Question type Percent
Correct

Average
Pr(Marks)

Q01 MCQ code writing 0.81

Q02 MCQ code reading 0.78

Q03
Short answer code

reading
0.93

Q04 MCQ code writing 0.81

Q05
Short answer code

reading
0.71

Q06 MCQ code reading 0.60

Q07 MCQ code reading 0.47

Q08
Short answer code

reading
0.71

Q09 MCQ code reading 0.86

Q10
Problem statement ->

Code
 .76

Q11
Problem statement ->

Code
 .66

Q12
Code -> Activity

Diagram
 .79

Q13
Problem Statement ->

Activity Diagram
 .40

Q14
Short answer

problem statement ->
Code

 .59

Q15 Parsons Puzzle .86

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

125

Clear, T. (2008): Thinking issues: assessment in
computing education: measuring performance or
conformance? SIGCSE Bulletin 01/2008; 40:13-15.

Dehnadi., S. (2006): Testing programming aptitude.
Proceedings of the Psychology of Programming
Interest Group 18th Annual Workshop, 22-37.

Fincher, S. (1999): What Are We Doing When We
Teach Programming? 29th ASEE/IEEE Frontiers in
Education Conference San Juan, Puerto Rico

Ford, M. and Venema, S. (2010): Assessing the Success
of an Introductory Programming Course. Journal of
Information Technology Education 9:133-145.

Goldstein, H.H., and von Neumann, J. (1947): Planning
and coding problems for an electronic computing
instrument, part II, vol I. Report prepared for the U.S.
Army Ordinance Dept. Reprinted in von Neumann, J.
Collected Works, Vol. V, A.H. Taub, Ed., Mc-Millan,
New York, pp. 80-151.

Gonzalez, G. (2006): A systematic approach to active and
cooperative learning in CS1 and its effects on CS2.
SIGCSE 2006, March 1-5, 2006, Houston, TX, USA.

Ian Utting, Allison Elliott Tew, Mike McCracken, Lynda
Thomas, Dennis Bouvier, Roger Frye, James Paterson,
Michael Caspersen, Yifat Ben-David Kolikant, Juha
Sorva and Tadeusz Wilusz (2013): A Fresh Look at
Novice Programmers’ Performance and Their
Teachers’ Expectations ITiCSE-WGR’13 June 29-July
3, 2013, Canterbury, England, UK.

Ihantola, P., Ahoniemi, T., Karavirta , V. and Seppälä, O
(2010): Review of Recent Systems for Automatic
Assessment of Programming Assignments. Koli
Calling ’10, October 28-31, 2010, Koli, Finland

Lahtinen, E., Ala-Mutka, K. and Järvinen, H-M. (2005):
A study of difficulties of novice programmers.
Proceedings of the 10th Annual SIGCSE Conference
on Innovation and Technology in Computer Science
Education, Monte de Caparica, Portugal, June 27-29,
2005.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer,
J. , Lindholm, M., McCartney, R., Moström, J.E.,
Sanders, K., Seppälä, O., Simon, B. and Thomas, L.
(2004): A multi-national study of reading and tracing
skills in novice programmers, ACM SIGCSE Bulletin,
36(4).

Lister, R., Simon, B., Thompson, E., Whalley, J.L. and
Prasad, C. (2006): Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy. ITICSE
'06 Proceedings of the 11th annual SIGCSE conference
on Innovation and technology in computer science
education. 118-122

Ma, L., Ferguson, J., Roper, M., and Wood, M. (2007):
Investigating the viability of mental models held by
novice programmers. Proceedings of the 38th SIGCSE
technical symposium on Computer science education
(SIGCSE '07). ACM, New York, NY, USA, 499-503.

McCartney, R., Boustedt,J., Eckerdal, A., Sanders, K.,
and Zander, C. (2013): Can First-year Students
Program Yet? A Study Revisited ICER’13, August 12–
14, 2013, San Diego, California, USA.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas, L.,
Utting, I. and Wilusz, T. (2001): A multi- national,
multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE
Bulletin, 33(4), 125-140.

Parsons, D and Haden, P. (2006): Parson's programming
puzzles: a fun and effective learning tool for first
programming courses, Proceedings of the 8th
Australasian Conference on Computing Education,
p.157-163, January 16-19, 2006, Hobart, Australia.

Pears, A., Seidman, S., Malmi, L., Mannila, L. Adams,
E., Bennedsen, J., Devlin, M., and Paterson, J. (2007):
A survey of literature on the teaching of introductory
programming. SIGCSE Bulletin, 39(4), 2007.

Ramsey, H.R., Atwood, M.E. and Van Doren, J.R.
(1983): Flowcharts Versus Program Design Languages:
An Experimental Comparison. Communications of the
ACM, 26(6):445-449.

Sajaniemi, J., Kuittinen, M. and Tikansalo, T. (2008): A
Study of the Development of Students’ Visualizations
of Program State during an Elementary Object-
Oriented Programming Course. ACM Journal on
Educational Resources in Computing, 7(4).

Scanlan, D. (1987): Data-Structure Students May Prefer
to Learn Algorithms Using Graphical Methods.
SIGCSE '87 Proceedings of the eighteenth SIGCSE
technical symposium on Computer science education.
pp. 302-307.

Schmuller, J. Sam's Teach Yourself UML in 24 Hours,
Complete Starter Kit (3rd Edition) Sams Publishing,
2004.

Sheard, J. (2012): Exams in computer programming:
What do they examine and how complex are they? In
Proceedings of the 23rd Annual Conference of the
Australasian Association for Engineering Education.

Shneiderman, B., Mayer, R., McKay, D. and Heller, P.
(1977): Experimental investigations of the utility of
detailed flowcharts in programming. Communications
of the ACM, 20(6):373-381.

Shneiderman, B. (1982): Control Flow and Data Structure
Documentation: Two Experiments. Communications of
the ACM, 25(1):55-63.

Simon, Sheard, J. Carbone, A., Chinn, D., Laakso, M.,
Clear, T., de Raadt, M., D’Souza, D., Lister, R.,
Philpott, A., Skene, A. and Warburton, G. (2012):
Introductory programming: examining the exams
Proceedings of the Fourteenth Australasian Computing
Education Conference, Melbourne, Australia

Thomas, L., Ratcliffe, M., Woodbury, J., Jarman, E.
(2002): Learning styles and performance in the
introductory programming sequence . SIGCSE '02
Proceedings of the 33rd SIGCSE technical symposium
on Computer science education.

Vamplew , P., and Dermoudy, J. (2005): An anti-
plagiarism editor for software development courses
ACE '05 Proceedings of the 7th Australasian
conference on Computing education 42:83-90.

CRPIT Volume 160 - Computing Education 2015

126

Whalley , J., Lister, R., Thompson, E., Clear, T., Robbins,
P., Ajith Kumar, P. K. and Prasad, C. (2006): An
Australasian study of reading and comprehension skills
in novice programmers, using the bloom and SOLO
taxonomies ACE '06 Proceedings of the 8th
Australasian Conference on Computing Education.
52:243-252.

Wing, J. (2006): Computational Thinking
Communications of the ACM, 49(3):33-35.

Robins, A. (2010): Learning edge momentum: A new
account of outcomes in CS1. Computer Science
Education, 20:37 - 71.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

127

CRPIT Volume 160 - Computing Education 2015

128

Repository of Wisdom : Automated Support for Composing
Programming Exams

Keith Foster, Daryl D’Souza, Margaret Hamilton, James Harland
School of Computer Science and Information Technology

RMIT University
Melbourne, Australia

{keith.foster, daryl.dsouza, margaret.hamilton, james.harland}@rmit.edu.au

Abstract
This paper presents a macro-level view around exam
composition. While previous work known as BABELnot
(Lister et. al. 2012 [1]) developed a micro-level
classification scheme to consistently categorise individual
exam questions, this paper's contribution uses a more
holistic intent towards collective exam composition to
build on the past research from the BABELnot project.
Specifically, it addresses a higher order, cognitive layer
of complexity on top of the exam classification work
derived from the BABELnot project to categorise
foundation level programming exam questions. In
preparation for this, we analysed use cases for a
programming questions database for the composition of
exams and selected two for further analysis and
implementation. A database designed for use by both
educators and researchers exists, called “The repository
of Wisdom” (RoW), however, it needs further
enhancements to support the goals of this paper. The
RoW was designed and implemented as part of previous
work (Hamilton, D’Souza, Harland, Rosalina 2014 [3])
that classified questions in programming exams. The
retrieval of these questions can be by various attributes
such as topic, concept, aptitude, content, level of the
course and benchmarked results, with interesting and
innovative retrieval options related to ranked queries.
The selection process can also be influenced by difficulty
scores, ratings and comments given by the instructors
who submitted the questions or others who may have
trialled them. We would like the repository to be further
evaluated in the “real world” by computer scientists and,
in particular, academics assessing novice programming
ability or designing entry level exams. We have built
ontologies and mechanisms for storing and retrieving
exam questions and also discuss these in this paper. .
Keywords: Novice programming; Computer Science
Education; Computer programming exam question
retrieval; Mastery, Assessment; Educational
measurement; Examination generation; and Use case
analysis.

Copyright © 2015, Australian Computer Society, Inc.
This paper appeared at the 17th Australasian Computing
Education Conference (ACE2015), Sydney, Australia,
January 2015. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 160. D. D'Souza
and K. Falkner, Eds. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

1 Introduction
Programming is a fundamental skill required by most
computing or information technology degrees, but the
extent and level of competence required can vary greatly
from one context to another. Recent research (Sheard
2013 [7]) has shown a lack of model-based exam
construction for introductory programming. It was
concluded, that “while most of the interviewees had
heard of at least one pedagogical model for assessment,
only one or two designed their exams with specific
reference to such a model”.

This discovery is the main motivation for our paper:
to contribute a useful model of exam construction in the
use case of setting summative programming exams.

Programming is also a skill that can cause significant
angst amongst the student body, and is often taught in a
cumulative manner across a number of foundational
courses. Designing an exam to assess students in such
courses is not only a task that requires attention to detail,
but also one that must be repeated at least once a
semester (and possibly more often), and which needs to
take into account any prior access students have to
similar exams. This can mean that the process of
designing exams is sometimes ad hoc, and one that does
not necessarily follow systematic principles, or make it
easy to show that the desired learning outcomes of the
course are what is actually assessed by the exam.

The BABELnot project (Lister et. al. 2012 [1]) was a
multi-institutional project whose main thrust was to
identify and develop methods by which programming
courses could be compared, one of whose outcomes was
a formalism for describing and linking learning outcomes
to programming exam questions used in introductory and
later courses. Another outcome was an archive of exam
questions (often including performance data) expressed
in this formalism. This lead to the RoW project, in which
these questions formed the basis of a web-accessible
database of such questions, (Hamilton, D’Souza,
Harland, Rosalina 2014 [3]). This database is accessible
to all interested academics, and is intended as a resource
that can be used to develop exams for introductory
programming courses.

Having a database of potentially useful questions is
one thing; using this resource effectively to design and
develop exam papers for a particular introductory
programming course is another. In particular, it is often
necessary to consider some potentially competing
attributes, such as reliability, validity, difficulty and
distinguishability (Angoff 1971 [4], de Klerk 2014 [5],
D’Souza, Hamilton and Harland 2013 [6]).

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

129

The ProGoSs system (Gluga 2012 [2]) has like-
minded aims to automate parts of the University
assessment process, however, it is limited in scope to the
design of curricula and matching topics with external
(government) requirements.

In this paper we aim to explore the methods by which
a reliable and valid exam, with the appropriate level of
difficulty and appropriate distinguishability, can be
developed using the material in the RoW database and
how far this can be usefully automated. To this end, we
have conducted some deeper analyses of the needs of the
users and more importantly incorporated this analysis
into the development of the RoW tool to provide better-
automated support.

This paper is structured as follows. First, we explain
and define some terms for important concepts and meta-
data that we refer to in the following sections. Then we
present an orderly flow of analysis and identification of
use cases of the system in Section 3. User goals are
presented in Section 4 and mechanisms to support these
goals are presented in Section 5. Finally, with a
framework for RoW usage developed we highlight how
we intend to implement this in RoW (Section 6) some
further work that needs to be done (Section 7) and draw
some conclusions (Section 8).

2 Definitions
Here we define the ontologies, concepts and
measurements used throughout this paper. In our context,
“ontology” is simply a structured set of names either
ordered in a list or arranged hierarchically giving
semantics to meta-data types for examination questions.
The ontologies presented are skill elements - which
include topics, concepts and aptitudes - and difficulty
Levels. The elements divide and classify the notion of
skill into atomic components (that a student possesses
and/or a question requires) and the levels give a standard
approximation of difficulty. These aid in the selection of
appropriate questions for an exam.

The concept of mastery discrimination is about how
well questions distinguish between a student’s
programming ability and Partitioning is how we
implement that. These aid in achieving a successfully
discriminating exam. The mastery scale is our standard
linear measurement for both a student’s ability and a
question’s requirements to solve, which consists of
mastery levels from 0 to 100. Lastly, Discrimination
validity is a standard linear measurement of the validity
of a question’s discrimination correctness by a human
expert, which is used to help the relevance of query
results.

2.1 Skill elements
A skill element is an abstraction of three classifications:
topics, concepts and aptitudes, each of which has its own
context for relevance. These are defined below:

Topics refer to domain specific topics. For example,
The Java switch statement, Model-view-controller,
Regular expressions, C++ multiple inheritance.

Concepts refer to generic concepts applicable to many
programming topics. For example, Nested loops,

Recursion, Memory Pointers, Object references, Class
Inheritance.

Aptitudes refer to fundamental brain skills that are
considered critical for the ability to programming. For
example, Boolean logic, Imperative processes,
Mathematical functions, Pattern matching, Analysing
written English and structuring / re-phrasing logically.

2.2 Mastery levels
A mastery level is simply a value from 0 to 100 attributed
to a question that represents the relative amount of ability
required to answer the question successfully. This level is
intended to correlate closely with exam assessment
scores out of 100. So, a student who passes a question at
level 50 would be expected to get a score of at least 50 in
the overall exam. Similarly students who achieve full
marks for a question at level 80 would be expected to get
at least 80 for an overall exam score.

2.3 Difficulty levels
Difficulty is a classification of questions to indicate the
kind of partitioning the question achieves. That is, a
question’s ability to discriminate between students of
different mastery levels. Different questions partition the
set of students at different points on the mastery scale.
Our proposed ordered list of difficulty levels is as
follows:

2.3.1 At-risk
This means that if a student fails such a question it
indicates they will likely fail overall.

2.3.2 Basic
If a student fails such a question it means they have an
error in their understanding that indicates they will likely
fail many other questions.

2.3.3 Mainstream
Failing these questions indicate a gap in knowledge,
understanding or application that is the part of the core
competency of introductory programming. They indicate
nothing about the likelihood of passing other types of
questions.

2.3.4 Advanced
Passing an advanced question indicates they will likely
pass all previous types. Failing indicates they will likely
fail challenging questions.

2.3.5 Challenging
These questions serve to discriminate the most able
students from the majority.

Difficulty levels are not related to mastery levels,
however, we can consider that they will discriminate at
some imprecise points on the mastery scale:

Figure 1: Example Set of Difficulties plotted on the

mastery scale.

At-risk Basic Mainstream Advanced Challenging

The mastery scale

CRPIT Volume 160 - Computing Education 2015

130

A secondary use of difficulty levels is to aid the exam
composer in defining a partitioning for each question,
which is explained in the following subsection.

2.4 Mastery discrimination and partitioning
Mastery discrimination refers to the ability of a question
or an entire exam to distinguish between students of
different mastery levels. If we test a cohort of students
with five questions, each with a different one of the
difficulty levels above, then we can divide the cohort of
students into six subsets based on combined results of all
five question as follows:

Figure 2: A Five Point Example of Partitioning

Each subset of the cohort contains students that fall
into the same range of mastery levels. This is assuming,
of course, that a student who fails an At-Risk question
also fails all higher level questions and the same for
Basic and so on. Obviously there will be exceptions to
this but statistically this will usually be the case if the
questions and their partitioning are “good” (i.e. work
well for most students).

This process of dividing a cohort into subsets of
students based on the student’s mastery level we call
partitioning and the subsets we call partitions. There is
still an ordering of the partitions maintained. A
partitioning point is a single value in the mastery level
range that separates two adjacent partitions. For
example, 10, 30, 50, 70 and 90 (from figure 3).

A single question can partition up to a maximum of
the number of marks allocated (using one partition point
for each mark) plus one.

However, typically and practically, only one partition
point is useful (when treating the question as pass/fail for
example). So typically, you’ll get only two partitions
from a single question, even though it may have many
more marks allocated to it.

An exam, however, can combine the multiple
partition points from all of the questions to effectively
create a huge partitioning with scores of partition points.
This can then partition a cohort into scores of partitions.

In any given exam, the number of partitions is the sum
of all the partition points of all questions.

2.5 Discrimination validity
Validity refers to the human element to validate that a
given question is in fact a good discriminator based on
expertise and past experience. This means an “expert” in
teaching programming is needed to review questions and
assign a validity score. The Validity score can be used to
rank questions from a search result. Ranking is covered
in more detail in section 5.2.

3 Use cases
We identify two use cases for composing programming
exams with the support of our tool and present each one
in the following subsections. In analysing the use cases
we draw out a number of goals, some of which are shared

between use cases. There were many other use cases that
we considered. However, in the interests of focus, we
reduced them to these two. Some other use cases are
presented in section 8 on further work.

3.1 Composing summative assessment exams
An exam composer is a teaching staff member
responsible for writing new exams. In our context, they
use the RoW to source questions for a new exam and the
metadata incorporated in RoW to guide them in selecting
the best or desired questions to include in their exam.
We have identified a few goals that an exam composer
would have in mind when composing an exam. They
include the following.

(Goal 1) Full coverage of the topics.
(Goal 2) Full coverage of the concepts.
(Goal 3) Full coverage of the aptitudes.

Another goal is to have “good discrimination” in an
exam meaning the aim is to have the results of a cohort
of students to be more distributed across the “mastery
scale”.

Note that to enable reasoning about student abilities in
a standard way, we reuse the hypothetical concept of
“mastery level” used in (Gluga 2012 [2]) and defined it
as a range from 0 to 100 to be analogous with an
assessment result.

For example, a poorly balanced exam may have
“clusters” of students with close scores and large gaps
between clusters on the result scale. This is undesirable
as assessors aim to discriminate between students at
many points on the result scale.

We are not claiming that good exams should only
display a normal distribution of scores; rather this is an
interesting metric that highlights gaps and clusters in the
distribution that may indicate a problem with a candidate
exam. It would then be the composer’s decision whether
and how to address these anomalies.

We have identified two different methods by which a
composer could improve an exam in this regard:

(Goal 4) Balancing the types of questions in an exam by
difficulty.
(Goal 5) Evenly distributing the marks of an exam across
all mastery levels.

The first is coarse-grained and the second fine-

grained. Both are goals for exam composition and are
explained further in section 4. The last goal (above) can
be satisfied by selecting a number of questions each
requiring varying mastery levels to pass, such as,
including a question to identify the high achievers in the
exam, or including a question that bare passing students
should be able to do well in. We can expand this last goal
to include an additional goal:

(Goal 6) Identifying good mastery-partitioning questions

10 30 50 70 90

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

131

This last goal is really a means to and end, the end
being distributing an exam’s marks across mastery levels
using the identified partitioning questions.

3.2 Composing university entrance exams
An entrance exam is one where an educational institution
asks prospective students to sit a formal exam prior to
making an offer for them to be enrolled into the program.
These entrance exams have two main aims. Firstly, to
rank the students by their abilities and thereby enable the
school to make offers to the top students. Secondly, to
partition the students based on aptitude and thereby
enable the school to advise the student which program
would suit them best (or indeed, if no program suits their
aptitudes, they may be advised to seek a different field of
study, or undertake some preliminary course of study).

Note that we are not positing nor refuting that the
“Geek Gene” (Lister 2010 [8]) determines aptitudes,
rather, the measurement of a prospective student’s
current aptitudes in combination with the University
program’s aptitude preferences provides relevant
information with which to influence the decision. It may
well be the opposite case of the “Geek Gene” theory
where a University has a program designed to build
programming related aptitudes through targeted
intellectual exercises and decides to deliberately make an
offer to a student who is currently lacking in an important
aptitude but who shows great potential on other
measures. In both cases, the aptitude assessments are
very useful.

In order to generate such an exam there are a few
goals we think an exam composer would have in mind:

(Goal 6) Identifying good mastery-partitioning questions
(for aptitudes).
(Goal 4) Balancing the types of questions in an exam by
difficulty.
(Goal 3) Full coverage of the aptitudes.

Note, we do not include goal G5 - evenly distributing

the marks of an exam across all mastery levels - because
we think that people don’t have a degree of mastery in
an aptitude, rather, we think the intention of the
definition of aptitudes is that people either have an
aptitude or they don’t.

Concepts and topics are not included in these goals
because this is what the students learn, not what is
relevant to entrance. A high school student will not have
been exposed to many of the concepts usually contained
in an introductory programming course at a tertiary
education level. Therefore, a specific set of secondary
education mathematical and problem-solving aptitudes,
designed to assess programming aptitudes would be
more appropriate in this use case.

The set of aptitudes for programming should be
specific and well known. Identifying a standard set of
aptitudes for this purpose is another project in itself for
further work (Section 7). In the following section we will
explain each goal identified in this section (G1 through
G6) in more detail.

4 Goals for exam composition
In this section, we briefly explain all the goals required
by the use cases identified in the previous section. We
explain the expected benefits to the exam composer of
each goal in order to highlight what the proposed support
mechanisms (in the following Section 5) will need to
achieve.

4.1 Full coverage of assessable skill elements
A creator of formative assessments desires an exam that
fully covers a set of topics and concepts that she has
decided needs to be assessed. Similarly, a creator of
University entrance assessments desires an exam that
fully covers a set of aptitudes that she has decided needs
to be assessed.

The goal is for the set of candidate exam questions to
approach 100% coverage of all the specified skill
elements to be assessed. Effectively there are three goals,
one for each sub classification of skill element:

(Goal 1) Full coverage of the specified topics.
(Goal 2) Full coverage of the specified concepts.
(Goal 3) Full coverage of the specified aptitudes.

4.2 Optimising mastery discrimination in an
exam

In our analysis we identified two approaches to
optimising the effectiveness of an exam to discriminate
between students with different mastery levels. The first
is coarse-grained and uses the difficulty levels defined in
section 2. The second is fine-grained and uses
partitionings, also defined in section 2. Both approaches
aim to spread the marks allocated to questions across
either difficulty or mastery levels, according to what the
exam composer specifies.

(Goal 4) Balancing marks across difficulty levels …

When a composer is using the coarse-grained
difficulty balancing method to compose a new exam,
they desire their exam to contain questions at many
different difficulty levels and different amounts of marks
at each difficulty level. To this end, we propose to capture
this desire in what we call a “difficulty signature”. This
signature simply defines the proportion (out of 100%) of
each difficulty level desired. For example: 10% at-risk,
20% basic, 40% mainstream, 20% advanced and 10%
challenging. The composer should define the desired
difficulty signature first and then the system can calculate
how closely a candidate exam approximates the desired
difficulty signature. It is important to note that the
percentages above would be weighted on the marks
allocated to a question, and not on the number of
questions.

(Goal 5) Distributing marks across mastery levels …

When a composer is using the fine-grained
partitioning point distribution method to compose a new
exam they aim to have the graph of marks allocated to

CRPIT Volume 160 - Computing Education 2015

132

questions by partitioning point to approach some
specified pattern (or graph shape).

Normal distribution is an example of a graph shape,
however, a normal distribution is not appropriate for
exam discrimination; rather, an even distribution
(horizontal line) starting at 30 on the mastery scale may
be more appropriate. In a “normal” world, the normal
distribution would show itself when plotting the number
of students attaining a given score, not the marks
requiring that mastery level. Therefore, the composer
needs to specify the desired graph shape for mastery level
distribution before applying the metric to a candidate
exam.

4.3 (Goal 6) Identifying mastery-partitioning
questions

In order to create a candidate exam the exam composer
needs to select candidate questions from the database.
The RoW tool provides a search mechanism for this and
then ranks them according to some pre-defined weighting
formula.

This goal is specifically about finding questions that
make good mastery discriminators and we use
partitioning to accomplish this. Partitioning refers to the
mathematical concept of partitioning a set into two or
more subsets. In our context, we want to partition a
cohort of students into subsets ordered by mastery level.
This means every student in a higher subset has a higher
mastery level than every student in the next lower subset
and so on.

Once a set of candidate partitioning questions are
identified for a particular skill element and partitioning
point, we would like to rank them according to their
discrimination correlation, popularity, validity and other
qualities. The composer uses the ranking to aid in the
selection of questions for their exam (higher ranked
questions being preferred). We explain how we calculate
partitioning question ranking in Section 5.2.

We also explain how we can map from a partition in
any particular question to the standard mastery level. A
given question may have a score out of five, which
results in six partitions. Each partition needs to be
mapped to one mastery level. How this mapping is
achieved is addressed in Section 6.1.

5 Mechanisms to support goals
Having identified the goals that exam composers have,
we now describe the mechanics of acheiveing these goals
with the RoW tool in mind. We have divided the
mecahanisms into four broad categories: searching and
ranking questions; then coverage and discrimination
analysis of whole exams.

5.1 Searching for candidate questions
In order to create a candidate exam the exam composer
needs to search for candidate questions. Most of this
functionality is already in the RoW tool allowing her to
search by topic, content or level of the course. To this,
we add the ability to search by concept and aptitude.

5.2 Ranking of questions
Search results may return many questions – too many to
manually review in the selection process – so a ranking
of the questions is desirable to reduce the selection time.

One way to rank questions is to compare the ordering
of students based on the question’s partitioning with the
ordering of students based on their overall exam score
(we call this discrimination correlation). If the question
ordering closely correlates with their overall exam
ordering then this could be considered a “good
partitioning”. If not, then perhaps this question’s
partitioning is not reliable. However, if the
discrimination of a question does closely correlate with
the overall exam discrimination, this would not
necessarily mean that it is correct, but rather it means that
the question’s partitioning point is consistent with the
average scores of the aggregation of questions in past
exams.

When ranking partitioning questions, we can mix in a
number of factors, discrimination correlation being just
one of them. We have identified four additional factors
that could be used in the ranking process:

• Popularity - the percentage of “likes” on a
question.

• Validity - the discrimination validity score
assigned by a human expert.

• Commentary - a full text analysis of the
comments on a question to derive how positive
the comments are.

• Recency – how recently was the question used in
an exam.

In order to rank questions then, an exam composer
needs to define a ranking formula (or let it default to one)
such as this:

Figure 3: Example Partitioning Question Ranking

Formula.

Each of these factors will have a relative weight
assigned to it for calculating an overall ranking.

5.3 Coverage analysis
Once a candidate exam is established, the exam
composer wishes analyse how well it covers all the skill
elements desired. Firstly, the composer needs to select a
subset of skill elements applicable to this exam (for
entrance exams this would likely be aptitudes only).
Subsequently the system can then calculate the
percentage of the desired elements covered by the set of
candidate questions.

The RoW tool’s coverage analysis feature should also
graph the relative coverage for each element so the
composer can visually identify “gaps”, “peaks” or “dips”

Validity

Popularity

Commentary

Discrimination
Correlation

28%
27%

20%

16%
9%

Recency

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

133

not aligned with the specified coverage graph in order to
address them.

5.4 Discrimination analysis
Once a candidate exam is established, the exam composer
also wishes to analyse how well it will discriminate
between students with varying abilities (measured using
mastery levels). As described in Section 4.2, there are two
ways to do this: difficulty balancing and partitioning point
distribution. The RoW tool needs a way for composers to
pre-define both difficulty signatures and partitioning
graph shapes.

With these created the tool can then calculate the
coverage percentage and graph correlation for every
question according to any given signature and shape.
These calculations are implemented with derived
attributes defined in Section 6.2.

6 Tool Support

6.1 Meta-data support
In order to implement the meta-data required by the use
cases we propose to expand the “topic” attribute into
three classifications (either as three attributes or one
attribute of some type with three subtypes): Aptitude,
Concept and Topic. For each of these three entities we
define the following attributes: Name and Description.
We require each question to have “sets” of aptitudes,
concepts and topics associated with them which requires
three attributes: Aptitudes required, Concepts required
and Topics required.

As a guide for designing good discriminator
questions, it is recommended that questions have very
few associated skill elements (ideally one) so the
assessment scores and analytics reflect the ability a
student has with one specific skill element. Conversely, a
question that covers too many skill elements will be
ineffective as a discriminator because the assessment
scores will be reflecting the student’s aggregated ability
with many elements, which cannot be deconstructed back
to the elemental level.

For every question, two attributes are defined;
Partitioning and Discrimination correlation. Partitioning
is a mapping from the marks allocated to a question to
the mastery level. Discrimination correlation is
calculated statistically (across all students that sat any
exams that included this question). A higher
discrimination correlation indicates the question
performs better as a mastery discriminator.

Partitionings are defined by people adding them to the
database and so it requires some further explanation and
examples. For each possible assessment, score of the
question define the mastery level (0 to 100) required to
attain that score. For example, a question assessed out of
five could have the following partitioning:

Score Mastery-Level
1 30
2 50
3 60
4 70
5 80

Figure 4: Example Partitioning with six partitions.

A score of zero implies a mastery level less than thirty
and a score of one has a mastery level from 30 to less
than 50. A different question assessed out of five might
have the following partitioning:

Score Mastery-Level
4 60
5 80

Figure 5: Example Partitioning with three partitions.

A score of zero to three implies a mastery level less
than sixty (giving the third partition).

Finally, we need a Difficulty Level attribute defined
for all questions.

6.2 Analysis support
When creating candidate exams for coverage and
discrimination, composers need some information to aid
them in the analysis process. Two derived attributes are
required on exams: Skill Coverage and Discrimination
Correlation.

Both of these have calculations that involve external
data including: desired skill elements, difficulty signature
or partitioning graph shape. These three external data
items must be defined by the composer prior to running
queries involving these attributes.

6.3 Validation support
To validate the correctness of the discrimination
correlation we need historical data on past question
scores by the same students. To support this we define
the Discrimination Validity attribute for all questions.
The value of the discrimination validity can be just a
number between 0 and 10 which indicates its success rate
in discrimination compared to the truth as judged by the
expert who enters these validation scores.

6.4 Query support
The two queries described in this section both depend on
ranking to be useful. To support this, the RoW tool needs
to implement a ranking formula feature that allows
composers to alter the weighting of each factor to what
they desire. For the purpose of ranking questions for their
partitioning qualities, the tool needs to pre-define a
derived attribute with a default formula like the one
described in Section 5.2. In addition, we need to define
the Discrimination Ranking attribute for all questions.

Once all the supporting attributes and features are in
place, the relevance of useful queries should improve.
We have described two useful queries that the tool can
perform to realise the use cases identified in Section 3:

6.4.1 Query to fill a gap in coverage
• Filter on Subsets of topics, concepts or

aptitudes.
• Group by Difficulty Level.
• Order by Discrimination Ranking.

The query above is useful to find good discriminator

question for an exam. The search can be focused on
finding questions for specific skill elements for which the
exam currently under construction is lacking. These

CRPIT Volume 160 - Computing Education 2015

134

queries can be iterated and questions collected until full
coverage of the desired skill elements is achieved.

6.4.2 Query to fill a gap in difficulty level
• Filter on Difficulty Level.
• Group by Topic or concept or aptitude.
• Order by Discrimination Ranking.

This query is useful to improve the “balance” of an

exam (which in turn aims to get a normal distribution of
results for a cohort). The search can be focused on
finding question with specific discrimination types for
which the exam currently under construction is lacking.
These queries can be iterated and questions collected
until the desired “discrimination signature” is achieved.

7 Further Work and Reflection
The next phase of work that needs to be performed is
creating meta-data about existing exam questions in the
repository. We desire to have a significant and useful
portion of the questions fully attributed using the above
mechanisms and ontologies. To that end, we need experts
in teaching introductory programming to create this meta-
data and define some ontologies.

Some ontologies might include definitions of standard
sets of aptitudes, concepts and topics. In the latter case
the set is specific to individual courses so a common set
of topics that can be built upon by each educational
institution is desirable.

For each question, definitions are required for the skill
elements and difficulty levels that apply to this question,
one partitioning and optionally a discrimination validity
for the question. The standard ontologies need to be
defined in a focus group consisting of experts. To that
end, a forum like an international conference workshop is
recommended to complete the job.

Adding values for the above attributes to each
question and the subsequent building up of
institution/course specific topics can be done
incrementally by teachers on their own schedule and in
their own places of employment.

Beyond this, we foresee a number of potential
directions for the project to progress. We briefly
introduce four potential use cases that were not addressed
in this paper:

1. Identifying questions that have been used in the past.

For example, a computer science educator might
find it interesting to compare how their cohort of
students is performing in relation to past cohorts of
students, or against a cohort from another campus,
university or country. This could involve selecting a
question or questions for which benchmarked data
has already been provided in the RoW, and including
this in their own exam, for research purposes.

2. Automatically generating “good” exams given a set
of skill elements plus a difficulty signature and/or a
partitioning distribution graph shape. The RoW tool
could automate the search for the optimal exam that
most closely approximates the given learning
attributes, difficulty signature and/or graph shape.

3. Analytics on the discrimination correlation of
individual questions in relation to overall exam
scores in order to iteratively refine the question in
order to progressively achieve better and better
correlation.

4. Collecting data on practical assignments and
formative assessments in addition to summative
exams for the purpose of analytics. For example,
predicting summative results from formative results
or at least discovering unknown relationships
between them.

In this paper, the mechanisms for improving the

mastery discrimination of exams rests on the assumption
that questions in an exam are “targeted” (i.e. that require
one or only a few skill elements). The reason being that
fine-grained allocation of marks to a few specific skill
elements greatly aids the accuracy of the partitioning
process. If, however, exams contain large questions and
marks are allocated broadly across a large number of
skill elements then this process breaks down.

To mitigate this flaw in the future, we suggest
composers break down large exam questions and allocate
smaller amounts of marks to each skill element
associated with the question. Commonly, exam markers
will have a marking scheme that resembles this already,
so the next logical step is to organise these finer-grained
marks in a marking scheme based on skill elements and
capture results in the RoW. In this way, the
discrimination processes benefit and opens the potential
for more detailed analytics on individual questions that
can improve discrimination at the question level as well.

8 Conclusions
In this paper, we have presented two use case scenarios
for developing examination papers based on questions
available in the repository of wisdom. We have
discussed how mechanisms, ontologies and metrics can
be defined for the exam composer to select questions for
an exam that satisfy the goals of these different use cases.
The mastery levels presented in this paper can be mapped
to Bloom’s taxonomy, or whatever mastery scales the
composer requires giving their exam papers the required
educational measurement.

It is hoped that the analytical processes presented will
result in the dissemination of better questions and exams
that discriminate well. As more data is collected about
how students have fared using the various questions in
the repository, it will become possible to analyse more
deeply the relationships between aptitudes, concepts and
topics and gain further insights into detecting and
overcoming obstacles in learning programming.

9 References
[1] Lister, R., Corney, M., Curran, J., D'Souza, D.,

Fidge, C., Gluga, R., Hamilton, M., Harland, J.,
Hogan, J., Kay, J., Murphy, T., Roggenkamp, M.,
Sheard, J., Simon and Teague, D., Toward a shared
understanding of competency in programming: An
invitation to the BABELnot project. In proceedings
of the 14th Australasian Computing Education
Conference (ACE2012), Melbourne, Australia,
2012.

[2] Gluga, R., Kay, J., Lister, R., ”ProGoSs: Mastering
the Curriculum”, Proceedings of the Australian

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

135

Conference on Science and Mathematics
Education, (ACSME2012), Sydney, Australia,
September 2012 in Australian Conference on
Science and Mathematics Education (ACSME2012),
ed M. Sharma and A. Yeung, UniServe Science,
Sydney, Australia, pp.92-98 http://ojs-
prod.library.usyd.edu.au/index.php/IISME/article/vie
w/5914 last accessed: 13.12.13.

[3] Hamilton, M., D’Souza,D.,Harland, H., Rosalina,E.,
Repository of Wisdom: A database for storing and
retrieving classified and benchmarked exam
questions for introductory programming
courses, Proceedings of the 23rd Australasian
Software Engineering Conference (ASWEC),
Sydney, April, 2014.

[4] Angoff, W., Scales, norms, and equivalent scores, in
R.L. Thomdike (Ed.), Educational measurement
(2nd ed., pp. 508-600). Washington, DC: American
Council on Education, 1971.

[5] de Klerk, G., Classical test theory (CTT), in M.
Born, C.D. Foxcroft & R. Butter (eds.), Online
Readings in Testing and Assessment, International
Test Commission, http://www.intestcom.org
/Publications /ORTA.php, last accessed 1/09/2014.

[6] D’Souza,D., Hamilton, M., and Harland,J., A
Comparative Analysis of Results on Programming
Exams, Proceedings of the Fifteenth Australasian
Computing Education Conference (ACE2013) 117-
126, Adelaide, January,2013

[7] Sheard, J.,Simon, Carbone, A., D’Souza, D.,
Hamilton, H., Assessment of Programming:
Pedagogical foundations of exams, (2013).

[8] Lister, R., Computing Education Research, ACM
Inroads, Vol 1,
No.3,2010,http://203.144.248.23/ACM.FT/1840000/
1835434/p16-lister.pdf, last accessed 1/09/2011

CRPIT Volume 160 - Computing Education 2015

136

How (not) to write an introductory programming exam

 Simon Judy Sheard Daryl D’Souza
 University of Newcastle Monash University RMIT University
 Australia Australia Australia
 simon@newcastle.edu.au judy.sheard@monash.edu daryl.dsouza@rmit.edu.au

 Mike Lopez Andrew Luxton-Reilly Iwan Handoyo Putro
Christchurch Polytechnic Inst of Tech University of Auckland Monash University
 New Zealand New Zealand Australia
 mike.lopez@cpit.ac.nz a.luxton-riley@auckland.ac.nz iwan.putro@monash.edu

 Phil Robbins Donna Teague Jacqueline Whalley
Auckland University of Technology Queensland University of Technology Auckland University of Technology
 New Zealand Australia New Zealand
 phil.robbins@aut.ac.nz d.teague@qut.edu.au jacqueline.whalley@aut.ac.nz

Abstract
The computing education literature shows some recent
interest in summative assessment in introductory
programming, with papers analysing final examinations
and other papers proposing small sets of examination
questions that might be used in multiple institutions as
part of a benchmarking exercise. This paper reports on a
project to expand the set of questions suitable for use in
benchmarking exercises, and at the same time to identify
guidelines for writing good examination questions for
introductory programming courses – and, by implication,
practices to avoid when writing questions. The paper
presents a set of ten questions deemed suitable for use in
the exams of multiple courses, and invites readers to use
the questions in their own exams. It also presents the
guidelines that emerged from the study, in the hope that
they will be helpful to computing educators writing
exams for their own courses..

Keywords: introductory programming, CS1, assessment,
benchmarking, examination.

1 Introduction
McCracken et al (2001) appeared to discover that many
of the students who pass programming courses cannot
actually program. The BRACElet project (Whalley et al
2006) explored this issue in great depth and effectively
confirmed the problem. Addressing the question of how
students might be able to pass programming courses
without being able to program, Traynor et al (2006)
provided some insight with this excerpt from a student
interview: “Most of the questions are looking for the
same thing, and you usually get the marks for making the
answer look correct. Like if it’s a searching problem, you
put down a loop, and you have an array and an if

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D. D’Souza and K. Falkner,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

statement. That usually gets you the marks . . . Not all of
them, but definitely a pass.”

One response to this issue is to analyse the final exams
in programming courses, to try to establish how they
align with the skills and knowledge that students are
expected to acquire. Simon et al (2010) analysed data
structures exams in this light, and Petersen et al (2011)
and Sheard et al (2013) looked at introductory
programming exams.

In an early stage of the current project, 11 common
questions were included in the introductory programming
exams of six institutions in Australia and New Zealand
(Sheard et al 2014). We concluded that four of the
questions were suitable for benchmarking purposes, and
invited other academics to use these questions in their
own exams and compare their students’ performance with
the published results.

Benchmarking is not an attempt to impose uniformity
on courses and assessments across the sector. Rather, it is
a way of permitting comparisons: does university A,
which has a high reputation and a correspondingly high
entry requirement, produce better student outcomes than
university B, which accepts the students who are not
admitted to the other universities?

Such questions cannot be reasonably asked until there
is a meaningful way of answering them. This is what we
believe to be the purpose of benchmarking. If interested
participants at different institutions can include a
reasonable set of common questions in their final
examinations, they can compare the results of their
students with a published benchmark and form their own
conclusions as to the quality of their courses in the
context of the student cohorts that they attract.

In reducing an original set of 76 questions to the final
11 (Sheard et al 2014), we noted a number of reasons
why participants did not consider questions suitable for
use across multiple institutions:
 Question is too easy.
 Question is too large.
 Topic is too advanced or not usually covered in a

typical introductory programming course.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

137

 Student may not be familiar with the style of
question.

 Style of question is not suitable for an exam
situation, e.g. is it reasonable to ask students to
identify syntax errors?

 Wording of the question is unclear or ambiguous.
 Question is idiosyncratic, e.g. referring to the

coding style guide of a particular course.
 Question involves tricky code, which may obfuscate

its purpose.
In the current phase of the project we set out to further

explore these and other reasons, while at the same time
expanding the set of questions that can be used for
benchmarking. We thus addressed the following
questions:
 Can we identify some principles of good question

design that others can apply when writing their own
questions?

 Can we identify some aspects of poor question
design that others can try to avoid when writing
their own questions?

 Can we identify examination questions that a group
of instructors would all be willing to use in their
introductory programming exams?

2 Research approach
The 11 questions from the previous phase of the project
were supplemented by a further 20 candidate examination
questions, sourced from the literature (principally from
publications of the BABELnot project (Lister et al 2012))
and from questions that had been used in exams at the
lead authors’ institutions. Two additional versions of one
question were added, so that the same basic question
could be considered in three distinct forms.

The two lead authors conducted a workshop in
conjunction with ACE 2014, for academics with current
or recent involvement in assessing students in an
introductory programming course. The remaining seven
authors joined the project by attending the workshop.

The bulk of the workshop consisted of discussion of
the 33 questions. For each question, participants rated the
likelihood that they would use it in an introductory
programming exam, on a scale from 1 (would definitely
not use it) to 5 (would definitely use it). At the same time
they were asked to give reasons for their choices.
Members were at liberty to change their ratings during or
after the discussion of each question.

Discussion was lively on many questions, and most
members did not complete the rating exercise in the
course of the meeting. Members therefore completed the
exercise individually in their own time, and submitted
their full set of ratings and reasons to the project leaders
for analysis.

Analysis began by considering the simple average
rating of each question, resulting in a ranking of the 33
questions. This was then supplemented by a qualitative
analysis of the members’ reasons for their ranking
decisions, which resulted in some re-ordering of the list.
Finally, questions were selected from the high end of the
ranked list, but with consideration to question types and
subject matter, so that we did not end up with a
substantial number of similar questions.

3 Issues for consideration
In this section we list and discuss issues that arose as we
discussed the questions, both at the workshop and in the
subsequent data presented for analysis. The issues are in
no particular order, and are grouped where possible.

3.1 Question preambles and complexity
Sheard et al (2013) propose a number of measures of
question complexity, some of which they suggest should
be avoided, while others might be considered a necessary
part of what is being tested. One of the measures to be
minimised is linguistic complexity, the complexity of the
language in which the question is expressed. The essence
of the message is that if a question can be expressed more
simply, it should be. Among other considerations, this is
likely to assist students with a weak grasp of English.

Linguistic complexity is typically encountered in the
preamble to a question, the part that sets the scene for
what the students are actually being asked to do. Consider
Q4, one of the 11 questions from Sheard et al (2014).

Q4. A dependent child can be very loosely defined as a
person under 18 years of age who does not earn $10,000
or more a year. An expression that would define a
dependent child is
(a) age < 18 && salary < 10000
(b) age < 18 || salary < 10000
(c) age <= 18 && salary <= 10000
(d) age <= 18 || salary <= 10000

This question might appear to be expressed in
reasonably clear and simple terms. However, one
participant questioned the use of the phrase ‘very
loosely’: what did this signify, and might it confuse
students into believing that the subsequent definition was
not the one to be implemented? In response to this
question, the preamble was rephrased to begin “If a
dependent child is defined as…”. Another participant
then queried the use of the word “If”, preferring the
question to start “A dependent child is defined as…”.
This wording was rejected on the basis that it appears to
be stating a factual definition of dependent children,
whereas the intent was simply to provide a definition that
could be used for the purposes of this particular question.

There was broader agreement with regard to other
questions. For example, the participants all agreed that
Q12 would be easier to grasp if the four initialisations
were simply presented as the first line of the code, rather
than appearing after it with a message telling students to
assume that they took place before it.

Q12. This question refers to the following code, where
the variables p, q, r, and s all have integer values:
 if (p < q) {
 if (q > 4) {
 s = 5;
 } else {
 s = 6;
 }
 }

Assume that, before the above code is executed, the
values in the four variables are:
 int p=1; int q=2; int r=3; int s=4;

What would be the value in variable s after the code is
executed?

CRPIT Volume 160 - Computing Education 2015

138

Q1. It is an odd fact that the more people there are in a
group, the less pizza each of them will eat. Using the
following code, how many pizzas would you expect 10
people to eat?
 if people < 5:
 pizzas = people
 elif people < 10:
 pizzas = 3 * people / 4
 elif people < 15:
 pizzas = 2 * people / 3
 else:
 pizzas = people / 2

Considerations of linguistic complexity lead to the
issue of contextualising questions. Some examiners like
to set their questions in some sort of real-world scenario,
while others prefer to limit the question to explicit
instructions as to what is required of the students.
Consider Q1: one participant said of this question that
“the first sentence is distracting and not relevant to what
the code is asking about”; others expressed similar
concerns. One said “if people should be initialised to 10,
say so explicitly”. There appear to be two schools of
thought in this regard. One suggests that students should
be given instructions solely about what is required, with
no superfluous information; the other, that reading and
understanding superfluous information is a necessary
aspect of problem-solving, and can be legitimately
included in programming questions. The participants in
this study did not reach consensus on this question.

A related consideration is the explicitness of
instruction. Another question mentioned in its preamble
that the elements of an array were initialised. One
participant wanted students to be told what the initial
values were, although this was not relevant to what was
subsequently being asked.

Another form of question complexity identified by
Sheard et al (2013) is called ‘external domain reference’.
They noted that some questions refer to subject matter
that might not be known to students in an introductory
programming course, and they distinguished between
cases where such knowledge is integral to the question
and cases where it is incidental and can be overlooked.
Q19 falls into the latter category, which Sheard et al call
medium-level external domain reference. One participant
remarked that the “Question requires some real-world
knowledge about what payments and balances mean,
which may make it difficult for some students”. Others
presumably felt that the question could be answered even
by students lacking that knowledge.

Q19. What is the purpose or outcome of the following
piece of code?
 for (int i=0; i<payment.Length; i++)
 {
 balance = balance + payment[i];
 }

(a) to add a payment to a balance
(b) to count the payments
(c) to add all payments except the last to the balance
(d) to add all payments to the balance

3.2 Diagrams and examples
In some questions, where it seems that a certain level of
complexity is inescapable, diagrams and/or examples can
be provided to help students understand the question. Q9

illustrates the point. However, any use of diagrams should
be highly contingent on what notation has been used
during the course. If students have seen similar diagrams
used to explain variable assignment, this diagram would
be acceptable; but the final exam is not the place to
introduce a graphical notation that the students have not
previously encountered.

Some participants noted in passing that they were not
comfortable with the use of the word ‘swap’ to indicate
movements among more than two items.

When examples are used instead of diagrams or in
addition to diagrams, there is a concern that some
students will take them as definitive. In Q24, for example,
some students might assume that the array will have
exactly four elements, and so might write four if
statements rather than a single if statement within an
appropriate loop; others might even assume that the code
will only be given the array {0, 2, 1, 3}. One participant
expressed concern about another question that described
an array of unspecified length but gave as an example an
array of length 11. But an example is necessarily a
particular instance of a generalisation, so it would rarely
be possible to provide an example that retains complete
generality.

Q24. Suppose you had an array of integers called
mirrors. Write code that would print out every element
of that array that had the same value as its index
position. For example, given the array {0, 2, 1, 3}, the
code would print the values 0 and 3.

3.3 Material covered in course
It is generally understood that an exam for an early-level
course will not test concepts that were not covered in the
course. This impacts on our study in that different
introductory programming courses do not all cover the
same material, even when they are taught using the same
language. Questions that are reasonable in the context of
one particular course might not be so reasonable in a
range of courses at different institutions.

One example of this is the concept of integer division
(as in Q1), which one participant describes as “a
peculiarity of Java operators being overloaded rather than
a core programming concept”. It might be reasonable to
test the students’ knowledge of integer division in a
course in which this concept was explicitly taught, but
caution should be applied in deciding whether to
incorporate the knowledge into questions in other
courses.

In addressing our goal of finding a set of questions that
can be used in multiple courses using different languages,

Q9. There are three integer variables, rock, paper and
scissors, which have been initialised. Write code to
swap the values in these variables around so that rock is
given paper's original value, paper is given scissors’s
original value, and scissors is given rock’s original
value. The following diagram illustrates the result of
the swaps:
 rock

 paper

 scissors

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

139

we quickly decided that input and output must be
regarded as off limits. One obvious reason for this is that
different programming languages have very different
ways of dealing with input and output. A less obvious
reason is that different teaching approaches place
different emphasis on input and output. For example, an
objects-first approach using Java within the BlueJ
environment (bluej.org) need not address I/O at all, as the
approach focuses on method calls and their results.
Similarly, the media computation approach of Guzdial
and Ericson (2013) focuses on the input and output of
image and sound files, and touches only briefly on
keyboard input, many weeks into the course. A code-
tracing question with output statements would therefore
be better replaced with an output-less version that asks
what values certain variables will have when the code has
executed.

Terminology will often differ between courses. Q24,
in section 3.2, refers to the ‘index position’ of an array
element. In some courses this might simply be called the
index, while in others it might be the position. When
adopting questions from other courses, great care must be
taken to use the terminology that has been used in the
target course.

A further consideration is the preparation that students
have undergone during the semester. Some of the
questions for our study were provided by a participant
who gradually prepares the students for such questions
with a series of graded exercises throughout the semester.
It seems reasonable to expect that this participant’s
students would perform better on these questions than
students who had not been offered the same preparation.

Finally, consideration should be given to any high-
level programming tasks that might be provided by the
language being studied, and that might have been covered
in the course. Simple array-processing tasks that might be
tested in an exam include sorting the elements of an
array, reversing the order of elements in an array, and
finding the average of the elements in an array of
numbers. These tasks become somewhat trivial in a
language with inbuilt sort, reverse, and average methods.
Even if students have not been taught these features,
some might have come across them, and might short-
circuit the intention of the question by using them in their
answers.

3.4 Variable names (and comments) in code
When code is provided as part of an exam question, the
author has three options with regard to the variable
names: to make them meaningful, neutral, or ‘anti-
meaningful’ (explained below).

Most programming educators impress on their students
the importance of using meaningful variable names, and
most apply this practice in their own programming
(although many seem not to accept that temp and flag are
sadly lacking in meaning). However, meaningful names
can lead students to understand code without having to
study the code itself. In Q∞ – which was not part of our
study – a student with poorly developed code-reading
skills would probably be able to deduce the answer just
by reading the variable names.

For examination purposes, therefore, some instructors
choose to make the names – or at least those names that

might give away the answer – neutral. They might leave
person and height there, to tell students that this is a list
or array of people’s heights, but replace totalHeight and
avgHeight with, say, value1 and value2.

A number of the code-tracing and code-explaining
questions in our study included such neutral names. In
one question, the code compares two arrays, returning the
last index at which the element in the first array is less
than the corresponding element in the second. In a similar
question, the code counts the number of times the
corresponding elements in the arrays are not equal.
Several participants expressed concern that the arrays
were called number1 and number2, one suggesting that
“it would be better with variable names that provided
more meaningful context, for example, arrays of coffee
consumed in the morning and the afternoon, and counting
the number of days when there are unequal numbers of
coffee consumed.”

On this same point, consider Q12, in section 3.1. One
participant wrote of this question “The responses to the
question might be different if the variable names were
less abstract and had more context. As academics we
often abstract away the variable identifiers as being
irrelevant to the question, but then ask students to write
code that does use meaningful variable names, so our
assessment is not well aligned with our expectations of
practice. I would use this question with meaningful
names.” Complying with this expressed need for context
might then raise another problem: this particular piece of
code might have been written with no real-world context
in mind. The variables might simply be numbers, not
representing any particular quantities. Should the
instructor nevertheless contrive some plausible context?
Or is it in fact acceptable to ask students to reason about
the code itself, without the additional information
provided by meaningful variable names?

Instructors who do use neutral names should consider
one further issue: are the different names in the code clear
and distinct? During the presentation of a paper at ICER
2013 (Ahadi & Lister 2013) the presenter displayed a
code-explaining question and asked why so many
students answered it wrongly, and one member of the
audience murmured “because they’re dyslexic?” The
code in the question used two variables, p and q, which
are indeed readily confused by people with certain
learning difficulties. The same applies to b and d.
Similarly, the commonly used variable i is readily
mistaken for the digit 1, which can have a serious impact
on a student’s understanding of a statement such as count
= count + i. Instructors who are accustomed to reading
and understanding code should take care to ensure that it
is not open to misreadings of this sort.

As an aside, most instructors also urge their students to
imbue their code with explanatory comments. The code
provided for code-tracing and code-explaining questions

Q∞. What is the purpose or outcome of the following
piece of code?
 totalHeight = 0
 for person in range(0, len(height)):
 totalHeight = totalHeight + height[person]
 if totalHeight <> 0:
 avgHeight = totalHeight / len(height)
 else:
 avgHeight = 0

CRPIT Volume 160 - Computing Education 2015

140

tends to have few or no comments, and certainly does not
have comments explaining what the code does. Because
the code is therefore not of the standard we expect of our
students, does this mean that we cannot ask our students
to read and explain it?

Finally, in some of our questions the instructors had
used what we might call ‘anti-meaningful’ names, names
that have a meaning, but a meaning that appears unrelated
to the purpose of the code, and that might therefore
mislead students. Instead of a neutral name such as
number1, an array might be called fantasy. Another
example is the name mirrors in Q24 (section 3.2). The
participant who had contributed this question explained
that the code was finding array elements that reflect or
mirror their indexes. Nevertheless, other participants
found the reference a little obscure, suggesting for
example that the name mirrors might confuse students
into thinking about mirror-images of variables, whatever
that might mean. In general, it was clear that most of the
participants disliked the use of anti-meaningful names.

3.5 Avoidable obfuscation
All computer code has some inherent complexity.
However, any task can be coded in different ways that
evince different levels of complexity. Is it reasonable to
knowingly express the code in a more complex form to
test the students’ ability to deal with such a form? Q3
provides a simple illustration of this point.

Q3. What will be the value assigned to the variable x as
a result of the following statement?
 int x = 10+56 / 5+3 % 12;

(a) 13
(b) 11
(c) 24
(d) 10
(e) Generates RunTimeException

The justification for this question was that students had
been warned to take care with operator precedence, and
that this was a reasonable way to test whether they were
doing so. Nevertheless, most participants said that they
would use this question only if the spacing were uniform
throughout the expression.

Obfuscation can also be unintentional. One example of
this is the discontinuity of the code in Q12 (section 3.1);
another is the perhaps unthinking use of unnecessary
code. In general, participants felt that Q6 tested nothing
that would not be tested by a shorter code snippet.

Another question asked students to write a loop to
print all the numbers between p and q, inclusive, that are
divisible by N. Some code provided to scaffold the
question included declarations of p, q, and N, declaration

of a scanner, and prompt-input sequences for p, q, and N.
The general feeling among participants was that it would
be better simply to tell students that the variables had
been appropriately initialised, rather than giving them
unnecessary input/output code to read.

Another form of obfuscation, or tricky code, is code
that looks very like something the students have been
taught to use and recognise, but with a subtle twist. The
last three lines of Q5 look like the standard three-
statement swap, but are in the wrong order, and give the
same value to each variable.

Q5. What values will the variables a, b, and c have after
the following code has been executed?
 int a = 23;
 int b = 11;
 int c = 61;
 a = b;
 c = a;
 b = c;

We tend to value students who can form an overview
of a piece of code without examining it in detail, but this
question has the potential to lure these students into a
wrong answer, giving the advantage to the struggling but
systematic student who needs to work through the code in
detail. All of the participants said that they would be
willing to use this question, although some proposed that
the problem could be overcome by explicitly asking
students to trace the code. However, it was considered
preferable to test students’ tracing abilities with code that
is not so easily mistaken for a recognised algorithm.

3.6 A mix of difficulties
Analysing 20 introductory programming exams from ten
institutions in five countries, Simon et al (2012) rated the
difficulty of every question as low, medium, or high.
While three of the exams they studied had no questions of
high difficulty, over the 20 exams, nearly a quarter of the
questions were rated at the high difficulty level.
Examiners clearly believe it appropriate to include a mix
of easy, medium, and hard questions in an exam.

Nevertheless, there are some questions in our study
that the participants deemed too difficult. One of these
was Q2, Soloway’s rainfall problem (Soloway 1986), in
what appears to be close to its original formulation.

Q2. Read in integers that represent daily rainfall, and
print out the average daily rainfall; if the input value of
rainfall is less than zero, prompt the user for a new
rainfall.

Participants were unanimous that this question was too
open, ambiguous, and poorly specified. Some felt that it
might be suitable for a practical programming test, but
none thought it suitable for a written exam.

Q28, on the other hand, was considered to be difficult
but usable. None of the participants expressed concern
about the assumption that left represents the lower
indexes of the array and right represents the upper
indexes – an assumption that is supported by the diagram.
The general response was approval (especially when the
explicit ‘5’ was removed from the first sentence). The
participants liked this question, at the same time
acknowledging that this was one of the most difficult
questions in the set. That is, they tended to agree with the

Q6. What will be printed when the following code is
executed?
 a = 7
 b = 3
 c = 2
 d = 4
 e = a
 a = b
 b = e
 e = c
 c = d
 d = e
 print a, b, c, d, e

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

141

unspoken notion that an exam should include a mix of
easy, medium, and hard questions, and that this question
could be one of the last group. Nevertheless, in a
subsequent project to use the selected questions in a
number of final exams, one instructor decided that the
improved version of this question was too difficult and
could not be used. It is not clear whether the question was
considered too hard even to be one of the exam’s more
difficult questions, or whether that instructor chooses not
to include any difficult questions in exams.

3.7 Form of the question
Most of the exams studied by Sheard et al (2013)
included a mix of multiple-choice, short-answer, and
code-writing questions, and our question set included
examples of all three types.

One issue that does not yet seem to have been
addressed in the literature is whether different forms of
the same question are equivalent. Our study explicitly
addressed this question by including three different forms
of the same question, Q29.

Most participants liked the code-writing form of the
question, Q29a, with the qualification that some courses
might prefer the word ‘position’ to ‘index’.

Q29b, filling in the blanks, was regarded much less
favourably. One participant saw it as a trick question that
encouraged the students to copy code directly from the
first listing to the second, especially as it omits the
description of the difference, that is, that the first piece
remembers the element while the second should

remember the index. Another participant felt that this
version was an improvement, removing the potentially
confusing wording. A third simply said that students
would be horribly confused by this question, while a
fourth thought that it might be better as a Parsons
problem (Parsons & Haden 2006) – presumably the
variant in which multiple options are available for each
line of code, as otherwise it could be solved trivially by
comparison with the preceding listing.

Q28. The purpose of the code below is to take an array
of numbers (values) containing 5 integers and move all
elements of the array one place to the left, with the
leftmost element moving to the rightmost position.
 temp = values[0];
 for (int i=0; i<values.Length-1; i++)
 values[i] = values[i+1];
 values[values.Length – 1] = temp;

For example, if values initially has the value [1, 2, 3, 4,
5], then after the code has executed, it would contain [2,
3, 4, 5, 1]. If we were to show the effect of moving all
the elements of an array in this way in a diagram, it
would look something like this:

Write code that does the opposite of the original block of
code above. That is, write code to move all elements of
the array values one place to the right, with the rightmost
element being moved to the leftmost position.

Q29a. The following piece of code sets answer to the
smallest element of the integer array num.
 int best = num[0];
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < best) best = num[i];
 }
 answer = best;

This code works by remembering, in best, the value of the
smallest element met so far as it works through the array.
Write a piece of code that achieves exactly the same
outcome, setting answer to the smallest element of num,
but by remembering the index of the smallest element met
so far.

Q29b. The following piece of code sets answer to the
smallest element of the integer array num.
 int smallest = num[0];
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < smallest)
 {
 smallest = num[i];
 }
 }
 answer = smallest;

Complete the code in the boxes below so that it also sets
answer to the smallest element of num. Note that the
sixth line is different in the two listings.
 int where = ;
 for (int i=0; i < num.Length; i++)
 {

 if num[i] <)
 {
 where = i; // Note difference
 }
 }

 answer = ;

Q29c. The following piece of code sets answer to the
smallest element of the integer array num.
 int best = num[0];
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < best) best = num[i];
 }
 answer = best;

Which of the following pieces of code does exactly the
same thing, that is, sets answer to the smallest element of
num?
(a) int best = 0;
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < num[best]) best = i;
 }
 answer = num[best];

(b) int best = 0;
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < num[best]) best = num[i];
 }
 answer = num[best];

(c) int best = 0;
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < num[best]) best = i;
 }
 answer = best;

(d) int best = num[0];
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < num[best]) best = i;
 }
 answer = num[best];

... etc ...

temp

CRPIT Volume 160 - Computing Education 2015

142

The multiple-choice version, Q29c, was seen by one
participant as the best of the options. On the other hand,
three believed that it would be too easy to find the answer
by strategic guessing or reverse engineering as opposed to
reading and understanding the four different pieces of
code. It remains an open question whether the strategic
guessing or reverse engineering would require students to
reason in a similar way as they would if reading and
understanding the code pieces, in which case there might
not be a problem.

In addition to asking whether participants would use
each version of this question in their exams, we asked
whether they thought that the three versions were the
same, and why.

Nobody thought that they were the same. One
participant thought they were equivalent, “essentially but
not exactly” the same, and some noted that they were
testing the same thing in different ways. Others, however,
felt the versions to be quite different as they test different
skills: code writing, scaffolded code writing, and code
tracing. Most participants thought the multiple-choice
version to be the easiest, but one thought that the pure-
code writing version was easiest, and two favoured the
scaffolded code-writing version.

3.8 Multiple-choice questions
Multiple-choice questions have been the subject of much
discussion in the literature, essentially addressing the
question of whether they are a legitimate form of
assessment. There are guides to writing good MCQs
(Hansen 1997, Isaacs 1994), a number of papers
proposing how MCQs can be validly used in computing
assessment (Lister 2005, Roberts 2006, Woodford &
Bancroft 2005), but at least one survey showing that
many instructors remain highly suspicious of this
question form (Shuhidan et al 2010).

Some participants in our study echoed this suspicion.
Of the 33 questions in the study, 11 were presented in the
multiple-choice form, and all but three of those drew
suggestions that the answers would be too easy to guess,
requirements to add further distractors, or both. Some
participants who normally use MCQs in their exams
expressed no such concerns, but this form of question is
clearly still worrying to many instructors.

3.9 Code-explaining questions
A number of the questions in this study ask students to
explain the purpose or outcome of a given piece of code.

Q19 in section 3.1 and the hypothetical Q∞ in section 3.4
are examples; Q14 is another.

Code-explaining questions were brought into wide use
by the BRACElet project (Whalley et al 2006), to test the
notion that perhaps students should be able to read code
before they can be expected to write code. That project
consistently found that introductory programming
students had great difficulty deducing the purpose of
small pieces of code (Sheard et al 2008, Teague & Lister
2014), even if the questions were presented in multiple-
choice form (Simon & Snowdon 2011).

The greatest concern expressed by participants about
these questions is their use of non-meaningful variable
names. However, as discussed in section 3.4, it would be
difficult to provide meaningful variable names without
giving away the purpose of the code. Therefore it would
seem that neutral variable names might be an unavoidable
cost associated with using questions of this type.

With code-explaining questions, as with other
questions, it is important to avoid obfuscation. The point
can be illustrated with Q14. A knowledgeable
programmer might respond that the code prints the
smallest value of the variables a, b, and c. Others,
however, might wonder how to describe what will happen
if two or three of the variables are equal. Would that
notion of ‘smallest’ then strictly apply, and if not, how
should they describe which of the equal variables would
have its value printed? It is unlikely that these questions
were considered by the question’s author, yet they have
the potential to seriously confuse some students.

Is there, then, any point in setting code-explaining
questions? Many appear to think so, and the participants
in this study certainly expressed general approval of some
of the code-explaining questions provided.

One point that was clearly made by the BRACElet
project is that students are less likely to do well on code-
explaining questions if they are not familiar with this
question type. A final examination is seldom the best
place to introduce students to a type of question they have
not seen before. Instructors deciding to introduce code-
explaining questions to their exams should certainly give
students ample prior practice with this type of question.

4 Results: ten questions for broad use
On a scale from 1 (would definitely not use) to 5 (would
definitely use), the 33 questions were accorded average
ratings ranging from 2.9 (Q2, discussed in section 3.6) to
4.9 (Q5, discussed in section 3.5). Fourteen of the
questions, nearly half of them, rated at 4 or above, and
only five rated below 3.5.

When participants ranked a question less than 5, their
comments sometimes made it clear that they would be
happy to use the question with suitable amendments.

We selected ten questions, working from the highest-
ranked, so as to produce a mix of question styles and
topics. The lowest-ranked question that we selected had
an average of 3.6, but was substantially altered (for
example, changing it from multiple-choice to short-
answer type) to address some of the concerns expressed;
the question would therefore have rated more highly if it
had been presented in this altered form. All of the other
questions chosen had average ratings of 3.9 or higher.

All ten questions are presented in the appendix.

Q14. Consider the following block of code, where
variables a, b, and c each store integer values:
 if (a > b) {
 if (b > c) {
 Console.WriteLine(c);
 } else {
 Console.WriteLine(b);
 }
 } else if (a > c) {
 Console.WriteLine(c);
 } else {
 Console.WriteLine(a);
 }

In one sentence, describe the purpose of the above code
(i.e. the if/else if/else block). Do NOT give a line-by-line
description of what the code does. Instead, tell us the
purpose of the code.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

143

5 Results: how (not) to write an introductory
programming exam

The ratings given to the various questions in our study,
and the discussion on whether the participants would use
each question, lead to a set of guidelines that can be used
when writing an exam. The guidelines can be used as a
set of positive recommendations, or used in their
converse forms as a set of practices to be avoided. Some
of these guidelines are already well known, but we
believe that there is value in presenting them here as a
full set.

Keep questions as simple as possible. Unless you are
deliberately making a question complex to test your
students’ skills in gathering requirements and solving
problems, simplify question preambles as much as you
possibly can. Then check them to see if you can
simplify them still further. Finally, have some
colleagues check them, to be sure that they interpret
them the same way you do. Include questions in a
range of difficulty levels, but be sure that the difficulty
of a question is germane, deriving from the inherent
difficulty of the task to be performed, not from
difficulty in understanding what that task might be.

Consider not contextualising questions. If it is your
preference to provide a little real-world (or pretend-
world) context for your exam questions, consider
whether that context might in fact tend to confuse or
mislead students. If it might, consider removing the
context so that students will focus on the question you
are actually asking.

Use diagrams and examples to help students
understand the question. This comes back to the
question of what is germane. If it is your goal to see
whether students can answer the question, do
everything you can, within reason, to ensure that the
students understand what the question is. If a diagram
or example seems more likely to help students than to
further confuse them, provide one. A diagram is far
less likely to confuse students if they have seen a
number of similar diagrams during the course.

Ensure that students are familiar with the types of
question used. It is good to consider adding new
question types to an exam, but it might be unfair on
the students if the exam is the first place that they see
questions of this type. Try to ensure that they have
prior exposure to each type of question used in the
exam.

When providing code as part of a question, write it as
you have taught the students to write. If you have
spent a semester trying to teach the students to use
good programming style, do not present them with
code written in poor style. The exception to this is that
neutral variable names should be used if meaningful
variable names would give away the answer in a code-
explaining or code-tracing question.

Avoid variable names that are easily confused with
one another or with other symbols. Consider the
ease of confusing p and q, b and d, i and 1, l and 1, O
and 0; wherever possible, avoid using these single-
letter variable names.

Eschew obfuscation. Do not deliberately complicate
code. Your exam should determine who can read and
understand well-written code – not who can
unscramble code that has been written poorly. That
skill might be better left for a course on code
maintenance.

Include questions of a range of difficulties. Have some
easy questions, some moderate questions, and some
difficult questions. Easy questions give almost all
students a chance to show that they know something
about what was taught. Difficult questions, preferably
not weighted too heavily, help to distinguish the best
students from the rest of the class.

Consider including some multiple-choice questions. It
really is possible to write MCQs that test skills other
than memory recall, and that distinguish well between
the poor students and the good students. They are
definitely easier to mark than written-answer
questions. And while bright students might be able to
deduce the answers by some form of elimination, these
are the students who don’t need to do so, because they
can answer the questions in the way that was intended.
Despite the concerns of some of our participants,
many students do select wrong answers to MCQs.

Consider including some code-reading questions. Do
not assume that your students can read and understand
code simply because in a code-writing question they
can cobble together an approximation to the answer
you were expecting. Be prepared to explicitly test their
code comprehension skills.

Include questions of different forms. Be aware of the
many different types of question that can be used in an
exam, and consider which question type is best suited
to each question you intend to ask. Be aware that the
same question in different forms is likely to be testing
different skills, and choose the form that tests the skills
you wish to assess.

6 Conclusions
We set out to answer three questions. Our results show
that all three questions can be answered in the
affirmative.

Can we identify some principles of good question
design that others can apply in writing their own
questions? Can we identify some aspects of poor question
design that others can try to avoid when writing their own
questions? We can and we have. The guidelines in section
5 should be useful to anyone writing an exam, not just in
introductory programming but in programming at any
level, though of course matters such as question difficulty
will need to be adjusted for higher-level courses. Some of
the guidelines extend beyond programming, and apply to
exam writing in general.

Can we identify examination questions that a group of
instructors would all be willing to use in their
introductory programming exams? We can and we have.
The questions provided in the appendix have been
selected on the basis of evaluation by nine academics
involved with the assessment of introductory
programming courses.

CRPIT Volume 160 - Computing Education 2015

144

We invite others to include the questions in their own
exams, and to either join us in publishing the results, or
simply to compare their own students’ performance with
the benchmark results that we expect to publish. The
versions in the appendix are all written in Java, but the
project leaders can supply versions of the same questions
in C, C#, Visual Basic, Python, and TouchDevelop, and
are willing to work on versions for other suitable
languages if required. However, we hope it is clear that
the questions are not suited to all programming
languages, and in particular that they are unlikely to be
usable in courses that teach using a functional language
and approach.

7 References
Ahadi, A., and Lister, R. (2013). Geek Genes, Prior

Knowledge, Stumbling Points and Learning Edge
Momentum: Parts of the One Elephant? Ninth
International Computing Education Research
workshop (ICER 2013), 123-128.

Guzdial, M.J. and Ericson, B. (2013). Introduction to
Programming and Computing in Python: a
Multimedia Approach, 3rd edition, Pearson Education
Inc.

Hansen, J.D. and Dexter, L. (1997). Quality multiple-
choice test questions: item-writing guidelines and an
analysis of auditing testbanks. Journal of Education
for Business 73(2):94-97.

Isaacs, G. (1994). Multiple choice testing. HERDSA
Green Guide No 16. Higher Education Research and
Development Society of Australasia Inc,
Campbelltown, Australia.

Lister, R. (2005). One small step toward a culture of peer
review and multi-institutional sharing of educational
resources: a multiple choice exam for first semester
programming students. Seventh Australasian
Computing Education Conference (ACE2005), 155-
164.

Lister, R., Corney, M., Curran, J., D'Souza, D., Fidge, C.,
Gluga, R., Hamilton, M., Harland, J., Hogan, J., Kay,
J., Murphy, T., Roggenkamp, M., Sheard, J., Simon,
and Teague, D. (2012). Toward a shared
understanding of competency in programming: An
invitation to the BABELnot project. 14th Australasian
Computing Education Conference (ACE 2012), 53-
60.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Ben-David Kolikant, Y., Laxer, C.,
Thomas, L., Utting, I., and Wilusz, T. (2001). A
multi-national, multi-institutional study assessment of
programming skills of first-year CS students. SIGCSE
Bulletin, 33(4):125-140.

Parsons, D. and Haden, P. (2006). Parson’s programmimg
puzzles: a fun and effective learning tool for first
programming courses. Eighth Australasian Computing
Education Conference (ACE 2006), 157-163

Petersen, A., Craig, M., and Zingaro, D. (2011).
Reviewing CS1 exam question content. 42nd ACM
Technical Symposium on Computer Science
Education (SIGCSE 2011), Dallas, Texas, USA.

Roberts, Tim (2006). The use of multiple choice tests for
formative and summative assessment. Eighth
Australasian Computing Education Conference
(ACE2006), 175-180.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,
E., and Whalleyt, J. (2008). Going SOLO to assess
novice programmers. 13th Conference on Innovation
and Technology on Computer Science Education
(ITiCSE 2008), 209-213.

Sheard, J., Simon, Carbone, A., Chinn, D., Clear, T.,
Corney, M., D'Souza, D., Fenwick, J., Harland, J.,
Laakso, M.-J., and Teague, D. (2013): How difficult
are exams? A framework for assessing the complexity
of introductory programming exams. 15th
Australasian Computing Education Conference (ACE
2013), 145-154.

Sheard, J., Simon, Dermoudy, J., D’Souza, D., Hu, M.,
and Parson, D. (2014). Benchmarking a set of exam
questions for introductory programming. 16th
Australasian Computing Education Conference (ACE
2014), 113-121.

Shuhidan, S., Hamilton, M., and D’Souza, D. (2010).
Instructor perspectives of multiple-choice questions in
summative assessment for novice programmers.
Computer Science Education 20(3):229-259.

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D'Souza, D., Lister, R.,
Philpott, A., Skene, J., and Warburton, G. (2012).
Introductory programming: examining the exams.
14th Australasian Computing Education Conference
(ACE 2012), 61-70.

Simon and Snowdon, S. (2011). Explaining program
code: giving students the answer helps – but only just.
Seventh International Computing Education Research
Workshop (ICER 2011), 93-99.

Simon, B., Clancy, M., McCartney, R., Morrison, B.,
Richards, B., and Sanders, K. (2010). Making sense of
data structures exams. Sixth International Computing
Education Research workshop (ICER 2010), 97-105.

Soloway, E. (1986). Learning to program = learning to
construct mechanisms and explanations.
Communications of the ACM, 29(9), 850-858.

Teague, D. and Lister, R. (2014). Blinded by their Plight:
Tracing and the Preoperational Programmer. 25th
Psychology of Programming Interest Group Annual
Conference (PPIG 2014).

Traynor, D., Bergin, S., and Gibson, J.P. (2006).
Automated assessment in CS1. Eighth Australasian
Computing Education Conference (ACE 2006), 223-
228.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins,
P., Kumar, P.K.A., and Prasad, C. (2006). An
Australasian study of reading and comprehension
skills in novice programmers, using the Bloom and
SOLO taxonomies. Eighth Australasian Computing
Education Conference (ACE 2006), 243-252.

Woodford, K. and Bancroft, P (2005). Multiple choice
questions not considered harmful. Seventh
Australasian Computing Education Conference
(ACE2005), 109-115.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

145

Appendix: the ten selected questions (renumbered for subsequent use)

Q1. If a dependent child is a person under 18 years of age who
does not earn $10,000 or more a year, which expression would
define a dependent child?

(a) age < 18 && salary < 10000
(b) age < 18 || salary < 10000
(c) age <= 18 && salary <= 10000
(d) age <= 18 || salary <= 10000

Q2. What are the values of girls, boys, and children after the
following code has been executed?
 int girls = 0;
 int boys = 0;
 int children = 0;
 children = girls + boys;
 girls = 15;
 boys = 12;

(a) 0, 0, 0
(b) 0, 0, 27
(c) 15, 12, 0
(d) 15, 12, 27

Q3. There are three integer variables, a, b and c, which have
been initialised. Write code to shift the values in these variables
around so that a is given b’s original value, b is given c’s
original value, and c is given a’s original value. The following
diagram illustrates the direction of the shifts:

Q4. What will be the value of the variable z after the following
code is executed?
 int x = 1; int y = 2; int z = 3;
 if (x < y) {
 if (y > 4) {
 z = 5;
 } else {
 z = 6;
 }
 }

Q5. Consider the following block of code, where variables a, b,
c, and answer each store integer values:
 if (a > b) {
 if (b > c) {
 answer = c;
 } else {
 answer = b;
 }
 } else if (a > c) {
 answer = c;
 } else {
 answer = a;
 }
Which of the following sets of values for a, b, and c will cause
answer to be assigned the value in variable b?

(a) a = 1, b = 2, c = 3
(b) a = 1, b = 3, c = 2
(c) a = 2, b = 1, c = 3
(d) a = 3, b = 2, c = 1

Q6. What will be the value of result after the following code
statements are executed?
 int[] nums1 = { 1, -5, 2, 0, 4, 2, -3 };
 int[] nums2 = { 1, -5, 2, 4, 4, 2, 7 };
 int result = 0;
 int j = 0;
 while (j < nums1.length)
 {
 if (nums1[j] != nums2[j])
 {
 result = result + 1;
 }
 j = j + 1;
 }

Q7. What is the outcome or likely purpose of the following
piece of code?
 int result = 0;
 for (int j = 0; j < number.length; j++)
 {
 if (number[j] < 0)
 {
 result = result + 1;
 }
 }

(a) to find the smallest number in the array
(b) to count the negative numbers in the array
(c) to sum the negative numbers in the array
(d) to add 1 to each of the negative numbers in the array
(e) to find the index of the first negative number in the array

Q8. What is the outcome or likely purpose of the following
piece of code? Express your answer as a short phrase, like the
phrases provided as possible answers in question 7.
 int result = 0;
 for (int count = 1; count <= num; count++)
 {
 result = result + count;
 }

Q9. We can represent an array of integers as a sequence of
elements arranged from left to right, with the first element at the
left and the last element at the right. Using this representation, a
programmer wishes to move all elements of an array one place
to the right, with the rightmost element being ‘wrapped around’
to the leftmost position, as shown in this diagram.

Here is the code that performs that shift for an array referred to
by the name values:
 int oldRight = values[values.length - 1];
 for (int j = values.length - 1; j > 0; j--)
 values[j] = values[j - 1];
 values[0] = oldRight;
For example, if values initially contains the integers [1, 2, 3, 4,
5], once the code has executed it would contain [5, 1, 2, 3, 4].
Write code that will undo the effect of the above code. That is,
write code that will move all the elements of the array one place
to the left, with the leftmost element being wrapped around to
the rightmost position.

Q10. Write a method that will be given an array of integers and
will calculate and return (as a double) the mean (average) of all
the integers in the array.

a b

c

... etc ...

oldRight

CRPIT Volume 160 - Computing Education 2015

146

Comparing student performance between traditional and
technologically enhanced programming course

Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso,
Rolf Lindén, Einari Kurvinen, Ville Karavirta, Tapio Salakoski

Department of Information Technology &
University of Turku Graduation School (UTUGS)

University of Turku
20014 Turun yliopisto, Finland

{ertaka, temira, milaak, rolind, emarkur, visaka, sala} @utu.fi

Abstract
Educational technology can potentially be used to engage
students deeper into learning process, and hence improve
the motivation and the learning results. In this paper, we
present a study, where an introductory programming
course was renewed by using a collaborative learning tool
called ViLLE holistically throughout the course. The
redesign was done in three main areas: first, half of the
lectures were replaced with tutorial sessions, where
students completed automatically assessed tasks in
collaboration with other students. Second, remaining
lectures were accompanied with a group of exercises
designed to emphasize the topics introduced. We also
collected feedback via short survey after each lecture to
find out which topics or issues needed to be addressed
again later. Third, the exam was changed into electronic
version with automatically assessed programming tasks
and questions. When the results of the redesigned course
were compared to earlier, traditional instance of the
course, we found out, that the pass rates increased
significantly, while the average grade remained the same.
The results are even more remarkable since the exam in
the technologically enhanced course was more
complicated than in the earlier instance. Hence, we can
conclude that engaging students into active and
collaborative learning process has highly positive effect
on pass rates, although individual factors cannot be
isolated with this many changes in the course design.
Keywords: Programming courses, Introductory
programming, Educational technology, Learning
environments, Technology adaptation, Student
performance1

1 Introduction
The educators and researchers in computer science are
constantly trying to come up with better means for
teaching programming. There have been several studies
conducted (see e.g. McCracken et al., 2001, Lahtinen et
al., 2005) about the state of programming learning, and in

1 Copyright (c) 2015, Australian Computer Society, Inc.
This paper appeared at the Seventeenth Australasian
Computing Education Conference (ACE2015), Sydney,
Australia. Conferences in Research and Practice in
Information Technology, Vol. 160. Reproduction for
academic, not-for profit purposes permitted provided this
text is included.

general they seem to come up with worrisome results: the
students seem to lack motivation, and the high dropout
rates and poor results seem to indicate that there is a lot to
do to improve the teaching. Still, limited teacher
resources as well as the limited time reserved in
curriculum make the course improvement challenging.

In education, active learning is generally considered as
a valid method for engaging students and for improving
motivation and results (Freeman et al., 2014). According
to constructivist learning theories (see e.g. Papert, 1980,
Moons et al., 2013), the knowledge can be constructed by
actively participating in the learning process. In
programming education this generally means that writing
programs and taking other suitable assignments is highly
useful in programming educatioin. However, the
teachers’ workload for assessing several programming
assignment in crowded courses can be too heavy.

Educational technology can be used to move the
workload away from the course personnel. Automatic
assessment and immediate feedback (see e.g. Laakso,
2010) can be effectively used to utilize actively engaging
tasks, such as programming assignments. Instead of
providing feedback from a few programming assignments
in a traditional course, it is possible to offer dozens of
automatically assessed tasks by utilizing a novel
approach. This means, that the students can be engaged
into active learning effectively throughout the course,
which presumably means better learning results.

In this paper, we present a redesign of a typical
programming course. The change took place between
instances of 2011 and 2012. In the redesign the focus was
on changing the focus from passive listening into active
participation by utilizing educational technology and
collaboration. The factors concerning the redesign are
discussed as well as the methodology used. Then the
performance of two instances of the courses, one right
before the redesign and one after, is discussed in the
scope of pass rates and course averages.

2 Related Work
As stated in a multinational, multi-institutional study by
McCracken et al. (2001), novice programmers lack both
motivation and sufficient skills for basic programming
after introductory courses. According to Tan et al (2009),
the lack of understanding the basic concepts reduces
novice programmers’ interests for further exploration and
self-experimentation in programming. They also state,

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

147

that novices prefer examples and “drill-practice method”,
while conventional lectures lead to decreased interest in
subject. Lahtinen et al. (2005) surveyed more than 500
students about their difficulties in learning, and found out,
that the novice programmers found example programs as
most helpful material, and working on exercises most
helpful study method for learning to program.

Caspersen and Bennedsen (2007) present a proposition
of designing an introductory programming course based
on cognitive science and educational psychology. They
argue that the cognitive load theory and cognitive skill
acquisition play an important part in emphasizing a
pattern-based approach to learning. The authors present
guidelines in instructional design that they have
successfully utilized to redesign the course. Hall et al.
(2013) utilized tutorial based learning in the CS course
for three weeks, and concluded, that both, tutorials and
lectures, should be combined in the course.

Crescenzi and Nocentini (2007) present a two year
experiment of utilizing educational technology – namely
an algorithm visualization tool – in a programming
course. The feedback from students was mainly positive.
Still, as reported by Saunders & Kelmming (2003), when
technology is integrated into programming course, the
students may actually find the module harder, though the
performance is improved. According to Rajaravivarma
(2005), a games-based approach can be used to
emphasize problem solving and logical thinking. In
general, engaging students into active learning seems to
have a positive effect on motivation and performance.

Utilizing educational technology in a programming
course might solve several problems concerning student
performance and motivation. There are various learning
environments that can be utilized in courses. First, there
are the course management systems, such as Moodle (see
e.g. Cole et al. 2008) or Blackboard (Bradford et al.
2007). Still, these are traditionally used to manage
courses and materials, and in lesser extent to engage
students with exercises. Typical examples of exercise-
based tools are various visualization tools developed over
the recent years. With these tools the users can illustrate
the execution of algorithms (see e.g.Grissom et al. 2003,
Hundhausen et al. 2007, Malmi et al. 2004) or programs
(see e.g. Kannusmäki et al. 2004, Kölling et al. 2003,
Oechsle et al. 2002). The visualization is often
accompanied with tasks to perform as well.

3 ViLLE
ViLLE is a collaborative learning environment, with
focus on exercise-based learning. It supports a variety of
exercise types designed for computer science,
mathematics, languages and for other topics. All
exercises and courses created in ViLLE can be shared
with all other teachers registered to system. For CS
education, ViLLE supports a variety of programming
languages, including for example Java, Python, C++ and
C#.

ViLLE supports collaboration in two ways: first, it
enables students to work together with one computer,
solving the exercises in collaboration. This method

Figure 1: Robot exercise in ViLLE

CRPIT Volume 160 - Computing Education 2015

148

utilizes the best practices of pair programming (see e.g.
McDowell et al., 2002, Beck & Andres, 2004.), but can
be utilized with other types of exercises as well. Second,
all resources (courses, exercises and tutorials) created in
ViLLE can be shared with other teachers easily. This
means, that it can be used for distributing best practices
with other educators.

The exercise types found most suitable for the course
redesign are

- Coding exercise: an exercise where a student is
supposed to write a program or a missing part of
the program code in given programming
language. The solution is tested against model
solution provided by the teacher, and the test
cases can be randomly parameterized.

- Robot exercise: a special version of coding
exercise, where a student needs to write a
program that controls a robot crane. The goal is
to move a number of boxes into their target
positions (Figure 1).

- Visualization exercise: an exercise where the
program code is executed one step at a time, and
the execution is visualized with various
components – including variable values, object
states and call stack. The execution is
accompanied with multiple choice questions,
open questions and graphical array questions.

- Simulation exercise: an exercise where student
needs to simulate the state of the program one
step at a time by creating variables and objects,
changing their values and references and
handling the methods in the call stack.

- Code sorting: also known as Parson’s puzzles
(Parsons et al. 2006). A student needs to
organize the shuffled program code lines into the
correct order according to given task. The
solution can be visualized after the sorting, if
there are no errors in the program.

- General sorting: an exercise where a student
needs to sort or connect objects as required. For
example, connecting result values with
expressions, or value ranges with object types.

- Quiz: contains multiple choice questions and
open questions.

We have previously researched the usage of ViLLE in
various studies with promising results. As shown in Kaila
et al. (2009), ViLLE can be used effectively to enhance
learning in various different setups and with different
methods. The effect achieved on controlled setups was
transferred into course-long usage in Kaila et al. (2010)
and Kaila et al. (2014), where we demonstrated, that
student performance can be significantly improved if
ViLLE is integrated holistically into the course.

The complete description of the environment as well
as more use cases can be found in the ViLLE system
paper (Laakso et al, 2014), and at ViLLE home page
(http://ville.cs.utu.fi).

4 Course redesign
Introduction to algorithms and programming is a
compulsory programming course for first year CS majors

at University of Turku. The course contains fundamental
programming concepts – such as variables, conditional
statements, repetition, methods and arrays – in Java. In
addition to CS majors, several other students from the
faculty take the course as mandatory part of their minor
studies. For most students, the course is the first actual
programming course, though some very basic concepts of
programming in Python are covered in an introductory
course before that. Course lasts for eight weeks, and 5
ECTS are awarded for passing it. The course
methodology was thoroughly redesigned between
instances of 2011 and 2012 (from now on C2011 and
C2012). In this section, the differences between instances
are presented.

4.1 Facilitating active learning with tutorials
The first, and probably the most important, step was to

introduce a concept of more active learning by using
tutorials. In the 2011 instance of the course, there were
two 2-hour lectures each week. In C2012, one of the
lectures each week was replaced with a tutorial-based
active learning session. The tutorials were created in
ViLLE, and consisted of different types of assignments
combined with related learning material such as text,
tables and images. Hence, each week consisted of a two-
hour lecture about the topic in hand and a two-hour
tutorial session, where the topics presented at the lecture
were rehearsed. In total, seven tutorials were prepared:

1. Course introduction, advancing from Python to
Java

2. Variables, Strings and conditional statements
3. Loops
4. Methods
5. Arrays
6. Using existing classes and modules
7. Summary about all topics

The tutorial sessions were organized in a lecture hall,
where students brought their own computers. The
tutorials were taken in collaborative mode, where two
students worked on the same computer. Both students
were awarded points from each solution. The controller –
i.e. the student using mouse and keyboard – was switched
every fifteen minutes to ensure active participation of
both students. Active discussion was encouraged, and at
least four members of course personnel were present in
each session to assist the students with their possible
problems.

Each tutorial consisted of nine to thirteen ViLLE
assignments accompanied with learning material, adapted
from the lecture slides. Roughly half of the assignments
were coding exercises, while the other part consisted of
visualization, code sorting, simulation and quizzes. An
example of tutorial view is displayed in Figure 2.

Each tutorial was open for one week, but the
collaborative mode was disabled after the two-hour
session. Minimum of 50 % of maximum points as well as
participation in at least five of the seven tutorial sessions
were made mandatory to pass the course.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

149

4.2 Underlining the importance of lectures with
ViLLE exercises and surveys

Around three to four simple ViLLE exercises were
prepared to accompany each week’s lecture. The
exercises consisted of a quiz about the topics covered in
lecture, a simple simulation or coding exercise, and a
survey. The same three questions were included in each
survey:

1. What did you learn from this week’s lecture?
2. What things remain unclear after this week’s
lecture?
3. How would you develop this week’s lecture?

The data was analyzed each week before the next lecture,
and the results were facilitated instantly: for example, the
issues listed as unclear were summarized at the beginning
of the next lecture. Also, several small technical problems
were fixed based on student feedback.

Each of the exercises were scored with maximum of 5
to 10 points (surveys giving automatically full five points
if answered), and the students were required to gain at
least 50 % of total maximum points to participate in the
final exam. In addition, ViLLE was used to automatically
record the student attendances in lectures by using RFID
readers in lecture halls and RFID tags given to each
student. Though the participation in lectures was not
mandatory, some bonus points were awarded if a student
participated in all of them.

4.3 Redefining testing with electronic exam
In C2011 the final exam of the course was answered
traditionally with pen and paper. Typically the exam
consisted of three questions: two programming tasks
(done in paper), and a theoretical question, such as an
essay. In C2012 the exam was transformed into electronic
form by using ViLLE. There are several benefits in using
the electronic exam in a programming course:

1. An electronic exam can be automatically
assessed, meaning less work for the teacher and
quicker access to results for the students.
2. Programming exercises can be done by
actually typing, testing and debugging the
programs instead of writing them on paper.
3. More heterogeneous exercise types can be
used, including for example simulation,
visualization and code sorting exercises.
4. Even if manually assessed questions are to be
used, they are easier to type and edit with a
computer; also, the answers are easier to read
and assess compared to those answered in pen
and paper.

To make sure that the new instance of the course was
comparable – or at least not easier – than the old one, the
new electronic version of the exam was created as more
challenging. A typical version of the exam in C2012

Figure 2: Tutorial view in ViLLE

CRPIT Volume 160 - Computing Education 2015

150

consists of seven programming tasks – one being a robot
task, a quiz measuring theoretical knowledge, and a
sorting or simulation exercise. The comparison of exams
is displayed in Table 1.

C2011: Exam with pen and
paper

C2012: Electronic exam

Manually assessed by teacher
and course assistant(s)

Fully automatically assessed

Two programming tasks Seven programming tasks
One theoretical question One quiz of 10 MCQ / open

questions and one code
sorting or simulation exercise

Duration: four hours Duration: three hours

Table 1: Comparison of exams in C2011 and C2012

The exams in C2012 were evaluated in the same scale
than in C2011: minimum of 50 % of points was required
to pass – i.e. to get grade 1. After that the subsequent
grades of 2…5 were awarded in linear scale. The exam
instances were evaluated by four individual researchers
and/or teachers not affiliated with this paper, and they all
agreed that the new instance is at least as difficult as the
earlier instance, and very likely even more challenging.

The electronic exam was organized in one lecture hall
and two computer labs at the same time. In the lecture
hall the students used their own laptops, while the
department computers were utilized in the computer labs.
All internet traffic went through a firewall, and the only
sites allowed during the exam were ViLLE and Java API.
There were practically no technical difficulties during the
exam, probably because the students had been
familiarized with the setup during the tutorial sessions.

4.4 Other components in the course
Other changes in the course were somewhat minor. For
example, C2012 contained the same number of
demonstrations than C2011. In demonstrations, the
students present their solutions to the programming tasks
they are given a week before. In both instances at least 50
% of demonstration score needed to be achieved to attend
the final exam. Only technical change in latter instance
was that ViLLE was used to record the demonstration
points by using aforementioned RFID readers and tags.

Also, the lectures were given in the same traditional
form in both instances. However, as there was only half
the number of lectures in C2012 – as half of the lecture
times were used for tutorials – and the same topics
needed to be covered, the lecture content needed to be
compacted. Lecture content and slides were modified
slightly after C2012 for the following years, based on the
student feedback collected via surveys.

5 Course performance
Course performance was studied in one instance (C2011)
of the traditional course as well as one instance (C2012)
of the redesigned course. The instances are displayed in
Table 2.

C2011 C2012

Course time October to
December, 2011

October to
December, 2012

Methodology Traditional Renewed
N 210 193

Table 2: Course instance properties

As seen on the table, the number of students starting the
course was similar in both instances. However, as is
typical for any programming course, not all of the
students made it to the exam. The requirements to qualify
for the exam are listed in Table 3.

C2011 C2012
50 % of demonstration points 50 % of demonstration points

50 % of tutorial points
50 % of ViLLE exercise points
Participation in minimum of 5
tutorial sessions

Table 3: Requirements to qualify for course exam

The number of students who completed the required parts
of the course to qualify for the exam and participated in at
least one of the exams are displayed in Table 4.

C2011 C2012
N 210 193
Students
participating in
exam

149 167

% of all students in
exam

70.95 % 86.53 %

Table 4: Percentage of students qualified to final exam

Notably there were more students qualified to take the
final exam in the latter instance though there were more
requirements to qualify.

In both courses, there were three possibilities to take
an exam. A student could take the exam more than once,
regardless of whether (s)he had passed the earlier exams.
Combined final results in both instances are displayed in
Table 5.

Grade C2011 C2011
proportion

C2012 C2012
proportion

5 45 30 % 70 42 %
4 21 14 % 19 11 %
3 20 13 % 23 14 %
2 12 8 % 19 11 %
1 14 9 % 25 15 %
Fail 37 25 % 11 7 %
Total 149 100 % 167 100 %

Table 5: Grade distribution in course instances

The distribution is visualized in Figure 3.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

151

Figure 3: Grade distribution in course instances
visualized

As seen in the table and the figure, the most significant
difference in distribution among instances seems to be at
the highest and the lowest grades. This is also the
explanation for the grade average remaining the same; it
is likely, that the active learning methods helped a lot of
“worst” students to pass the course in the new instance.

The combined results for both instances are displayed
at Table 6.

C2011 C2012
Total N 210 193
Qualify to take
exam

70.95 % 86.53 %

% passed exam (of
qualified)

75.17 % 93.41 %

% passed course 53.33 % 80.82 %
Grade mean (of
passed)

3.63 3.57

Grade std. dev. 1.53 1.41

Table 6 Course performance results

As seen on the table, all pass rates in C2012 were
significantly higher than in the earlier instance. Still, the
grade average remained almost the same between
instances.

To confirm the difference, the grade distribution was
analysed against a null hypothesis “the distribution of
grades is the same across two groups”. With significance
level of 0.05, we were able to reject the null hypothesis
with both, Mann-Whitney U Test (p=0.004) and
Kolmogorov-Smirnov test (p=0.011).

6 Discussion
Based on the student performance on the course, it seems
that the redesign was quite successful. There was a
significant raise in the pass rate as well as in the number
of students who qualified to- and passed the final exam,
respectively. Curiously, the grade average remained
almost the same between the instances. It hence seems
that though more students qualified for exam and passed
the course, the increase in pass rate was not achieved at
the cost of the performance in the final exam.
Remarkably, the final exam in C2012 was likely more
complex than the one on C2011: instead of two
programming assignments, there were now seven. The
assignments were at the same difficulty level, in fact,
some of the programming tasks from C2011 were used in
the exam at C2012.

What reasons may have affected the increased
performance? First, the main reason is probably the
introduction of active learning methods. As seen before in
various studies (see e.g. Laakso, 2010) learning is more
efficient when students are actively engaged into the
process instead of passively following a lecture. The
tutorial sessions seemed to work even better than what we
have hoped for: the student feedback collected each week
was mainly positive – only concerns being some technical
aspects, such as network errors. The students also
discussed the topic very actively during the sessions. This
seems to be in line with our earlier observations (see
Rajala et al. 2009, Rajala et al. 2010): we have previously
shown that visualization has a more significant effect on
learning when used in collaboration with another student,
and that when students engage into using visualizations in
collaboration, almost all discussion concerns the topic at
hand.

Still, even after the redesign, half of the lectures were
kept in the curriculum. The concept behind the redesign
was to connect the theory and the practice by offering one
lecture and one tutorial session each week. Whether
transforming all lectures into active learning sessions
would have had similar – or even better – effect remains
unknown in the scope of this research. Still, it is
definitely a concept worth testing in the future. To
underline the significance of certain topics at lectures, a
few ViLLE exercises were introduced after each lecture.
The quiz about the introduced topics, as well as a simple
coding or simulation task, was meant for summarizing the
lecture. The survey about the concepts learned and
improvement suggestions were also meant for students’
self-reflection: it is likely, that analysing and structuring
the concepts right after the lecture can have a positive
effect on learning.

Automatic assessment was a key factor in course
redesign. Without the obvious benefits of automatically
assessing programming assignments, the usage of
exercises to this extent would have been virtually
impossible. Though tutorials were primarily solved in the
dedicated tutorial sessions, most of the students needed to
complete some of the assignments outside the class room.
Automatically assessed programming assignments also
provided students a chance to redo tasks later for practice.
Also, using ViLLE to try out simple Java programs is
easier than starting an IDE or using compiler in command
line.

Another important factor in the redesign was
immediate feedback provided in ViLLE. When doing the
assignments the students got feedback right after clicking
the submit button. This also meant that when doing
programming tasks at tutorials or weekly exercises, they
could compare their results against the model solution
results right after submitting, and keep on modifying their
program until the results matched. As previously shown
in Laakso (2010), automatic assessment and immediate
feedback are the key factors when using educational
technology effectively. In the earlier instance the only
feedback students received from their programs was
during the demonstrations. A student got to present
his/her solution probably once or twice during the whole
course; when compared to more than hundred
automatically assessed tasks done in the latter instance,

0%

10%

20%

30%

40%

50%

5 4 3 2 1 Fail

C2011

C2012

CRPIT Volume 160 - Computing Education 2015

152

with unlimited number of submissions, this difference can
probably be seen as the most significant reason for the
performance differences.

Immediate feedback was not provided in the course
exam. Still, the students could see the compiler and
runtime errors to bring the programming process closer to
actual programming, testing and debugging. The students
also had access to Java API. Moreover, the students got a
subtle visual feedback if the answer was 100 percent
correct: the background colour of the coding area
changed to light green. Actually, this feature was left
originally in exam mode as a mistake, and as such the
students were not notified of it beforehand. Still, at least
some of the students reported it as a nice feature in the
final exam, since it helped them to confirm that their
solution was correct. All programming assignments were
randomly parameterized, and the test cases always
checked for null and empty values and overflows,
meaning that regardless of the visual feedback, the
students could not test random solutions for full score.
Moreover, as only automatic assessment was utilized, the
students did not score any points on submissions that
could not be compiled.

The student feedback on the novel features was highly
positive. According to weekly surveys, the students
seemed to value the tutorial based learning over all other
forms of teaching. Moreover, a short survey was
conducted after the course exam: according to results, the
students faced no technical problems, thought that ViLLE
as an exam platform was easy to use, and would
recommend ViLLE usage to other students. When asked
whether they would rather take the exam in paper, only 5
% of the students answered yes.

To conclude, the effect of the redesign seems to be
highly positive. Still, there are various factors not
considered in the scope of this paper. Most importantly,
we can’t isolate the effects of individual changes in the
new design. Although the change should be observed as
holistic, it would be interesting to try to isolate the factors
that have the best effect on learning. Also, the student
feedback is not comprehensively analysed in this
research, as the focus is on performance effects after the
redesign. These, to name a few, are definitely factors we
will observe closer in the future studies. In the future, we
also plan to utilize tutorial-based learning in other CS
courses, starting from the introductory course to computer
science and algorithms. The method is also going to be
tested at other universities, including for example RMIT
at Melbourne, Australia.

7 References
Beck, K. & Andres, C. (2004). Extreme Programming

Explained: Embrace Change (2nd Edition). Addison-
Wesley Professional

Bradford, P., Porciello, M., Balkon, N. & Backus, D.
(2006) The Blackboard Learning System: the be all and
end all in educational instruction? Journal of
Educational Technology Systems, 35, 3, 301-314.

Caspersen, M & Bennedsen, J. (2007). Instructional
design of a programming course: a learning theoretic
approach. In Proceedings of the third international

workshop on Computing education research (ICER
'07). ACM, New York, NY, USA, 111-122

Cole, J. & Foster, H. (2008). Using Moodle: Teaching
with the Popular Open Source Course Management
System (2nd ed.). Sebastopol: O’Reilly Media Inc.

Crescenzi, P. and Nocentini, C. (2007). Fully integrating
algorithm visualization into a cs2 course: a two-year
experience. Proc. of the 12th Annual SIGCSE
Conference on innovation and Technology in Computer
Science Education (Dundee, Scotland, June 25 - 27,
2007). ITiCSE '07. ACM, New York, NY, 296-300.

Freeman, S., Eddy, S., McDonough, M, Smith, M.,
Okoroafor, N., Jordt, H. & Wenderoth, M. (2014)
Active learning increases student performance in
science, engineering, and mathematics. PNAS 2014;
published ahead of print May 12, 2014.

Grissom, S., McNally, M. and Naps, T. 2003. Algorithm
Visualization in CS Education: Comparing Levels of
Student Engagement. In Proceedings of the ACM
Symposium on Software Visualization, San Diego,
California, 87-94.

Hall, S., Fouh, E., Breakiron, D., Elshehaly, M., &
Shaffer, C.A. (2013). Evaluating Online Tutorials for
Data Structures and Algorithms Courses. In
Proceedings of the 2013 ASEE Annual Conference &
Exposition, Atlanta, GA, June 2013

Hundhausen, C.D. and Brown, J.L. 2007. What You See
Is What You Code: A 'Live' Algorithm Development
and Visualization Environment for Novice Learners.
Journal of Visual Languages and Computing, 18, 1, 22-
47.

Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T.
(2009). Effects, Experiences and Feedback from
Studies of a Program Visualization Tool. Informatics in
Education, 8, 1, 17-34.

Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T.
(2010). Long-term Effects of Program Visualization. In
12th Australasian Computing Education Conference
(ACE 2010), January 18- 22, 2010, Brisbane, Australia.

Kaila, E., Rajala, T., Laakso, M.-J., Lindén, R., Kurvinen,
E. & Salakoski, T. (2014). Utilizing an Exercise-based
Learning Tool Effectively in Computer Science
Courses. Olympiads in Informatics 8.

Kannusmäki, O., Moreno, A., Myller, N. and Sutinen, E.
2004. What a Novice Wants: Students Using Program
Visualization in Distance Programming Course. In
Proceedings of the Third Program Visualization
Workshop (PVW'04), Warwick, UK

Kölling, M., Quig, B., Patterson, A. and Rosenberg, J.
2003. The BlueJ system and its pedagogy. Journal of
Computer Science Education, Special issue on
Learning and Teaching Object Technology, 13, 4.

Laakso, M.J, Kaila, E. & Rajala, T. (2014) ViLLE:
designing and adapting a collaborative exercise-based
learning environment. Sent to Computers & Education

Laakso, M.-J. (2010). Promoting Programming Learning.
Engagement, Automatic Assessment with Immediate
Feedback in Visualizations. TUCS Dissertations no
131.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

153

Lahtinen, E., Ala-Mutka, K. & and Järvinen, H.-M..
(2005). A study of the difficulties of novice
programmers. In Proceedings of the 10th annual
SIGCSE conference on Innovation and technology in
computer science education (ITiCSE '05). ACM, New
York, NY, USA, 14-18

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
Seppälä, O. and Silvasti, P. 2004. Visual Algorithm
Simulation Exercise System with Automatic
Assessment: TRAKLA2. Informatics in Education, 3,
2, 267-288.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
I. and Wilusz, T. (2001). A Multi-National, Multi-
Institutional Study of Assessment of Programming
Skills of First-year CS Students. ACM SIGCSE
Bulletin, 33, 4, 125-140.

McDowell, C., Werner, L., Bullock, H., & Fernald, J.
(2002). The effects of pair-programming on
performance in an introductory programming course.
In Proceedings of the 33rd SIGCSE technical
symposium on Computer science education (SIGCSE
'02). ACM, New York, NY, USA, 38-42.

Moons, J. & De Backer, C. (2013). The design and pilot
evaluation of an interactive learning environment for
introductory programming influenced by cognitive load
theory and constructivism. Computers & Education 60,
368-384.

Oechsle, R. and Schmitt, T. 2001. JAVAVIS: Automatic
Program Visualization with Object and Sequence
Diagrams Using the Java Debug Interface (JDI).
Revised Lectures on Software Visualization,
International Seminar, May 20-25, 76-190.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York, NY, USA: Basic Books,
Inc.

Parsons, D. & Haden, P. (2006). Parson's programming
puzzles: a fun and effective learning tool for first
programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education -
Volume 52 (ACE '06), Denise Tolhurst and Samuel
Mann (Eds.), Vol. 52. Australian Computer Society,
Inc., Darlinghurst, Australia, Australia, 157-163

Rajala, T., Kaila, E., Laakso, M.-J. & Salakoski, T.
(2009). Effects of Collaboration in Program
Visualization. Appeared in the Technology Enhanced
Learning Conference 2009 (TELearn 2009), October 6
to 8, 2009, Academia Sinica, Taipei, Taiwan.

Rajala, T., Salakoski, T., Kaila, E. & Laakso, M-J.
(2010). How Does Collaboration Affect Algorithm
Learning? A Case Study Using TRAKLA2 Algorithm
Visualization Tool. In Proceedings of 2010
International Conference on Education Technology
and Computer (ICETC 2010), Jun 2010. [A4]

Rajaravivarma, R. (2005) A Games-Based Approach for
Teaching the Introductory Programming Course.
Inroads – The SIGCSE Bulletin. 37, 4, 98-102.

Saunders, G. & Kelmming, F. (2003) Integrating
technology into a traditional learning environment.
Active Learning in Higher Education 4: 74–86.

Tan, P.-H., Ting, C.-Y & Ling, S.-W. (2009). Learning
Difficulties in Programming Courses: Undergraduates'
Perspective and Perception. International Conference
on Computer Technology and Development (ICCTD
’09).

CRPIT Volume 160 - Computing Education 2015

154

Comparative Study on Programmable Robots as Programming
Educational Tools

Shohei Yamazaki1 Kazunori Sakamoto2 Kiyoshi Honda1

Hironori Washizaki1 Yoshiaki Fukazawa1

1 Department of Computer Science and Engineering
Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
Email: shohei-hamamatsu@moegi.waseda.jp, khonda@ruri.waseda.jp,

washizaki@waseda.jp, fukazawa@waseda.jp

2 Department of Computer Science and Engineering
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
Email: exkazuu@nii.ac.jp

Abstract

Computational Thinking skills are basic and impor-
tant to manipulate computers. Currently, several sys-
tems exist to provide an effective way to learn pro-
gramming that use computers, smartphones, tablets,
or programmable robots. Although studies have re-
ported improved programming skills and motivation
to learn programming using an on-screen application
or a programmable robot, the benefits of these tools
have not been directly compared.

To resolve this issue, especially with regard to mo-
tivation to learn programming and impression of pro-
gramming, we conducted a large-scale comparative
experiment involving 236 middle and high school stu-
dents to evaluate the effects of a game-based educa-
tional application and programmable robots on learn-
ing programming. We then compared the effects of a
game-based educational application with and without
programmable robots on learning programming. We
found that employing programmable robots on learn-
ing programming did not always give an improvement
to all students.

Keywords: comparative study, programming ed-
ucation, programming environment, programmable
robot, motivation, impression

1 Introduction

Computers have become commonplace. Because of
this, Wing has suggested that people should learn
Computational Thinking, which she defines as basic
skills for manipulating computers (Wing 2006). Thus,
we developed educational tools that teach computa-
tional thinking.

The motivation to learn and the impression of
learning contents are very important not only when
developing computational thinking, but learning in
general. Several studies have focused on the impor-
tance of motivation to learn programming (DeClue
2003, Feldgen & Clua 2004, Kelleher et al. 2007, Jenk-
ins 2001). Feldgen and Clua argued that instructors

Copyright c⃝2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computer Educa-
tion Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 160, Daryl D’Souza and Katrina Falkner,
Ed. Reproduction for academic, not-for-profit purposes per-
mitted provided this text is included.

are critical in motivating students (Feldgen & Clua
2004). Jenkins argued that motivation is the product
of expectation and value; thus, students must expect
to succeed in learning and value their achievements
(Jenkins 2001). These studies demonstrate the im-
portance of providing learners with expectations and
the value of being able to program.

Several educational tools have been developed to
provide motivation to learn programming (Kölling &
Henriksen 2005, Esper et al. 2013, Bezakova et al.
2013). For example, Scratch is a visual and block-
based programming learning environment that allows
learners to learn programming intuitively (Resnick
et al. 2009). Several studies have investigated Scratch
(Rizvi et al. 2011, Lewis 2010). Malan and Leit-
ner as well as Maloney et al. have reported the
effects of using Scratch as a programming educa-
tional environment on learning programming (Malan
& Leitner 2007, Maloney et al. 2008). In addition,
programmable robots have the potential to facilitate
and inspire motivation to learn (Nourbakhsh et al.
2000, Lalonde et al. 2006). In fact, several stud-
ies have used robots as educational tools (Kumar &
Meeden 1998, Billard et al. 2008). One such robot
is LEGO R⃝Mindstorms R⃝. Those learning program-
ming using LEGOMindstorms create a robot by com-
bining sensors and motors. Barnes reported a study
in which Java was taught using Lego Mindstorms as
a programming educational tool (Barnes 2002).

Although it is clear that introducing these learn-
ing environments and educational tools into learning
programming is effective, the following remains un-
clear. Do these educational tools improve motivation
to learn programming? Do these tools improve the
impression of programming? How much is the actual
improvement using these tools?

In this paper, we evaluate the effects of a game-
based educational application and programmable
robots on learning programming. We gathered 236
middle and high school students, most of whom were
unfamiliar with programming, to participate in our
experiment. Then we compared the effects of a game-
based educational application with and without pro-
grammable robots on the motivation to learn pro-
gramming and the impression of programming.

The contributions of this paper are:

• We conducted a large-scale comparative experi-
ment where 236 students learned programming.

• We compared the effects of a game-based appli-

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

155

cation with and without programmable robots
on the motivation to learn programming and the
impression of programming using a questionnaire
containing six items.

• We investigated the gender differences of the ef-
fects of programmable robots furthermore.

The rest of this paper is organized as follows.
Section 2 details related works. Section 3 describes
the game-based application, while two different pro-
grammable robots are described in Section 4. Section
5 details the comparative experiments. The results
are evaluated in Section 6. Finally, our conclusion
and future work are detailed in Section 7.

2 Related Work

Several studies have examined the effects of program-
ming educational tools and environments on learn-
ing motivation. For example, there are several pro-
gramming educational environments (Kelleher et al.
2007, Long 2007, Kölling & Henriksen 2005, Esper
et al. 2013, Bezakova et al. 2013). Additionally, sev-
eral studies have employed programmable robots as
programming learning tools (Nourbakhsh et al. 2000,
Lalonde et al. 2006, Fagin et al. 2001, Magnenat et al.
2012). Although they demonstrated the effects of
teaching programming concepts to students without
programming experience, the influence of game-based
applications with and without programmable robots
on learning were not compared.

McNally et al. investigated the motivation of two
student groups at university (McNally et al. 2006).
One group participated in LEGO Mindstorms ac-
tivities, while the other took a traditional introduc-
tory programming course. The difference between our
study and McNally et al. is that they discussed the
motivation of undergraduates already familiar with
programming. Our study investigates not only the
motivation but also the impression of programming
for middle and high school students, most of whom
are unfamiliar with programming.

Scratch, which is aimed at novice programmers,
was created by a group at the MIT Media Labora-
tory in collaboration with a group at UCLA (Resnick
et al. 2009). Rizvi et al. investigated the effect of us-
ing Scratch to improve the retention and performance
of at-risk computer science majors (Rizvi et al. 2011).
The difference between these studies is that they tar-
geted undergraduates majoring in computer science
and investigated differences between students enrolled
in CS0 and CS1, while we investigated the motivation
to learn programming and the impression of program-
ming of individuals unfamiliar with programming.

Lewins compared the effects, especially attitude
and learning programming concepts, using either
Logo or Scratch for sixth grade students learning
programming (Lewis 2010). Although the Logo en-
vironment seemed to support students’ confidence,
interest in programming, and understanding of loop
constructs, Scratch improved students’ understand-
ing of the construct conditions. These studies only
treated on-screen applications, whereas our compara-
tive study involves both an on-screen application and
a programmable robot.

Previous studies have not compared the effects of
game-based educational applications with and with-
out programmable robots on learning to program as
long as we investigated. Thus, we conducted such a
comparative study with an emphasis on the motiva-
tion to learn and the impressions of programming.

3 Game-based Educational Application

We developed an educational tool called Manekko-
Dance (Sakamoto et al. 2013). ManekkoDance is a
programming educational tool that runs as an appli-
cation on a smartphone or a tablet. There are two
reasons why we developed an educational application
for a smartphone or a tablet instead of a desktop or
laptop computer. First, mobile applications can moti-
vate students (Mahmoud 2008). Second, learning can
occur anytime and anywhere using a smartphone or
a tablet rather than a computer. ManekkoDance is a
game where users move two yellow and orange baby
chicks and answer problems by imitating the move-
ments of two white and ocher chickens correctly as
models by programming. For example, if the chickens
raise their right wings, users have to raise the baby
chicks’ right wings. ManekkoDance shows whether
the user program is correct (see Figure 1).

Figure 1: Screenshot of ManekkoDance (Left and
right show an incorrect and correct program, respec-
tively)

Users can play ManekkoDance, even if users con-
nected programmable robots or did not connect pro-
grammable robots. Thus, we adopted ManekkoDance
in this experiment.

To understand our experiments, here we briefly de-
scribe the features and learning contents of this ap-
plication.

3.1 User Interface

A previous study reported that a good user interface
can motivate learners (Cho et al. 2009). Manekko-
Dance has appealing interfaces such as the baby chick
and chicken characters and icons which move baby
chicks. Several students said, “The icons and charac-
ters are lovely or cute.”

3.1.1 Icon-based Non-verbal Programming
Language

Figure 2 shows that ManekkoDance interconverts be-
tween a verbal language and icon-based nonverbal
programming language, allowing users to more eas-
ily write and intuitively understand a program.

Figure 3 shows sixteen icons that correspond to the
baby chicks’ actions. To play the game, users employ
these sixteen icons and natural numbers. Users also
have the option to use verbal language.

3.1.2 Characters

To prevent boredom while learning to program, we
adopted appealing characters. For example, if the

CRPIT Volume 160 - Computing Education 2015

156

Figure 2: Same program written in a Japanese-text-
basaed language (left) and icon based language (right)

Figure 3: Sixteen icons

written program contains an error, instead of an error
screen, the baby chicks fall down. Programming an
unnatural motion gives rise to errors. For example,
entering a icon to raise the baby chicks’ right wings
when their wings are already raised causes the baby
chicks to fall down.

3.2 Learning Contents

We think that computational thinking is a common
concept to various programming languages. We are
referring to their idea about computational thinking
(Brennan & Resnick 2012).

This game consists of stages so that users can learn
gradually. The stages require users to combine the fol-
lowing four concepts in computational thinking. By
playing the game, users can learn four concepts in
computational thinking that are used in common in
many programming languages:

• Sequences

• Concurrency

• Loops

• Conditionals

To view the flow of a sequence, the executed line
is sequentially highlighted by a red letter in the ex-
ecution screen. This allows users to comprehend se-
quences.

If a user enters plural icons in the same line, the
program runs simultaneously. For example, if a user
enters two icons in the same line to raise the right
and left wings, the baby chicks simultaneously raise
both wings. Therefore, users can learn concurrency
intelligibly.

Most programs contain a loop function. Thus, in
ManekkoDance, users can employ a loop function if
they want the chicks to repeat a motion. Figure 4
shows the example program of a loop function in this
game.

For example, if a user would like to repeat a chicks’
motion, a program is inserted between a loop com-
mand, which consists of the starting symbol and a
natural number to indicate the number of times to
repeat the motion, and a green ending symbol. One

Figure 4: Example programs of loop functions (left)
and conditionals (right)

stage requires that a user writes a program so that
the baby chicks repeat the motions to raise their left
wing, their right wing, put their left wing down, and
put their right wing down. This repeated sequences
teaches the convenience of the loop function.

Conditionals are important concepts that are used
frequently in programming. Users can learn the con-
ditional concept by choosing to move only one of the
baby chicks. Figure 4 shows the example program of
conditionals in this game. The conditional command
consists of the following rules. A user must enter a
red question mark, which means “if”, and yellow or
orange circle which means yellow or orange baby chick
in the same line. A red colon means “else”. Condi-
tionals end at a red symbol. For example, condition-
als make the yellow chick raise its right wing while
the orange chick raise its left wing (see Figure 4).

4 Programmable Robots

As mentioned in Section 2, several programming ed-
ucational tools such as programmable robots have
been developed. The processing result of the program
written by a learner is not only reflected in the soft-
ware but also in the robot (e.g., LEGO Mindstorms),
which a learner can see and touch. To evaluate the
effects between game-based educational applications
(on screen) and programmable robots on the ability
to learn programming, we conducted a comparative
experiment with an emphasis on motivation to learn
programming and impression of programming.

By connecting Manekko Dance and two robots, a
user can operate the two robots from ManekkoDance.
For example, if a user writes a program to move the
baby chicks’ right wing, the two robots raise their
right hands as well (see Figure 5). Because a student
may dislike a particular robot, we used two differ-
ent programmable robots. That is, we avoided things
that could decrease motivation to learn or negatively
impact impression of programming.

Figure 5: Two Robots interlocked with Manekko-
Dance (Stuffed Teddy Bear Robot, Cardboard Robot
and screenshot of ManekkoDance on left, center and
right sides, respectively)

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

157

4.1 Stuffed Teddy Bear Robot

We used a Stuffed Teddy Bear Robot (STBR) (Takase
et al. 2013) which can move its head and hands as well
as roll its head.

STBR has two features: an appealing appearance
and a soft texture. This robot is a cuddly teddy bear
with fluffy fur. Takase et al. argued that the fluffiness
is a factor of loveliness (Takase et al. 2013). Addition-
ally, STBR is so soft that a user can strongly grasp
it. Its moving parts consist of fabrics such as cloth,
thread, and cotton. The fluffy fur is a factor that
makes STBR soft to the touch.

Figure 6 shows the connection of STBR and
ManekkoDance, which uses a Wireless Fidelity (Wi-
Fi) and a Web application. STBR, a personal com-
puter (PC), and a smartphone or tablet are connected
through Wi-Fi. The PC functions as a Web server.
The application on the smartphone or tablet sends the
signal to move STBR to the PC, which then sends the
signal to STBR.

Figure 6: STBR connected with ManekkoDance

4.2 Cardboard Robot

We also used a Cardboard Robot called
DANBOARDTM, which is a popular character
that appearing in Japanese comics. The Cardboard
Robot can move its hands differently from STBR.
The Cardboard Robot has two main features: a
pretty appearance that is not a typical robot and a
form that is familiar to users.

Figure 7 shows the connection of Cardboard Robot
and ManekkoDance. Moving the servomotor attached
to this robot’s arms via a pulse wave allows its arms
to be raised and lowered. The Cardboard Robot is
connected to a smartphone or tablet through the ear-
phone jack.

5 Experiment

We conducted a large-scale comparative experiment
involving 236 middle and high school students who
were inexperienced programmers attending an open
campus event at our university on August 2 and 3,

Figure 7: Cardboard Robot connected with Manekko-
Dance

2014. Open campus is an event in which an individ-
ual can participate freely in Japan. We asked stu-
dents about programming experience by the before
questionnaire.

Some students used one STBR connected to
ManekkoDance, others used one of the three Card-
board Robots connected to ManekkoDance and the
others used ManekkoDance alone as educational
tools. To evaluate the effects of a game-based educa-
tional application and programmable robots on learn-
ing programming, we randomly divided the students
into three groups by distributing numbered tickets.
Students were divided into three groups according to
the numbered tickets (Table 1):

Group A: Each student who learned programming
using only ManekkoDance.

Group B: Each student who learned programming
using STBR connected to ManekkoDance as a
programmable robot.

Group C: Each student who learned programming
using a Cardboard Robot connected to Manekko-
Dance as a programmable robot.

Group Boys Girls Total
A 76 35 111
B 38 23 61
C 41 23 64

B&C 79 46 125
A&B&C 155 81 236

Table 1: Numbers of people participating in this ex-
periment

Each student completed a questionnaire before and
after participating in the experiment. For each
student, we compared the responses of these two
questionnaires and analyzed the effects of a game-
based educational application with or without pro-
grammable robots on learning from two viewpoints:
the motivation to learn programming and the impres-
sion of programming.

The experimental procedure was the same for all
groups. First, students completed the before ques-
tionnaire. Then they learned programming using the
tools based on group assignment. Finally they com-
pleted a survey after the experiment. The experiment
lasted 30 minutes per student. The questionnaire con-
tained six questions. In addition, we classified the

CRPIT Volume 160 - Computing Education 2015

158

Figure 8: Bar graph of the results of Group A and Groups B&C prior to the experiment. Color scales denote
a rating of 1(strongly disagree)6(strongly agree), respectively. Q1 (motivation), Q2 (impression), Q3 (self-
confidence), Q4 (liberal arts), Q5 (gender) and Q6 (usefulness)

Figure 9: Bar graph of the results of Group A and Groups B&C after the experiment. Color scales denote
a rating of 1(strongly disagree)6(strongly agree), respectively. Q1 (motivation), Q2 (impression), Q3 (self-
confidence), Q4 (liberal arts), Q5 (gender) and Q6 (usefulness)

motivation to learn and the impression of program-
ming into six question items more finely as follows:

Q1: I want to learn programming. (motivation)

Q2: I feel that programming is fun. (impression)

Q3: I think that I can program. (self-confidence)

Q4: I think that liberal arts students can do pro-
gramming. (liberal arts)

Q5: I think that being good at programming are re-
lated to gender. (gender)

Q6: I think that programming skills are useful. (use-
fulness)

6 Evaluation

We evaluate the results of our experiment and answer
following RQs:

RQ1: Does using a game-based application and a
programmable robot result in a difference in
motivation and impression of learning program-
ming?

RQ2: Compared to a game-based application, does
using a programmable robot increase the rate of
positive responses to Q1 (motivation), Q2 (im-
pression), Q3 (self-confidence), Q4 (liberal arts),
Q5 (gender) and Q6 (usefulness) in the survey?

6.1 Results

We evaluated the before and after questionnaires to
compare the effects of a game-based application with
and without programmable robots on the motivation
to learn programming and the impression of program-
ming.

Before After After − Before
Q1B Q2B Q1A Q2A Q1A−Q1B Q2A−Q2B

a1 4 5 6 6 2 1
a2 3 4 6 5 3 1

Average 2.5 1

Table 2: Example of the subtraction method

Group Q1 Q2 Q3 Q4 Q5 Q6
A 0.117 0.153 0.901 0.901 0.261 0.216

B&C 0.216 0.240 1.152 0.880 0.336 0.192
Change Rate (B&C/A) 1.844 1.279 1.567 0.977 1.286 0.888

Table 3: Average of the subtraction results

For the comparison, the responses from Groups B
and C were combined and compared to the responses
from Group A for the six items described in the pre-
vious section (Q1 Q6). All of the students replied
to the questionnaires on a six-point scale where a six
indicated strongly agree and a one indicated strongly
disagree.

Figure 8 shows the ratings prior to the experiment,
while Figure 9 shows the ratings after the experiment.
The figures employ color scales where aqua, orange,

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

159

gray, yellow, blue, and green denote a rating of 1 6,
respectively.

Because directly comparing the raw data (Figures
8 and 9) did not clearly demonstrate differences be-
tween answers regarding motivation and impression
of programming, we employed a different analysis ap-
proach. For each question, we subtracted the value
before from the value after the experiment for each
person. Table 2 shows an example using Q1 (Q2)
where Q1B (Q2B) and Q1A (Q2A) denote before and
after the experiment, respectively, while an denotes
individual responses. For example, if a1 answered 4
to Q1 before the experiment and 6 after the experi-
ment, the net value is 2. Then the average difference
was determined using all the responses for Group A
and Groups B&C.

Table 3 and Figure 10 show the average values of
the subtraction method for all six questions. In Fig-
ure 10, blue and orange indicate Group A and Groups
B&C, respectively.

Figure 10: Bar graph of the average of the subtrac-
tion value. Blue and orange indicate Group A and
Groups B&C, respectively. Q1 (motivation), Q2 (im-
pression), Q3 (self-confidence), Q4 (liberal arts), Q5
(gender) and Q6 (usefulness)

6.2 Discussion

In Table 3 and Figure 10, RQs can be answered.
RQ1: Differences clearly exist between using

a game-based application with and without a pro-
grammable robot.

RQ2: Q1) Employing programmable robots in-
creases the positive responses to Q1 (motivation)
1.844 times more compared to a game-based appli-
cation alone. Programmable robots may motivate
students to learn programming compared to a game-
based application alone.

Q2) Employing programmable robots increases the
positive response to Q2 (impression) 1.279 times more
compared to a game-based application alone.

Q3) Employing programmable robots increases the
positive response to Q3 (self-confidence) 1.567 times
more compared to a game-based application alone.
Moving programmable robots connected to a game-
based application may provide students with self-
confidence compared to a game-based application
alone.

Q4) Employing programmable robots slightly de-
creases the positive response to Q4 (liberal arts)
(0.977 times) compared to a game-based application
alone. Liberal arts is almost changeless when pro-
grammable robots are compared to a game-based ap-
plication alone. We discuss the result about liberal
arts later.

Q5) Employing programmable robots increases the
positive response to Q5 (gender) 1.286 times more
compared to a game-based application alone. We dis-
cuss the result about gender later.

Q6) Employing programmable robots decreases
the positive response to Q6 (usefulness) (0.888 times)
compared to a game-based application alone. Q6
(usefulness) may be ineffective because programmable
robots can act only simple things. For example, pro-
grammable robots can move only both hands.

Liberal Arts: Andersen et al. reported that
fewer liberal art students are interested in program-
ming compared to science students (Andersen et al.
2003). Although the average value with regard to Q4
(liberal arts) decreases when using a programmable
robot, most of the students participating in the exper-
iment have not settled on a major. Thus, Q4 (liberal
arts) may be ineffective for the participants. Because
the students participating in the experiment have not
settled on a major, we cannot go into detail about the
differences between liberal arts majors.

Group Gender Q1 Q2 Q3 Q4 Q5 Q6
A Boys 0.118 0.197 0.947 0.987 0.184 0.211

B&C Boys 0.316 0.266 1.076 0.848 0.329 0.228
A Girls 0.114 0.057 0.800 0.714 0.429 0.229

B&C Girls 0.043 0.196 1.283 0.835 0.345 0.130
Change Rate Boys 2.672 1.347 1.136 0.859 1.787 1.082
(B&C)/A Girls 0.380 3.424 1.603 1.309 0.812 0.571

Table 4: Average subtraction values by gender

Gender: The less number of girl students who,
major in computer science has become a problem
(Olivieri 2005). Thus, we considered that girl stu-
dents would not be interested in programming com-
pared to boy students. However, Q5 (gender) in Table
3 and Figure 10 shows that the programmable robots
have a positive result on the average change. To in-
vestigate the gender difference, we divide the results
of the before and after questionnaires by gender. Ta-
ble 4 and Figure 13, 11 and 12 show the results.

For Q2 (impression of programming) and Q3 (self-
confidence) the average change when using a pro-
grammable robot increases for both genders. Ad-
ditionally, for Q2 (impression of programming) and
Q3 (self-confidence), it is more effective for girl stu-
dents to employ programmable robots than for boy
students. Especially, for Q2 (impression of program-
ming), while the boys’ average change is 1.347, the
girl’ is 3.424. It is more effective for girl students to
employ programmable robots compared to boy stu-
dents because the girls’ average change is 2.54 times
of boys’.

For Q1 (motivation), Q5 (gender) and Q6 (use-
fulness), the boys’ responses increase, while the girls’
decrease. For Q1, while the boys’ average change is
2.672, the girls’ is 0.380. It is more ineffective for girl
students to employ programmable robots compared
to boy students because the boys’ average change is
7.031 times of girls’. For Q5 (gender), in Table 3, em-
ploying programmable robots increases the positive
response to Q5 (gender) 1.286 times more compared
to a game-based application alone was obtained. In
detail, while the girls’ average change was 0.812, the
boys’ was 1.787. For Q6 (usefulness), while the boys’

CRPIT Volume 160 - Computing Education 2015

160

Figure 11: Bar graph of the results of Group A, Groups B&C after experiment according to gender. Color
scales denote a rating of 1(strongly disagree)6(strongly agree), respectively. Q1 (motivation), Q2 (impression),
Q3 (self-confidence), Q4 (liberal arts), Q5 (gender) and Q6 (usefulness)

average change was 1.082, the girls’ was 0.571. It
is more ineffective for girl students to employ pro-
grammable robots than boy students.

For Q4 (liberal arts) the boys’ responses decrease,
but the girls’ responses increase. As we stated previ-
ously, we cannot go into detail about the differences
between science and liberal arts majors.

Figure 12: Bar graph of the average of subtraction
value. Blue and orange indicate boy students of
Group A and Groups B&C, respectively. Gray and
yellow indicate girl students of Group A and Groups
B&C, respectively.

6.3 Limitation

We analyzed the values of the subtractions using
Wilcoxon rank sum test. The results are shown in

Table 5.

Question W p-value
Q1 (motivation) 6247 0.1309
Q2 (impression) 6377.5 0.2354
Q3 (self-confidence) 6119 0.1031
Q4 (liberal arts) 6994.5 0.9089
Q5 (gender) 6937.5 1
Q6 (usefulness) 6885 0.9082

Table 5: The result of Wilcoxon rank sum test

The p-values of Q1, Q2, Q3, Q4, Q5 and Q6 are
0.1309, 0.2354, 0.1031, 0.9089, 1 and 0.9082, respec-
tively. All of these p-values are larger than 0.05
(p > 0.05). There are no statically significant differ-
ences in this experiment. However, we do not change
our opinions in this research. We think that because
there were few scales in this experiment, there are no
statically significant differences.

6.4 Threats to Validity

We considered four factors that may influence our
findings.

Because we employed questionnaires, the feeling
expressed by an adverb such as strongly vs. some-
what in the rating system may vary by individual.
Thus, the responses may not be reliable, and our anal-
ysis of the motivation to learn programming and the
impression of programming may be impacted.

Our experiment only involved middle and high
school students. The results may differ if individu-
als in other age groups participated. Thus, the age of
the participants may influence the results.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

161

Figure 13: Bar graph of the results of Group A, Groups B&C before experiment according to gender. Color
scales denote a rating of 1(strongly disagree)6(strongly agree), respectively. Q1 (motivation), Q2 (impression),
Q3 (self-confidence), Q4 (liberal arts), Q5 (gender) and Q6 (usefulness)

Although 236 middle and high school students par-
ticipated in the experiment, there were only four in-
structors. Thus, the number of instructors, especially
if the student to teacher ratio is one to one, may affect
the results.

We randomly divided the 236 students into three
groups. Thus, the two scenarios (game-based vs. pro-
grammable robot) were not compared using the same
student. Thus, a difference in a population may affect
the results.

7 Conclusion and Future Work

The contributions of the paper are a large-scale com-
parative experiment using students learning to pro-
gram via a game-based application with and with-
out programmable robots. Employing either a game-
based application with a programmable robot or
without a programmable robot affects the motivation
to learn and impression of programming. Addition-
ally, there are gender differences. We answer the fol-
lowing RQs:

RQ1: Does using a game-based application and a
programmable robot result in a difference in
motivation and impression of learning program-
ming?

RQ2: Compared to a game-based application, does
using a programmable robot increase the rate of
positive responses to Q1 (motivation), Q2 (im-
pression), Q3 (self-confidence), Q4 (liberal arts),
Q5 (gender) and Q6 (usefulness) in the survey?

The answer of RQ1 is that differences exist be-
tween using a game-based application with and with-
out a programmable robot. The answer of RQ2 is
explained in the following: Using a six items question-
naire, the rates of positive responses to the questions

about “motivation” to learn programming, “impres-
sion” of programming, “self-confidence” when pro-
gramming, and ability to program by “gender” in-
crease more when using a game-based application
with a programmable robot than when using a game-
based application alone. However, the increment in
positive responses for questions related to liberal art
majors and usefulness is larger for a game-based ap-
plication alone than a game-based application with
a programmable robot. We found that employing
programmable robots on learning programming did
not always give an improvement to all students. In
addition, the rate of positive responses to the ques-
tions regarding impression of programming and self-
confidence when programming increase for boys, but
decrease for girls, while the responses to questions re-
lated to programming usefulness and type of major
show the opposite trend. It is effective for both boys
and girls to employ programmable robots on learning
programming for impression and self-confidence only.

Thus, we propose that if you employ pro-
grammable robots on learning programming, you can
give a good impression and self-confidence of pro-
gramming, and as for motivation, liberal arts, gender
and usefulness, you should take account of the effects
depends on students’ elements, for example gender.

In the future, we will not only show the effects, es-
pecially the motivation to learn and the impressions of
programming, but also improve the skills of program-
ming by introducing programmable robots to learn
programming. Although we dealt with the problems
of a standard difficulty in this experiment, we would
like to change the difficulties of the problems to deal
with in next experiments. As we mentioned in Sec-
tion 6.3, we think that because there were few scales
in this experiment, there are no statically significant
differences. To find statistically significant results, we
plan to improve the fineness of the scale and conduct

CRPIT Volume 160 - Computing Education 2015

162

further experiments. In addition, we plan to expand
the topics related to learning programming via pro-
grammable robots.

Acknowledgments

We would like to thank associate professor Hasegawa
of the Tokyo Institute of Technology, Ms. Nishino,
Ms. Li, and all of students of the Hasegawa Labora-
tory for their guidance and assistance in developing
the Stuffed Teddy Bear Robot. We would also like to
thank Kazuki Otomori, Machiko Hattori, and Yuma
Matsuura, who belong to Fukazawa Laboratory and
Washizaki Laboratory in Waseda University for their
help with our research and the teaching assistants of
the open campus at Waseda University. This work
was supported by JSPS KAKENHI Grant Number
14504538. This work was also supported by Benesse
Corporation.

References

Andersen, P. B., Bennedsen, J., Brandorff, S.,
Caspersen, M. E. & Mosegaard, J. (2003), ‘Teach-
ing programming to liberal arts students: A nar-
rative media approach’, SIGCSE Bull. 35(3), 109–
113.

Barnes, D. J. (2002), Teaching introductory java
through lego mindstorms models, in ‘Proceedings
of the 33rd SIGCSE Technical Symposium on Com-
puter Science Education’, SIGCSE ’02, ACM, New
York, NY, USA, pp. 147–151.

Bezakova, I., Heliotis, J. E. & Strout, S. P. (2013),
Board game strategies in introductory computer
science, in ‘Proceeding of the 44th ACM Techni-
cal Symposium on Computer Science Education’,
SIGCSE ’13, ACM, New York, NY, USA, pp. 17–
22.

Billard, A., Calinon, S., Dillmann, R. & Schaal, S.
(2008), Robot programming by demonstration, in
B. Siciliano & O. Khatib, eds, ‘Springer Handbook
of Robotics’, Springer Berlin Heidelberg, pp. 1371–
1394.

Brennan, K. & Resnick, M. (2012), New frameworks
for studying and assessing the development of com-
putational thinking, in ‘Proceedings of the 2012
annual meeting of the American Educational Re-
search Association, Vancouver, Canada’, Citeseer.

Cho, V., Cheng, T. & Lai, W. (2009), ‘The role of
perceived user-interface design in continued usage
intention of self-paced e-learning tools’, Computers
& Education 53(2), 216–227.

DeClue, T. H. (2003), ‘Pair programming and pair
trading: Effects on learning and motivation in a
cs2 course’, J. Comput. Sci. Coll. 18(5), 49–56.

Esper, S., Foster, S. R. & Griswold, W. G. (2013),
On the nature of fires and how to spark them when
you’re not there, in ‘Proceeding of the 44th ACM
Technical Symposium on Computer Science Edu-
cation’, SIGCSE ’13, ACM, New York, NY, USA,
pp. 305–310.

Fagin, B. S., Merkle, L. D. & Eggers, T. W. (2001),
Teaching computer science with robotics using
ada/mindstorms 2.0, in ‘Proceedings of the 2001
Annual ACM SIGAda International Conference on
Ada’, SIGAda ’01, ACM, New York, NY, USA,
pp. 73–78.

Feldgen, M. & Clua, O. (2004), Games as a motiva-
tion for freshman students learn programming, in
‘Frontiers in Education, 2004. FIE 2004. 34th An-
nual’, pp. S1H/11–S1H/16 Vol. 3.

Jenkins, T. (2001), The motivation of students of pro-
gramming, in ‘Proceedings of the 6th Annual Con-
ference on Innovation and Technology in Computer
Science Education’, ITiCSE ’01, ACM, New York,
NY, USA, pp. 53–56.

Kelleher, C., Pausch, R. & Kiesler, S. (2007), Story-
telling alice motivates middle school girls to learn
computer programming, in ‘Proceedings of the
SIGCHI Conference on Human Factors in Comput-
ing Systems’, CHI ’07, ACM, New York, NY, USA,
pp. 1455–1464.

Kölling, M. & Henriksen, P. (2005), ‘Game program-
ming in introductory courses with direct state ma-
nipulation’, SIGCSE Bull. 37(3), 59–63.

Kumar, D. & Meeden, L. (1998), ‘A robot laboratory
for teaching artificial intelligence’, SIGCSE Bull.
30(1), 341–344.

Lalonde, J.-F., Hartley, C. & Nourbakhsh, I.
(2006), Mobile robot programming in education, in
‘Robotics and Automation, 2006. ICRA 2006. Pro-
ceedings 2006 IEEE International Conference on’,
pp. 345–350.

Lewis, C. M. (2010), How programming environment
shapes perception, learning and goals: Logo vs.
scratch, in ‘Proceedings of the 41st ACM Techni-
cal Symposium on Computer Science Education’,
SIGCSE ’10, ACM, New York, NY, USA, pp. 346–
350.

Long, J. (2007), ‘Just for fun: Using programming
games in software programming training and edu-
cation’, Journal of Information Technology Educa-
tion: Research 6(1), 279–290.

Magnenat, S., Riedo, F., Bonani, M. & Mondada, F.
(2012), A programming workshop using the robot
“ thymio ii”: The effect on the understanding by
children, in ‘Advanced Robotics and its Social Im-
pacts (ARSO), 2012 IEEE Workshop on’, IEEE,
pp. 24–29.

Mahmoud, Q. H. (2008), Integrating mobile devices
into the computer science curriculum, in ‘Frontiers
in Education Conference, 2008. FIE 2008. 38th An-
nual’, pp. S3E–17–S3E–22.

Malan, D. J. & Leitner, H. H. (2007), ‘Scratch
for budding computer scientists’, SIGCSE Bull.
39(1), 223–227.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick,
M. & Rusk, N. (2008), ‘Programming by choice:
Urban youth learning programming with scratch’,
SIGCSE Bull. 40(1), 367–371.

McNally, M., Goldweber, M., Fagin, B. & Klassner, F.
(2006), Do lego mindstorms robots have a future in
cs education?, in ‘Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Edu-
cation’, SIGCSE ’06, ACM, New York, NY, USA,
pp. 61–62.

Nourbakhsh, I. R., Mobile, T., Lab, R. P. & Robots,
T. T. (2000), ‘Robots and education in the class-
room and in the museum: On the study of robots,
and robots for study’.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

163

Olivieri, L. M. (2005), ‘High school environments and
girls’ interest in computer science’, SIGCSE Bull.
37(2), 85–88.

Resnick, M., Maloney, J., Monroy-Hernández, A.,
Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B. & Kafai,
Y. (2009), ‘Scratch: Programming for all’, Com-
mun. ACM 52(11), 60–67.

Rizvi, M., Humphries, T., Major, D., Jones, M. &
Lauzun, H. (2011), ‘A cs0 course using scratch’, J.
Comput. Sci. Coll. 26(3), 19–27.

Sakamoto, K., Takano, K., Washizaki, H. &
Fukazawa, Y. (2013), Learning system for computa-
tional thinking using appealing user interface with
icon-based programming language on smartphones,
in ‘Proceedings of the 21st International Confer-
ence on Computers in Education (ICCE)’.

Takase, Y., Mitake, H., Yamashita, Y. & Hasegawa,
S. (2013), Motion generation for the stuffed-toy
robot, in ‘SICE Annual Conference (SICE), 2013
Proceedings of’, pp. 213–217.

Wing, J. M. (2006), ‘Computational thinking’, Com-
mun. ACM 49(3), 33–35.

CRPIT Volume 160 - Computing Education 2015

164

Mired in the Web: Vignettes from Charlotte and Other Novice

Programmers

Donna Teague
Queensland University of Technology

Brisbane, QLD, Australia

d.teague@qut.edu.au

Raymond Lister and Alireza Ahadi
University of Technology, Sydney

Sydney, NSW, Australia

Raymond.Lister@uts.edu.au

Abstract
1

Ahadi and Lister (2013) found that many of their

introductory programming students had fallen behind as

early as week 3 of semester, and those students often then

stayed behind. Our later work (Ahadi, Lister and Teague

2014) supported that finding, for students at another

institution. In this paper, we go one step further than those
earlier studies by observing a number of students as they

complete programming tasks while thinking aloud. We

describe the types of inconsistencies students manifest,

which are often not evident on analysis of conventional

written tests. We again interpret our findings using neo-

Piagetian theory. We conclude with some thoughts on the

pedagogical implications of our research results.

Keywords: Programming, neo-Piagetian theory, novices,
assessment, think aloud.

1 Introduction

Many computing educators have noted a large variation
in the ability of introductory programming students.

Ahadi and Lister (2013) found significant differences in

performance among their students, as early as week 3, on

trivial coding problems. Furthermore, those students with

lower scores on the week 3 test also tended to perform

lower on test questions in subsequent weeks — that is,

some students fall behind very early and then stay behind.

Ahadi et al. (2014) conducted a second study,

comparing students at two different institutions. They

found that tests held early in semester were good
indicators of success in the final exam. In this paper, we

report on a similar quantitative study, but we go further,

by triangulating with qualitative think aloud data from

students completing the same test questions.

2 Neo-Piagetian Theory

Lister (2011) proposed that we can describe students'
development in programming in terms of neo-Piagetian

theory. Other studies (Falkner, Vivian, and Falkner 2013;

Teague et al. 2013; Teague and Lister 2014c) provide

empirical evidence of novices manifesting neo-Piagetian

stage-related characteristics as they reason about

programming tasks. According to the evidence

accumulated from these and related studies, the first three

stages of development are characterised as follows.
At the sensorimotor stage, novices tend to

inconsistently apply mis/conceptions about programming.

Because of their fragile knowledge, these students

1Copyright (c) 2015, Australian Computer Society, Inc. This paper appeared at the

17th Australasian Computer Education Conference (ACE 2015), Sydney,

Australia, January 2015. Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 160. D. D'Souza and K. Falkner, Eds. Reproduction for

academic, not-for-profit purposes permitted provided this text is included.

struggle to successfully trace code, let alone reason about

its purpose or write their own code.

At the next more mature level are preoperational

students who have begun mastering the semantics, and
any misconceptions that remain at this stage are at least

applied consistently. Although preoperational students

can accurately trace code, they are often not able to

reason about its purpose other than by induction from

input/output pairs (see Teague and Lister (2014b)).

It is at the concrete operational stage, the next more

mature stage, where students have developed an ability to

reason deductively about abstractions and write more

complex code. This is the stage at which computing

educators typically expect students to be working by the

end of their first semester of learning programming, and
the level at which students are traditionally assessed.

However, the findings of this study, and previous studies,

suggest that many students are not manifesting concrete

operational skills even by their second semester of study

(Teague et al. 2013).

Rather than making quantum leaps between these

three stages, our view of development is described by the

Overlapping Waves Model (Boom 2004; Feldman 2004;

Siegler 1996). In that model, characteristics of an earlier

stage dominate initially, but there is a gradual increase in

the use of the next more mature level of reasoning and a

decrease in the less mature stage. This model accounts for
students manifesting characteristics of more than one

stage simultaneously.

3 Method

The undergraduate introductory programming course we
studied ran at the first author’s institution over a 13 week

semester comprised of a two hour lecture and a two hour

workshop each week.

To collect the data for this study, students completed a

short "in-class" test at the start of the lectures in weeks 2,

4, 7 and 9. These tests did not contribute to a student’s

final grade. However, most students present at the lecture

did the test, as the lecture did not proceed until the test

was over. The time students took to complete a test was

not formally recorded, but each test took around 15
minutes. Students were under little time pressure.

Immediately after each test, the lecturer would review the

test and explain the correct answers.

Much of the work of the first author in recent years

has involved observing approximately 40 individual

student programmers, as they developed over the course

of a semester. Those students completed programming

tasks while thinking out loud (Ericsson and Simon 1993).

In this paper we describe some of those students' attempts

at the tasks that in-class test data identified as being

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

165

problematic for many students. The qualitative data from

the think aloud sessions help to answer some of the

questions that arise from the in-class results:

What strategies do students use? (In other words, how

did they get that answer?);

What behaviour is evident with students who have
difficulty completing programming tasks?; and

What programming misconceptions (if any) are

evident? (Are incorrect answers a result of careless

mistakes, misinterpretation of the question or lack of

understanding the concept?)

Once we have that information, we can answer the "why"

questions by interpreting the qualitative data using the

neo-Piagetian framework:

Why do students get particular questions wrong?

Can a student have disparate levels of ability with two

tasks which test similar programming concepts? (For

example tracing, explaining and writing the same
code.)

Why are some students unable to work with

abstractions? (For example, why do they rely on

tracing code with specific values?)

It is not possible to include all our think aloud data in this

paper. We have simply selected three sessions that are

representative of the broadly different types of reasoning

manifested by our think aloud students.

We use aliases to obfuscate students' identity. Excerpts

from the sessions with Charlotte ("C"), Lance ("L) and

Jim ("J") are detailed in the following sections. Lance
was in the same cohort as those completing the in-class

tests. Unlike the others, Charlotte was a postgraduate

student, but as she was in her first programming unit at

the time of her think aloud session, she was at a similar

level to those students in the in-class tests. Jim was in

week 2 of his second programming unit.

In these excerpts, a pause in speech is marked "...", as

a placeholder for dialog we have removed as it added

nothing to the context of the think aloud session.

4 Test 1 (Week 2)

When the students completed Test 1 at the beginning of
their week 2 lecture, they had completed two hours of

lectures and a two hour workshop. The test questions are

provided in the appendix. (We will hereafter refer to test

questions in an abbreviated form. For example, Question

1 will now simply be Q1.) Our Test 1 is very similar to

the Test 1 of Ahadi and Lister (2013), differing in only

four respects: (a) our test is a translation from their Java

to our Python, which is a trivial change given that all the

questions in Test 1 are about assignment statements; (b)

we renumbered their questions, (c) we omitted Q2a from
the Ahadi and Lister test, but retained their Q2b as our

Q7; and (d) we conducted our first test in week 2 whereas

they conducted their first test in week 3.

Figure 1 shows the distribution of student scores on

Test 1, where 8 is the maximum possible score.

All questions were worth 1 point, with no fractional

points awarded. Answers were treated as either right or

wrong, but syntactic errors were ignored. We eliminated

from Figure 1 and all subsequent analysis, the small

number of students who scored zero on Test 1, as they

were likely to be students who had not attended week 1
classes. As was the case for Ahadi and Lister (2013),

there was a wide variation in Test 1 scores.

Table 1 shows the percentage of students, for each

Test 1 score out of 8, who correctly answered each of the

eight questions. The final row of the table represents the

percentages of all students who answered correctly each

question in the test. Cells containing asterisk/s indicate a

statistically significant difference in the two percentages

above and below the asterisk/s. (NB: percentages are

rounded down.) As can be seen from that table (especially

for test scores of 1 to 6 inclusive, as marked with darker
border lines), an approximate rule of thumb is that if a

student scored n points out of 8 on the test, then the

student's first n answers were most commonly right, and

their remaining answers were most commonly wrong. In

accordance with that rule of thumb, we characterised the

students as follows:

 Score 1 or 2: understands little of the semantics of

the code.

 Score 3 or 4: applies inconsistent guessing because

of fragile understanding of the semantics.

 Score 5: can conduct a trace with some reliability.

 Score 6: can perform inductive inference.

 Score 7: can sometimes perform deductive inference.

We elaborate on this characterisation in the next section.

4.1 Semantics of Assignment and Sequence

In Test 1, Q1–Q3 tested whether a student understood the

semantics of a sequence of assignment statements. That

is, the value on the right of the assignment is copied to

the left, overwriting the previous value, and assignments

are executed in sequence. Many students who scored 1, 2
or 3 on Test 1 struggled with Q1–Q3 (see the left three

shaded columns in Table 1).

Figure 1: Distribution of total scores on Test 1 (N=254)

CRPIT Volume 160 - Computing Education 2015

166

Test1

Score n
semantics tracing reasoning

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

1 26 53 23 0 4 4 8 12 0

 ** ** *

2 27 60 71 26 26 15 4 0 0

 *** *

3 17 53 65 89 59 24 6 6 0

 * *

4 30 87 84 80 64 54 14 14 7

 * ** **

5 44 87 96 94 94 85 30 12 5

 *** * ***

6 41 86 98 98 96 88 69 35 35

 *** ***

7 39 83 100 98 93 98 75 75 80

 * ** ** **

8 30 100 100 100 100 100 100 100 100

all 254 78 84 76 73 65 43 34 32

Table 1: Percentage of students who answered correctly

each part of Test 1, broken down by total score (χ
2
, * is p ≤

0.05, ** is p ≤ 0.01 and *** is p ≤ 0.001)

Sensorimotor students often have no alternative but to

use guessing as a strategy for reasoning about code. This

is because they have not yet built a clear mental model of

the notional machine (du Boulay 1989), nor do they have

a solid comprehension of the concepts to which they have

only just been introduced. Because of this, they

inconsistently apply mis/conceptions about the semantics

of code.

4.1.1 Vignettes from Charlotte

One of our think-aloud students, Charlotte, demonstrated

this type of sensorimotor reasoning when she was asked

to trace the effect of the three assignment statements (Q2)

shown both in the appendix and again here in Figure 2.

As Charlotte considered the code she said:

C: Hmm. … I don't know, but I imagine … it's kind of a

guess here [laugh], that … r will equal 4 … and s

will equal 4.

Of course students will get the marks for correct guesses

in exams, and as this think aloud session showed, it is not

until you listen to a student's reasoning that you can start

to understand their true level of ability. This is consistent

with the findings of Teague et al. (2012) who provided an

astonishing contrast between the correct solution a

programming student was able to produce and the

inexplicable reasoning and method he actually used to
produce that solution. This is of course the advantage of

think alouds. It is quite obvious when a student flukes a

correct answer. Think alouds also explain why, in other

cases, students answer incorrectly.

With her very next task (Q3, shown again in Figure 3),

Charlotte thought she was being consistent with her

"guess", but that was not actually the case.

C: So…going from how I did the last one, I might as well

be consistent. … p will equal 8 and q will equal 1.

Charlotte later reflected on that answer and explained:

C: I looked up to the original integer rather than looking

at the switched integer

In other words, she looked only to the first assignment of

q (i.e., q = 8) rather than taking account of its

subsequent reassignment (q = p). Charlotte's fragile

understanding of the semantics (as well as a floundering

command of the jargon) is also exemplified in her next

comment:

C: I'm just not confident in how the rules of inheritance

were applied. It was like I was just going on a whim.

Students who scored 4 on Test 1 tended to answer Q1–Q3

correctly, and either Q4 or Q5 correctly. We characterise

these students as novices who still have a fragile

understanding of the semantics of the language, and like

Charlotte, inconsistently apply mis/conceptions.

4.2 Inductive Reasoning

Lister (2011) proposed that a preoperational
programming student can make reasonable inductive

guesses about the function of a piece of code based upon

the input/output behaviour they observe from tracing it,

without understanding how the code achieves that

function.

We have witnessed this type of reasoning in previous

work (Teague et. al. 2013, Teague and Lister 2014a)
where the student (Donald) attempted to explain the

purpose of code that sorted the values in three variables.

Donald based his answer on the effect of a single set of

poorly chosen input values. As a result, his answer,

although accurate for that single test case, did not reflect

the purpose of the code for any set of input values.

The students described in this paper who scored 5 on

Test 1 usually answered all the tracing questions correctly

(Q1–Q5) but often could not explain the swap code they

had just traced (Q6). In fact, Table 1 shows that out of the

students who scored 5 on the test, only 12% of them

could explain similar swap code (Q7); and only 5% of
them could write similar swap code (Q8).

4.2.1 More Vignettes from Charlotte

Charlotte is illustrative of those students who can
sometimes trace a piece of code but cannot explain that

code. In her previous two tasks, Charlotte guessed, and

applied inconsistently her misconceptions about

assignment statements. It is not surprising, therefore, that

her ability to reason about the purpose of code (Q6,

shown in Figure 4) is very limited. This time, Charlotte

traced the code accurately (or at least managed to guess

the correct effect of assignment consistently), but she was

unable to explain the code's overall purpose:

r = 2

s = 4

r = s

Solution: r is 4, s is 4

Figure 2: Test 1 Q2 - Tracing Task

p = 1

q = 8

q = p

p = q

Solution: p is 1, q is 1

Figure 3: Test 1 Q3 – Tracing Task

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

167

C: So if z equals x from above, that will become 7 … If x

becomes y … y is 5, so x becomes … 5 … If y equals

z … it becomes 7, so I don't know what I observe.

As shown in Table 1, of the students who scored 6 on

Test 1, approximately two thirds of them made the correct

observation for Q6, but only about a third could answer

either Q7 or Q8.

Table 2 shows contingency tables for Q6 and Q7, and

also Q6 and Q8, for those students who answered both

Q4 and Q5 correctly. Most students who answered Q6

(explain swap by induction) incorrectly could not answer

correctly either Q7 (explain swap by deduction) or Q8

(write swap). Even among students who did answer Q6
correctly, a substantial percentage could not answer

correctly either Q7 or Q8. As a rough guide, answering

Q6 correctly tends to be a necessary, but not sufficient,

condition for answering Q7 and Q8 correctly.

Test 1 Q6 "what

do you observe
about final values

in x and y"
(induction)

Test 1 Q7

"explain swap"

(deduction)

Test 1 Q8

"write swap"

wrong right wrong right

wrong (n = 55) 26% 13% 30% 9%

right (n = 89) 28% 33% 25% 36%

Table 2: Contingency tables for Q6 & Q7 and Q6 & Q8, for

students who answered both Q4 & Q5 correctly (χ
2, p= 0.012

for Q7 and p < 0.001 for Q8, N=144 for each of Q7 & Q8)

As noted above, Charlotte was one of those students who

could not answer Q6 correctly. She was prompted by the

interviewer to see that the code was swapping the values

in variables x and y. She was then asked to explain the

Q7 swap code, shown in Figure 5.

C: when these lines of code are executed, j becomes ... is

already i. i is k, k is j, so thereby … j equals k

which is already done at the end so I doubt that's right

Perhaps Charlotte was reading the "=" as a statement of

mathematical equality: if j is equal to i, and i is equal to

k, then j is equal to k. However, the "=" operator is

about assignment, not equality. In any event, Charlotte

then shifted her reasoning about the code from being

about statements of equality, to assigning values:

C: Oh, well maybe … j equals i, i equals k, k equals j

…Yeah! well it takes away the need for i.

Our interpretation of what Charlotte said is that i is not

needed when swapping the values in j and k. In other

words, a swap can be effected simply by assigning k to j

and then j to k. Whatever her reasoning, we have seen

that it is confused.

4.3 Deductive Reasoning and Code Writing

Lister (2011) proposed that deductive reasoning in
programming was the ability to infer the computation

performed by a piece of code, without needing to trace

the code with specific values. Such ability is

characteristic of the concrete operational stage in neo-

Piagetian terms.

Students who scored 7 on Test 1 tended to answer all

the tracing questions correctly (i.e. Q1–Q5) but tended to

only answer correctly two questions out of Q6, Q7 and

Q8, in near-equal percentages (75%, 75% and 80%
respectively).

Table 3 shows the relationship between Q7 (explain

swap by deduction) and Q8 (write swap) among the 144

students tested. Among these students, 24% of them

could only answer one but not both of Q7 and Q8

correctly. However, a greater percentage of students who

had explained the swap (Q7) could write a swap (Q8).

This result is consistent with earlier findings by others

that the ability to explain code is a prerequisite for the

ability to write similar code (Lopez, Whalley, Robbins,

and Lister 2008).

4.3.1 Vignettes from Jim

Jim, another think-aloud student, had trouble with both

Q7 and Q8, even after completing Q1–Q6 successfully.

Jim looked at the code in Q7 (see Figure 5) and said:

J: j has been changed … to take the value of i ...

because j took the value of i, so k takes the value of

j … therefore k is taking the value … of i …

Here, Jim used only the first and third lines of code in

Figure 5 (and ignored the second line where i is

reassigned) to reason about the value being assigned to k.

J: so it’s just a loop.

By "loop" we believe Jim meant something about the
movement of data between the variables rather than a

looping control structure in the code. Jim's

misconceptions about the assignments remained evident

when he then took into account the second line of code,

having considered the code in order of lines 1, 3 then 2:

J: So … basically k will keep its value and

everything will become the value of k.

x = 7

y = 5

z = 0

z = x

x = y

y = z

Solution: The values in x and y were swapped

Figure 4: Q6 – Reasoning Task

j = i

i = k

k = j

Solution: The values in i and k were swapped

Figure 5: Q7 – Reasoning Task

Test 1 Q7

"explain swap"

Test 1 Q8 "write swap"

wrong right

wrong (n= 79) 43% 12%

right (n = 65) 12% 33%

 Table 3: A contingency table comparing the performance of

students on Q7 and Q8, for the students who answered both

Q4 and Q5 correctly. (χ2, p < 0.001, N = 144)

CRPIT Volume 160 - Computing Education 2015

168

In other words, his reasoning was: j is given the value of

i (line 1); therefore k (in line 3) is taking the value of i

too because it is assigned j; and i's value originally came

from k. So therefore, k is unchanged by this process, and

the other variables both have the value of k. After the

interviewer questioned Jim’s summation (i.e. that k

remained unchanged) he became less sure:

J: No, the k will keep it’s ... j will keep its value... no

By this stage, Jim was confused and probably cognitively

overloaded. He decided to restart the task and this time he

wrote specific values for each of the variables. Resorting

to tracing with specific values is typical behaviour for
students who are yet to reach the concrete operational

stage and who are weak at reasoning with abstractions.

J: Ok, we’ll just say … we have j is equal to 1, i is

equal to 2 and k is equal to 3.

Jim traced the code again using those specific values

which he wrote above the variables. However, he made a

transposing error with the final line, causing him to assign

k's value to j instead of the other way around. His final

trace of the three lines of code in Q7 (Figure 5) is shown

in Figure 6.

Jim was prompted to recheck this trace, and the

interviewer suggested that a clearer way to articulate

assignment was to say "is given" (rather than "is equal

to") to help him focus on the direction of the assignment.

Jim then corrected the miscopied assignment statement at

line 3 in Figure 6 (to:"k = j"), but said:

J: k is given to j, there we go

Jim seemed to be getting confused between the direction

of assignment (i.e. the movement between variables) and

the articulation of the assignment statement (i.e. reading

left to right). So the interviewer ("I") intervened further:

I: No. k is assigned the value of j. So j is given to k.

Depends which way you want to read it. …

J: Yeah, so … j becomes k.

I: No. in this case, k becomes j

J: oh, k becomes j sorry ... so k is equal to 2.

Given the difficulties with assignment that Jim

manifested here in Q7, it is surprising that Jim managed

to answer Q1 to Q6 correctly. We speculate that Jim's

problems here are due to the higher cognitive load.

Finally having traced the code correctly, Jim attempted

to explain its purpose. This proved even more difficult:

J: it's just really reassigning. Isn’t it? Because we have

j is equal to 2, i is equal to ... 3 and k is equal to 2.

Jim's response is a vague overview of the code,

equivalent to "all the variables have been changed".

Asked if the code was doing something similar to that in

the example in Q7 he replied:

J: it’s similar, in the sense that it’s swapping … um,

we’ve got c becomes a ... a becomes ... b and b

becomes c, so that’s just swapping them

In terms of the SOLO taxonomy (Biggs and Collis 1982)
this is a multistructural answer – recounting the effect of

each individual line, rather than the total effect of all

three lines. Asked which variables are swapped:

J: the first ones … j swapped, j took the value of i … i

and j swapped

It is clear now that what Jim meant by "swap" was

"change", rather than a two-way exchange of values.

After clarification of what a "swap" was, and looking at

what each of the variables started and ended up with, Jim

was finally able to answer that indeed there had been a

swap of values between two variables:

J: apparently i swapped with k

Jim's use of the word "apparently" suggests a lack of

conviction. His difficulty with the tracing task showed

misconceptions which are characteristic of novices at the

sensorimotor stage. However, sensorimotor novices are

also reluctant to retrace as it is a cognitively demanding
task given their fragile domain knowledge. But Jim

decided to redo the task, this time in a manner he was

more comfortable with. He introduced specific values.

Novices at the preoperational stage are unable to deal

solely with abstractions and require specific values to

make sense of code. In terms of the Overlapping Waves

Model (as described Section 2), we suggest that Jim is in

the process of developing preoperational skills, while still

displaying some legacies of the sensorimotor stage.

4.3.2 Vignettes from Lance

After seeing how Jim dealt with reasoning about three

lines of assignment statements, the reader will not be

surprised that he had difficulty writing similar code. In

fact (as shown in Table 1) 20% of the students who

scored 7 correctly answered all of preceding tracing and
reasoning questions (Q1–Q7) but then could not write

similar code (Q8).

Our final think aloud student, Lance, had difficulty

writing the code, even though he had answered Q1–Q7

correctly. For Q8, Lance wrote the first (correct) lines of

code to swap the variables first and second:

But his explanation of that code was inaccurate:

Figure 7: Lance's 1st two Lines of Q8 Swap Code

Figure 6: Jim's trace of Q7

Line 1 of code:

Line 2 of code:

(Miscopied)

Line 3 of code:

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

169

L: ok so now ... second should have the number that

first has in it

Lance had written the assignment statement in one

direction and articulated it in the opposite direction. He

continued with the third line of code before hesitating:

L: oh no that's wrong ... I think ... that is wrong because

... um ... ok it should be second equals store ...

shouldn't it

Lance changed his code to:

After reading his revised code, Lance decided to start

again. Like Jim and other novices reasoning at the

preoperational stage, this time he used specific values to

help him reason about the code he was writing.

L: ok so you've got ... let's just say that's 1 and that's 2 so

I can keep it in my head. ok this will make it a bit

easier alright

While Lance assigned the values 1 and 2 to variables

first and second, writing the code still proved not to

be straight forward:

L: so first you're going to need to store the ... memory of

first ... like the number in first ... so we're

gunna go ... store ... equals first ...

Although Lance said "store ... equals first" he wrote

"store = 1". We don't believe he meant to write "1",

but he was no doubt thinking that first had the value 1.

He was working at the preoperational level at which it is

difficult to reason in abstract terms. In any event, he

quickly self-corrected this error by changing the code to

"store = first".

Lance then gave an confused explanation of what the

code needed to do:

L: ok ... just stored ... the number from first into ...

store ... then you go from … we need to put the

number that was in first into second so if we go

... because we're stored first we can put ... that in

there because it's remembered now ... so if we go …

first equals second ... I think … no that's what I

was doing before ... and I thought it was wrong ...

maybe if we just store second

Lance sought confirmation from the interviewer that it

would in fact make no difference whether he stored the

value of first or second to begin with. He decided to

make the change anyway, although he wrote by mistake

"store = stores". After fixing this error he said:

L: ok so store equals second ... why is it so

confusing it's so simple [laugh] confusing ... alright

store equals second so you go store second

and then ... that number's remembered ... and that's 2

... and basically we want to assign that ... to ... we

want to assign first ... alright we want to overwrite

the 2 in second ... to the 1 in first so if we go ...

um ... second equals first

Although he made no note of the changing values on

paper, Lance constantly used specific values to talk about
the effect of the assignments. He seemed unable to cope

with even the abstraction of variable names. As he said

before, using specific values makes it easier for him "to

keep in his head". And this tactic eventually worked.

L: so now you've got … ah the 1 in second ... and the 2

in store and then if you go first equals store...

In summary, when it came to writing code in Q8, Lance

struggled to implement code very similar to code he had

just successfully traced and reasoned about. He failed to

write code until he introduced specific values, which

enabled him to visualise the changing values in the

variables. Preoperational novices are reliant on specific
values to reason about and write code.

Only 30 students (12%) who completed Test 1 scored

the maximum possible 8 marks, and were deemed

competent at tracing, reasoning about and writing very

simple code. Given their consistent correct performance,

these students are unlikely to have been guessing about

the semantics of the code. The fact that they were also

able to write the code in Q8 would lend us to believe that

they were at least operating at the preoperational level.

While these students may be reasoning at the concrete

operational stage we are reluctant to draw that conclusion
with confidence, without knowing how they went about

solving the problems, given the evidence of superficially

correct solutions presented by Teague et al (2012).

5 Test 2 (Week 4)

We conducted our second test two weeks later, in week 4.

5.1 Test 2 Q1 (tracing question)

This first question in Test 2 was a tracing question
equivalent to the last tracing question in Test 1 (Q4).

Students who scored 1–4 in Test 1 tended to perform

poorly on the last tracing question in that same test (Q4,

see Table 1). However, all students performed very well

on the first tracing question in Test 2, with the probability

Figure 9: Lance's Revised 2nd Line of Q8 Swap Code

Figure 10: Lance's 2nd Attempt at Q8 Swap Code

Figure 8: Lance's 3rd Line of Q8 Swap Code

CRPIT Volume 160 - Computing Education 2015

170

of answering this question at 77% for those who scored 2

in Test 1, and at 96% for all other students. So the

students who had lagged behind on tracing skills in week

2 had substantially closed the gap by week 4, at least on

this type of question.

5.2 Test 2 Q2 (writing question)

The second question in Test 2 was exactly the same as Q8

in Test 1. That is, the students were required to write code

to swap the values in two variables, first and second

(see appendix).

Figure 11 plots the probability of students answering

this Test 2 question correctly, against their total score on

Test 1. The largest circle in Figure 11 represents 26

students, while the smallest circle represents 10 students.

The solid regression line shown in Figure 11 accounts

for 72% of the variation, and that regression line is

statistically significant at the 0.05 level. Therefore overall

performance on Test 1 (week 2) is a good predictor of

performance on this code writing question in the week 4

test (Test 2, Q2). Recall from the previous subsection,

however, that performance on the week 2 test was not a

good predictor of performance on the week 4 tracing

question (Q1), so we cannot conclude simply that
students who do better on Test 1 tend to do better on all

questions in subsequent tests.

Inspection of Figure 11 suggests that, although the

solid line of regression is a good predictor, there does

appear to be a non-linear jump in performance between

students who scored 1–3 on Test 1 and students who

scored 4–8. The two dashed lines are lines of regression

through each of those two groups of students, and serve

to highlight that possible performance gap. Note,

however, that neither of these two dashed regression lines

meets the traditional 0.05 statistical criterion for

significance, perhaps because of the small sample size.
This possible performance gap suggests that, while

students who scored 1–3 on Test 1 have closed the gap on

tracing skills for these simple tracing problems, they have

not closed the gap on deductive and code writing skills.

That is, while students who scored 1–3 on Test 1 are

progressing in their learning, they are not progressing as

quickly as students who scored higher on Test 1. Our

interpretation of this in neo-Piagetian terms is that the

students who scored 1–3 on Test 1 were now better at

tracing code, but they were still operating (at most) at a

preoperational level of reasoning. They had not made the

transition to the concrete operational stage. They

remained unable to reason about abstractions and

therefore unable to write simple code.

6 Test 3 (Week 7)

Our third test was conducted in week 7, five weeks after

the first test. By this stage of semester, students had been

introduced, amongst other concepts, to conditional

statements and Python lists.

6.1 Test 3 Q1 (swapping list elements)

Figure 12 shows the first question from Test 3, which

also requires students to write a swap, but in this case it is

a swap between two elements of a Python list.

Figure 13 plots the probability of students answering

Test 3 Q1 correctly, against their total score on Test 1.

The largest circle in Figure 13 represents 18 students,

while the smallest circle represents 4 students.

While the regression in Figure 13 does show a

statistically significant linear relationship (p < 0.01), there

is a clear non-linearity in the neighbourhood of the Test 1

score of 5. A non-parametric χ2 test shows that the gap

between scores of 5 and 6 is statistically significant at the
0.1 level (see Table 4).

Thus students who could not perform inductive inference

(i.e. those operating at the sensorimotor level) in the week

2 test are, 5 weeks later, still tending to reason at the

sensorimotor level, and lag behind those students who

could perform inductive inference (i.e., those operating at

least at the preoperational level) in week 2.

Test 1 score N
Test 3 Q1

Wrong Right

5 (i.e. typically could trace with
some reliability in Test 1)

21 52% 48%

6 (i.e. typically could perform
inductive inference in Test 1)

20 30% 70%

Table 4: A contingency table comparing students on Test 1

scores 5 & 6 versus Test 3 Q1 (χ
2, p=0.1, N=41)

The gap between Test 1 scores of 6 and 7 is also

statistically significant at the 0.1 level (see Table 5).

Figure 13: Relationship between Test 1 scores and the

probability of answering Test 3 Q1 correctly (N=117)

Figure 11: Relationship between Test 1 scores and the

probability of answering Test 2Q2 correctly (N=156)

A list called ages has been created in Python. There are

two values out of order in the list and these values are stored

at indexes 0 and 2. Write code to swap those two values so
that the list would be in order.

Sample Solution:

temp = ages[0]

ages[0] = ages[2]

ages[2] = temp

Figure 12: Test 3 Q1 with sample solution

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

171

Students who could not perform deductive inference (at

best, preoperational) in the week 2 test are, 5 weeks later,

still lagging behind those students who could perform

deductive inference (concrete operational) in week 2.

Test 1 score N
Test 3 Q1

Wrong Right

6 (i.e. typically could perform
inductive inference in Test 1) 20 30% 70%

7 (i.e. could sometimes perform
deductive inference in Test 1) 20 10% 90%

Table 5: A contingency table comparing students on Test 1

scores 6 & 7 versus Test 3 Q1 (χ
2, p=0.1, N=40)

7 Test 4 (Week 9)

We conducted a final test in week 9. One of the questions
required students to write code to swap values in a list.

On this occasion the values in the list were to be swapped

only if they were out of order. The only students who did

well with this question were those who scored 100% on

Test 1. For all other students, the probability of getting it

right was less than 50%.

Among those who scored 1 to 7, there appears to be a

performance gap on this question with students who

performed very poorly on Test 1 (29% probability for

Test 1 scores 1–3) performing considerably worse than

the students who demonstrated some ability to trace
reliably in Test 1 (49% for scores 4–7).

8 Charlotte's Progress

We have so far seen that Charlotte struggled in Test 1 to
both trace and explain simple assignment statements. In

neo-Piagetian terms this means she was likely reasoning

at the sensorimotor stage. Not surprisingly, she also failed

the concrete operational task of code writing in that same

test. She hypothesised that a third variable would be

required in order to make a swap, referring to the code

shown in the previous question (Test 1 Q7, see appendix).

C: I'll follow the format from above … 'cause it makes
sense 'cause it worked

Her strategy was to give each of the variables a value, and

she noted what their values should be once her code had

executed. Then she wrote the incorrect code in Figure 14.

When Charlotte attempted the very same code-writing

task five weeks after her first think aloud, she still

struggled with it. She initially failed to use a third

(temporary) variable, as can be seen from the first line of
code in Figure 15. For the second line, she started writing

"second", crossed it out and replaced it with (an

incomplete) "third" before crossing out all that she had

written (shown in Figure 15).

Charlotte almost immediately then wrote correct code,

and verified her solution using specific values for first

and second. Charlotte was now, five weeks after the

first think aloud, working at the preoperational level:

having overcome her initial misconceptions, she was able

to trace and write very simple, familiar, code.

Two weeks later, Charlotte completed Test 4 before

we had a think aloud session with her. Her final code for

a conditional swap of list elements was accurate.

However, when she reflected on this question in a

subsequent think aloud session, Charlotte confessed to

not being sure of the correctness of her solution and
voiced some confusion about assigning array elements:

C: I was thinking temp had to be an array…

Having previously developed the ability write swap code,

Charlotte was then manifesting misconceptions with less

familiar material: arrays. Her behaviour is consistent with
an Overlapping Waves Model, where the introduction of

a new concept may result in reversion to a less mature

stage (for that concept).

9 Conclusion

Our think aloud excerpts have answered the first of the
questions posed earlier, regarding the strategies,

behaviour and misconceptions that are evident in novice

programmers. We categories these (in Table 6) using the

neo-Piagetian (NP) framework (where SM=sensorimotor;

Preop=preoperational).

Behaviour NP Stage

guessing SM

fragile grasp of semantics SM

confused use of nomenclature SM

inability to trace simple code SM

misconceptions (about sequence, assignment,
mental models and the notional machine)

SM

errors due to cognitive overload SM/Preop

reluctance to trace SM/Preop

ability to trace but not explain code Preop

reliance on specific values Preop

Table 6: Novice Programmer Behaviour

Next, we address each of the remaining questions:

Why do students get particular questions wrong?

There are a number of reasons, including guessing,

misconceptions, inability to work with abstractions; and

inability to focus on more than one element of a scenario.

Can a student have disparate levels of ability with two

tasks which test similar programming concepts?

This behaviour was in fact evident with the tasks

requiring students to trace code, then to reason about its
purpose. A preoperational student can trace code, but they

do not develop the ability to reason about its purpose until

the concrete operational stage.

Figure 14: Charlotte's First Attempt in Week 2

Figure 15: Charlotte's Second Attempt in Week 7

CRPIT Volume 160 - Computing Education 2015

172

Why are some students unable to work with

abstractions?

Ability to work with abstractions is not evident until the

concrete operational stage. Based on our quantitative

results , only the 12% of students who answered all the

week 2 test questions correctly were likely to be
reasoning at the concrete operational stage at that time,

and only those students were manifesting concrete

operational skills late in semester.

These results are consistent with our previous studies

(Ahadi and Lister 2013; Ahadi et al. 2014) and means

that most students are still manifesting sensorimotor and

preoperational reasoning at the end of their first semester.

Our think aloud studies support this. These results

suggest that introductory programming educators are

underestimating the foreignness to students of concepts

taught very early in semester as well as their inability to

reason abstractly.

10 Pedagogical Discussion

While it may be up to each student to practise and

improve within a neo-Piagetian stage, we believe the
teacher's role is to assist the students to transition from

one neo-Piagetian stage to the next. We now offer

suggestions on how they might facilitate that. As a

general rule we agree with Bruner (1960):

It is into the language of (the novice's) internal

structures that one must translate ideas if the (novice)
is to grasp them.

10.1 From Sensorimotor to Preoperational

A sensorimotor student who guesses cannot be aware of
which reasoning is accurate without external feedback.

Until they have external feedback they are unlikely to

resolve their misconceptions. Teachers should facilitate

environments that encourage deliberate, supported

practice (Guzdial 2014). We speculate that students who

have not had external feedback "hedge their bets" in

exams in the hope that one of the strategies is correct and

will at least get them part marks.

Teachers should begin by offering students one-liner

single-concept tasks. The earliest tasks should be purely

literal expressions with gradual progression to univariate
expressions. Teachers should be aware of and discourage

rote learning and pattern matching, as that delays the

transition to a higher stage.

Teach students how to trace code systematically, for

example with a trace table, using appropriate values (test

categories and cases). Furthermore, test them to ensure

that they are tracing correctly.

Students at the sensorimotor stage require, more than

anything else, that their misconceptions are corrected. For

example: "what is an assignment statement?" or "what

can (and can't) a variable do?". When students have

overcome any misconceptions (especially about variables,
assignment and sequence) and have a clear idea of the

notional machine, and can start to trace code reliably,

they are probably reasoning at the preoperational stage.

10.2 From Preoperational to Concrete

Teachers should gradually increase the complexity of the

tasks with multivariate expressions and more complex

code. Roles of variables (Kuittinen and Sajaniemi 2004)

is one example of useful cognitive concepts that

encourage abstract reasoning. In general, there should be

a focus on tracing and explaining tasks with code writing

tasks secondary.

10.2.1 Tracing and Explaining Code

Give preoperational students a complete function or very
small program that does something interesting – perhaps

with visual impact. Set them the task of experimenting

with the code by making small, superficial changes. Give

them practice at interpreting the results of a trace (i.e.,

identifying invariants and explaining the code's overall

purpose). A good assessment task at this stage is to

supply "buggy" code where the skills students have

developed (above) are used to fix the code.

10.2.2 Abstract Tracing

Preoperational students are heavily reliant on specific
values in variables to reason about code. This reliance

diminishes as they become more proficient with

programming and they develop an ability to trace

"abstractly". In other words they are able to compute the

effect of the code without using specific values. This

ability to start working with abstractions signals the

transition into concrete operational reasoning. Jim, for
example, tried unsuccessfully to trace code abstractly

(i.e., without specific values). However, he then

succeeded by resorting to the use of specific values. He,

and other preoperational students, will develop abstract

tracing skills with persistent practice and challenges that

require more mature strategies until they learn to reason

about and work with abstractions. Tracing abstractly also

means that the trace need not be complete in order to

determine the code's purpose. A student transitioning into

concrete operational stage may be able to short-circuit a

trace because they can also simultaneously process a

number of features of a block of code (e.g., in a loop).
Only once students have begun to develop those sorts of

reading skills will they begin to write code

systematically.

11 References

Ahadi, A. and Lister, R. (2013): Geek Genes, Prior
Knowledge, Stumbling Points and Learning Edge

Momentum: Parts of the One Elephant? Proc. of

Ninth Annual International ACM Conference on

International Computing Education Research (ICER

2013), San Diego, CA. 123-128, ACM.

Ahadi, A., Lister, R. and Teague, D. (2014): Falling
Behind Early and Staying Behind When Learning to

Program. Proc. of Psychology of Programming

Interest Group (PPIG 2014), Brighton, UK.

Biggs, J. B. and Collis, K. F. (1982): Origin and
Description of the SOLO Taxonomy Evaluating the

quality of learning: The SOLO Taxonomy (Structure

of the Observed Learning Outcome). New York:

Academic Press Inc.

Boom, J. (2004): Commentary on: Piaget's stages: the
unfinished symphony of cognitive development. New

Ideas in Psychology, 22, 239-247.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

173

Bruner, J. S. (1960): The Process of Education. London:
Oxford University Press.

du Boulay, B. (1989): Some Difficulties of Learning to
Program. In E. Soloway & J. C. Sphorer (Eds.),

Studying the Novice Programmer 283-300. Hillsdale,

NJ: Lawrence Erlbaum.

Ericsson, K. A. and Simon, H. A. (1993): Protocol
Analysis: Verbal Reports as Data. Cambridge, MA:

Massachusetts Institute of Technology.

Falkner, K., Vivian, R. and Falkner, N. J. G. (2013): Neo-

Piagetian Forms of Reasoning in Software

Development Process Construction. Proc. of
Learning and Teaching in Computing and

Engineering (LaTiCE) 2013, Macau. IEEE.

Feldman, D. H. (2004): Piaget's stages: the unfinished

symphony of cognitive development. New Ideas in

Psychology, 22, 175-231.

Guzdial, M. (2014). Anyone Can Learn Programming:
Teaching > Genetics. BLOG@CACM http://m.cacm

.acm.org/blogs/blog-cacm/179347-anyone-can-learn-

programming-teaching-genetics/fulltext 2014.

Kuittinen, M. and Sajaniemi, J. (2004). Teaching Roles of
Variables in Elementary Programming Courses.

ITiCSE '04. Leeds, UK, ACM.

Lister, R. (2011): Concrete and Other Neo-Piagetian
Forms of Reasoning in the Novice Programmer. Proc.

of 13th Australasian Computer Education

Conference (ACE 2011), Perth, WA. 114:9-18, ACS.

Lopez, M., Whalley, J., Robbins, P. and Lister, R. (2008):
Relationships between Reading, Tracing and Writing

Skills in Introductory Programming. Proc. of ICER

'08, Sydney, Australia. ACM.

Siegler, R. S. (1996): Emerging Minds. Oxford: Oxford

University Press.

Teague, D., Corney, M., Ahadi, A. and Lister, R. (2013):
A Qualitative Think Aloud Study of the Early Neo-

Piagetian Stages of Reasoning in Novice

Programmers. Proc. of 15th Australasian Computing

Education Conference (ACE 2013), Adelaide,

Australia. 136:87-95, ACS.

Teague, D., Corney, M., Fidge, C., Roggenkamp, M.,
Ahadi, A. and Lister, R. (2012): Using Neo-Piagetian

Theory, Formative In-Class Tests and Think Alouds

to Better Understand Student Thinking: A Preliminary

Report on Computer Programming. Proc. of

Australasian Association for Engineering Education
Conference (AAEE 2012), Melbourne.

Teague, D. and Lister, R. (2014a). Longitudinal Think

Aloud Study of a Novice Programmer. Australasian

Computing Education Conference (ACE 2014).

Auckland, New Zealand, ACS. 148.

Teague, D. and Lister, R. (2014b): Blinded by their
Plight: Tracing and the Preoperational Programmer.

Proc. of Psychology of Programming Interest Group

(PPIG) 2014, Sussex, UK.

Teague, D. and Lister, R. (2014c): Manifestations of
Preoperational Reasoning on Similar Programming

Tasks. Australasian Computing Education Conference

(ACE 2014). Auckland, New Zealand. 148, ACS.

Appendix: The Test 1 Questions

Q1 In the boxes, write the values in the variables after the following
code has been executed:

a = 1

b = 2

a = 3

The value in a is and the value in b is

Q2 In the boxes, write the values in the variables after the following

code has been executed:

r = 2

s = 4

r = s

The value in r is and the value in s is

Q3 In the boxes, write the values in the variables after the following
code has been executed:

p = 1

q = 8

q = p

p = q

The value in p is and the value in q is

Q4 In the boxes, write the values in the variables after the following
code has been executed:

x = 7

y = 5

z = 3

x = y

z = x

y = z

The value in x is y is and z is

Q5 In the boxes, write the values in the variables after the following
code has been executed:

x = 7

y = 5

z = 0

z = x

x = y

y = z

The value in x is y is and z is

Q6 In Q5 above, what do you observe about the final values in x and y?

Write your observation (in one sentence) in the box below.

Q7 The purpose of the following three lines of code is to swap the

values in variables a and b, for any set of possible values stored in

those variables.
c = a

a = b

b = c

In one sentence that you should write in the box below, describe the

purpose of the following three lines of code, for any set of possible

initial integer values stored in those variables. Assume that
variables i, j and k have been declared and initialised.

j = i

i = k

k = j

Q8 Assume the variables first and second have been initialised.

Write code to swap the values stored in first and second.

Sample solution: temp = first

 first = second

 second = temp

Sample solution: Swaps the values in i and k.

Sample solution: The values in x and y were swapped.

3 2

4 4

1 1

5 5 5

5 7 7

CRPIT Volume 160 - Computing Education 2015

174

Dynamic evaluation trees for novice C programmers

Matthew Heinsen Egan1 Chris McDonald2

School of Computer Science and Software Engineering
University of Western Australia
Crawley, Western Australia 6009

Email: 1m.heinsen.egan@graduate.uwa.edu.au
2chris.mcdonald@uwa.edu.au

Abstract

The dynamic evaluation tree is a method of visualiz-
ing expression evaluation that annotates a program’s
source code with expression results. It is intended to
reduce students’ visual attention problems by remov-
ing the need to alternate between disparate source
code and expression evaluation windows. We gen-
eralise the dynamic evaluation tree to support ar-
bitrary expressions in the C programming language,
and present the first ever implementation for a novice-
focused program visualization and debugging tool.

Keywords: Novice programmers, debuggers, software
visualization

1 Introduction

Expression evaluation can be difficult for novice pro-
grammers to comprehend. An incomplete under-
standing of expression evaluation may make it ex-
ceedingly difficult for novices to identify and correct
malformed expressions in their own code. In a multi-
institutional study of novice debuggers, Fitzgerald
et al. (2008) found that the most difficult bugs for
their subjects to find and fix were arithmetic bugs (in
particular) and malformed statement bugs (in gen-
eral). Effective visualization of expression evaluation
may assist novice programmers to construct knowl-
edge of expression evaluation, including the behaviour
of individual operators, and to debug programs con-
taining malformed expressions.

Brusilovsky & Spring (2004) discussed a tutoring
system designed to assist students learn expression
evaluation in the C programming language, stating:

“For the students in our programming and
data structure courses based on C language,
expression evaluation is one of the most dif-
ficult concepts to understand. They have
problems with both understanding the order
of operator execution in a C expression and
understanding the semantics of operators.”

The web-based system, WADEIn, visualizes the step-
by-step evaluation of expressions consisting of math-
ematical and logical operators with int and double
type variables. More than 80% of students felt that
the system helped them to understand C operations.

Copyright c©2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computer Educa-
tion Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 160, Daryl D’Souza and Katrina Falkner,
Ed. Reproduction for academic, not-for-profit purposes per-
mitted provided this text is included.

Many existing software visualization systems use
a dedicated “expression evaluation” area to visual-
ize the individual operations performed during an ex-
pression’s evaluation (e.g. Jeliot 3, as presented by
Moreno et al. (2004); and The Teaching Machine de-
scribed by Bruce-Lockhart et al. (2007)). Animation
is commonly used to relate operations to the expres-
sion’s source code, and operands to memory visu-
alizations. For example, if an evaluated operator’s
operand is a variable, then the variable’s value might
“fly in” from the memory visualization.

Lahtinen & Ahoniemi (2009) introduced the “dy-
namic evaluation tree” for visualizing expression eval-
uation by annotating above or below a program’s
source code, e.g.:

int c = a
1

+ b
2

3

;

This concept was primarily motivated by the results
of an eye-tracking study of Jeliot 3 users, which
found that novice programmers “either switch their
visual attention repeatedly between different windows
or concentrate all the time on one of the windows”
(Lahtinen & Ahoniemi 2009). The dynamic evalu-
ation tree is intended to integrate expression evalu-
ation and source code representation, thus reducing
the switching of visual attention required by novice
programmers. Lahtinen and Ahoniemi discussed the
potential of adding the dynamic evaluation tree to the
VIP C++ program visualization system, but unfor-
tunately this work has not been continued.

Annotations in a dynamic evaluation tree main-
tain a visual relationship to their associated source
code, as opposed to animated visualizations which
only briefly show this relationship (e.g. by having the
relevant source code “fly in” to the evaluation area).
This explicit visualization of the expression evalua-
tion’s history may reduce the need for students to step
backwards and forwards, and clarify the relationships
between individual operations.

This paper discusses our implementation of a dy-
namic evaluation tree for the novice-focused program
visualization and debugging tool SeeC. Section 2 gen-
eralises the dynamic evaluation tree to support ar-
bitrary expressions in the C programming language.
Section 3 describes our implementation. Section 4
discusses integration with SeeC’s other components.
Section 5 compares our implementation with tradi-
tional visualizations of expression evaluation. Sec-
tion 6 discusses limitations in our implementation and
identifies future work. Finally, Section 7 summarizes
our discussion.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

175

2 General C programs

Despite its age, the C programming language still
holds an important place in computing education.
While few traditional Computer Science courses teach
C as an introductory programming language in their
foundation years, C remains important in the later
teaching of operating systems and computer net-
working. C still enables students to understand the
close relationship between programming languages
and hardware in increasingly important subjects such
as robotics, embedded systems, and wearable com-
puting, and these subjects are often required by stu-
dents other than future computer scientists. Novice
C programmers are not necessarily novice program-
mers, and those whose entire exposure to program-
ming has been through safe languages still have to
address many challenges. Many of the traditional
problems with C, such as its practice of leaving much
as “defined to be undefined” and the challenges of
writing portable code across disparate operating sys-
tems and architectures, have been addressed by de-
tailed official standards, shifting the pressure to those
teaching C to do so well.

The simplicity and familiarity of the dynamic eval-
uation tree is a great strength. It provides a con-
cise, clear representation of complex expression eval-
uations. Implementing the dynamic evaluation tree
for SeeC required us to support arbitrary expressions
in the C programming language, introducing several
complicating details. This section discusses these
complications and the approaches that we employed
to ensure that the dynamic evaluation tree retains its
conciseness, clarity, and, we believe, usefulness.

The simplest problem is that an annotation’s text
may be wider than the annotated expression’s source
code. This may obscure the visual relationship be-
tween the annotation and source code, and could lead
to overlapping annotations. We prevent this simply
by truncating annotation text to the width of the ex-
pression’s source code. Students can view the com-
plete text by hovering the cursor over the annotation.

The dynamic evaluation tree is designed to anno-
tate a single line of source code, but students are free
to write an expression over multiple lines. This may
be uncommon in novice programmers’ code, but our
general purpose implementation must account for it.
Our straightforward solution is to reformat the ex-
pression’s source code, displaying it on a single line
while the dynamic evaluation tree is active.

The C programming language’s preprocessor may
also necessitate the use of modified source code to
represent expressions, as a single macro may expand
to multiple sub-expressions. If each expression had at
most a single child, we could simply stack the annota-
tions. For example, consider a typical implementation
of the NULL macro:

#define NULL ((void*)0)

NULL
integer literal: 0

cast: 0x0

For more complex macros the visualization will be-
come increasingly crowded. As an example, consider
the sys/stat.h header’s S_ISREG macro, defined by
The Open Group Base Specifications Issue 7 thus1:
“The value m supplied to the macros is the value of
st_mode from a stat structure. The macro shall eval-
uate to a non-zero value if the test is true; 0 if the test
is false.” A typical implementation of this macro is:

#define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)

1http://pubs.opengroup.org/onlinepubs/9699919799/

Visualizing the complete tree created by using the
macro S_ISREG would expose students to unnecessary,
potentially confusing implementation details. Thus it
may be best to employ a black box representation by
restricting the visualization to the “input” and “out-
put” nodes: in this case, m and the result of the ==
operator, respectively. Conversely, it should be possi-
ble for students to observe the behaviour of code pro-
duced by their own macros: showing the preprocessed
code will allow students to observe their macro’s ex-
pansion, and a dynamic evaluation tree visualizing
the resulting expression’s behaviour.

In the C programming language an expression may
designate an object; such expressions are termed lval-
ues2. For example, in line 4 of Listing 1 the expres-
sions total, iptr, and iptr[i] are lvalues. An ex-
pression which does not designate an object, for ex-
ample the expression total + iptr[i], is commonly
referred to as an rvalue3.

Listing 1 Summing an array of int values

1 int sum_ints(const int *iptr, size_t n) {
2 int total = 0;
3 for (size_t i = 0; i < n; ++i)
4 total = total + iptr[i];
5 return total;
6 }

Some expressions require an lvalue, e.g. the unary
& operator produces the address of the designated ob-
ject, and the ++ operator increments the value stored
in the designated object. For most other uses an
lvalue is converted to the value stored in the desig-
nated object, e.g. iptr[i] in Listing 1. In terms of
the language implementation we might consider this
to represent the value being loaded from memory.
The behaviour of such lvalues poses a question for
the visualization of dynamic evaluation trees: should
we show the designated object, the value that was
stored in the designated object when the expression
was evaluated, or both? An explicit relationship to
the designated object will allow students to see where
values are coming from. This may be particularly use-
ful for array accesses and pointer dereferences. How-
ever, showing the value stored in the designated ob-
ject may be confusing if the value changes after the
expression is evaluated, for example:

number = 10 / number
2

5

;

When this assignment expression is completed the
value 5 will be stored in the object designated by
number. However, the value of the number expression
on the right hand side should still be 2, otherwise
the division’s result is nonsensical. Our approach is
to show two nodes: one for the lvalue, and one for
the rvalue it was converted to during evaluation. The
lvalue is annotated with descriptive placeholder text
rather than the designated object’s value. When the
student moves the cursor over this annotation, the
designated object is highlighted in SeeC’s standard
memory visualization.

Expressions with struct or union types are diffi-
cult to represent within an annotation, as they may
contain numerous fields and values, thus causing the

2ISO/IEC 9899:2011 (The C11 Standard) §6.3.2.1.1
3ISO/IEC 9899:2011 uses the term “value of an expression”.

CRPIT Volume 160 - Computing Education 2015

176

textual representation to be far larger than the ex-
pression’s source code. If the expression is an lvalue
then we again show a placeholder and direct students
to a memory visualization for the complete value.
This is not possible for rvalue expressions, so we trun-
cate the annotation when necessary and show the
complete value when the student hovers the mouse
cursor over the node.

Pointers, often described as a threshold concept
in Computer Science (Boustedt et al. 2007, Roun-
tree & Rountree 2009), are a source of great diffi-
culty for novice C programmers, and so it is essen-
tial to effectively visualize pointer type expressions.
The raw value of a pointer is generally not impor-
tant for novice C programmers, rather they are con-
cerned with whether pointers are valid and which ob-
jects they reference. Displaying the value of the ref-
erenced object could visualize this information, but
might cause dangerous misconceptions about the se-
mantics of pointers. We handle this similarly to lval-
ues: the node’s annotation contains placeholder text,
and when students move the mouse cursor over the
node the referenced object is highlighted in SeeC’s
memory visualization. The placeholder text indicates
whether the pointer is valid, invalid, opaque, or NULL.

3 Implementation

We implemented a dynamic evaluation tree as an ex-
tension to the SeeC project: a system for novice C
programmers that performs execution tracing with
automatic runtime error detection, and provides pro-
gram visualization of the recorded execution traces,
as described by Heinsen Egan & McDonald (2014).
SeeC itself is built upon the Clang project4: a modu-
lar collection of libraries which implement a front-end
for compiling C, C++, Objective C, and Objective
C++, but are also designed to support diverse uses
by external clients. Students reviewing an execution
trace can step forwards or backwards to any point
in the process’ execution. The SeeC system provides
a “recreated state” of the process, which we use to
generate the dynamic evaluation tree.

The “recreated state” of the function that was ex-
ecuting provides us with the “currently active” state-
ment, which is either partially evaluated or has just
completed evaluation (in which case it may have pro-
duced a value). If this statement is an expression then
we walk up Clang’s Abstract Syntax Tree to find the
“top-level” expression, i.e. the first node whose parent
is not also an expression. The top-level expression is
the root of our dynamic evaluation tree, ensuring vi-
sualizations remain consistent during the evaluation
of complex expressions.

We produce a modified representation of the ex-
pression’s source code using Clang’s lexing and pre-
processing systems. We iterate over each prepro-
cessed token in the expression’s source code. If the
token was expanded from a user-defined macro then
we add all of the expanded tokens to the modified rep-
resentation. If the token was expanded from a macro
defined in a system header, then we add the raw
tokens covering the range the macro was expanded
from. If the token was not expanded from a macro
then we simply add it as-is. Tokens do not include
newlines, so this method also fulfils our requirement
of producing a single line of source code.

For an example of handling user-defined macros,
consider Listing 2 (above right). The top-level expres-
sion is the initializer of metres: from the 2 to the final

4http://clang.llvm.org

closing parenthesis. The tokens 2 and * are added to
the modified representation as-is, because they do not
involve macro expansion. The next token, 6372797,
is expanded from a macro defined in the user’s source
code, so we add the expanded tokens to the modified
representation. All remaining tokens are added as-is,
because they do not involve macro expansion.

Listing 2 User defined macro

#define EARTH_RADIUS_IN_METRES 6372797

double metres = 2 * EARTH_RADIUS_IN_METRES
* asin(sqrt(x));

For an example of handling macros that are de-
fined in system headers, consider the use of S_ISREG
shown in Listing 3 (below). The top-level expression
is the if statement’s condition. The first token is
expanded from a macro that was defined in a sys-
tem header, so we find the area that the macro was
expanded from and add the raw tokens to the modi-
fied representation: S_ISREG(st.st_mode). The ex-
panded tokens are discarded.

Listing 3 System macro expansion

Raw:
if (S_ISREG(st.st_mode)) {

Preprocessed:
if (((((st.st_mode)) & 0170000) == (0100000))) {

Figure 1: System macro evaluation

We annotate only the topmost expression from the
body of expanded system macros in order to produce
the “black box” representation discussed in Section 2.
For example, consider the dynamic evaluation tree
for Listing 3 shown in Figure 1 (above): the topmost
node from the expanded body is shown (the == op-
erator, with value 1), and all other nodes from the
expanded body are hidden (e.g. the & operator). We
display nodes represented by the expanded argument
to visualize the behaviour of the student’s code.

The system next determines each expression’s an-
notation text. SeeC provides information about the
value produced by any expression’s most recent eval-
uation. For example we will refer to the nodes in
Figure 1. If the node’s expression is a pointer or an
lvalue then we use descriptive placeholder text for the
annotation (e.g. the “(lvalue)”). For all other ex-
pressions we use SeeC’s string representation of the
value (e.g. the “1”). Annotation text that is too wide
for the node is truncated, e.g. the node representing
st is truncated from the full text “(lvalue)”.

SeeC automatically detects several kinds of run-
time errors during program execution, and provides
information about detected errors during replay. We
draw a dotted red line surrounding a statement’s node
if a runtime error was detected during that state-
ment’s execution, so that students may quickly locate

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

177

errors in the dynamic evaluation tree. Figure 2 shows
the dynamic evaluation tree rendered when an invalid
index is used as a subscript of argv.

Figure 2: Statement with detected runtime error

The dynamic evaluation tree is a concise visualiza-
tion of expression evaluation, but more information is
available. To maintain clarity we use the “drill down”
design, showing the following details in a tooltip when
the mouse cursor hovers over an annotation:

• The complete annotation text.

• The expression’s type. This allows students to
observe the behaviour of type conversions (both
implicit and explicit), and may be useful for de-
bugging arithmetic errors (e.g. accidental use of
integer division).

• A natural language explanation of the expres-
sion, as described by Heinsen Egan & McDonald
(2014).

• A natural language description of any runtime
errors that SeeC detected during the statement’s
execution.

Figure 3 shows an example of this tooltip. Further in-
formation and functionality is provided by integrating
with, and deferring to, SeeC’s other systems.

4 Integration with SeeC

The SeeC tool shows several complementary visual-
izations when replaying execution traces. We often
reference these visualizations because the dynamic
evaluation tree alone cannot conveniently represent
all expression values, as we discussed in Section 2.
In several situations we use placeholder text and di-
rect students to other visualizations, e.g. to view an
lvalue’s designated object in memory.

Moving the cursor over a node in the dynamic
evaluation tree causes its associated expression to be
highlighted, in both the modified representation of
the source code and the regular source code window.
If the expression is an lvalue and has been evaluated,
then its designated object will also be highlighted in
the memory visualization window. Figure 3 shows
both highlights: lon2 is outlined in the source code
window on the left, and lon2’s designated object is
highlighted in the memory visualization on the right.
If the expression is a pointer then the pointee object is
also highlighted; this is necessary for observing rvalue
pointers.

SeeC provides “contextual navigation” options,
which we have also made accessible through the dy-
namic evaluation tree. Right clicking on any node
provides navigation options based on the associated
expression: move backward to the last time the ex-
pression was evaluated, or move forward to the next
time the expression was evaluated. For lvalue expres-
sions we also provide navigation based on the desig-
nated object’s memory: move backward to its alloca-
tion, move forward to its deallocation, move backward

to the prior time the memory was modified, or move
forward to the next time the memory was modified.

5 Comparing visualizations

Our dynamic evaluation tree is not yet integrated
with SeeC’s source code window in the manner pro-
posed by Lahtinen & Ahoniemi (2009): it occupies its
own window within SeeC, in the manner of traditional
expression evaluation visualizations. In this section
we compare our implementation with existing visual-
izations, arguing that it offers several benefits despite
not yet consolidating these windows. We will compare
these visualizations with reference to Cognitive Load
Theory as described by Sweller et al. (1998), and to
the guidelines that Ware (2008) provides for informa-
tion visualization based on current understandings of
human perception and cognition.

Cognitive Load Theory provides guidelines for rep-
resenting information to optimize intellectual perfor-
mance and promote knowledge acquisition. These
guidelines relate to optimizing the use of working
memory: information must be in working memory in
order to be processed, and working memory is ex-
tremely limited. Effective representations decrease
extraneous cognitive load : the effect on working mem-
ory load of the manner in which information is pre-
sented, or of the activities required by students, i.e.
that which is not intrinsic to the material at hand.
Decreasing extraneous cognitive load enables students
to devote more working memory to performing tasks
and acquiring knowledge. This is particularly impor-
tant when dealing with material that has a high in-
trinsic cognitive load. The Split-Attention Effect de-
scribed by Sweller et al. (1998) is especially relevant to
our comparison of visualizations. The Split-Attention
Effect occurs when a student must mentally integrate
two distinct sources of information in order to under-
stand them, e.g. textual information that refers to a
diagram, where neither the textual information nor
the diagram are effective independently.

On the basis of dozens of experiments under
a wide variety of conditions, the evidence
suggests overwhelmingly that it has nega-
tive consequences and should be eliminated
wherever possible. (Sweller et al. 1998)

Ware (2008) provides a wealth of information con-
cerning the effective design of information visualiza-
tions. Of particular relevance to program visualiza-
tion systems are the recommendations on optimizing
the cognitive process:

The ideal cognitive loop involving a com-
puter is to have it give you exactly the in-
formation you need when you need it. This
means having only the most relevant infor-
mation on screen at a given instant. It also
means minimizing the cost of getting more
information that is related to something al-
ready discovered. This is sometimes called
drilling down. (Ware 2008)

There are two possibilities when attempting to get
information related to something already discovered:
either it is displayed somewhere else on the screen,
or the user must perform some action to cause it to
be displayed. Eye movements are much faster than
mouse movements, but displaying too much informa-
tion on screen will increase the difficulty of searching
for any particular piece of information.

With this information in hand, let us now compare
SeeC’s implementation of dynamic evaluation trees

CRPIT Volume 160 - Computing Education 2015

178

Figure 3: SeeC’s highlighting and tooltip

Figure 4: Jeliot 3 source code (left) and expression evaluation (right)

with the existing visualizations of expression evalua-
tion used by novice focused programming tools.

Figure 4 shows a completed expression evaluation
in Jeliot 3: operators and values are shown in the
expression evaluation area, but students must con-
sult the source code window for any other informa-
tion about the expression. Thus the observed re-
peated switching of visual attention that motivated
Lahtinen & Ahoniemi (2009) to propose the dynamic
evaluation tree. This is a clear example of the Split-
Attention Effect: the expression evaluation area alone
is unintelligible, and students are forced to mentally
integrate information from other windows in order to
make sense of it. SeeC’s dynamic evaluation tree,
shown in Figure 5, contains a modified representation
of the top-level expression’s source code, so switching
visual attention to the main source code window is
only necessary when referring to other expressions or
to the original representation.

Figure 5: SeeC

The dynamic evaluation tree maintains a clear
mapping between values and source code: the expres-
sion that produced a value occupies the same horizon-
tal space as the value’s node. Consider finding the
expression that produced the value 35.3522 used in
the division operation: in Jeliot 3 students must find
the corresponding division operator in the source code
window and then identify the left operand; in SeeC
students can simply look at the top of the dynamic
evaluation tree to see the source code occupying the
same space as the value, or move their mouse cursor
over the value to have that source code automati-
cally highlighted. If a student wishes to determine
why this expression produced this value using Jeliot 3
then they must find the correct subtraction opera-
tion in the evaluation history, perhaps by searching
the right-hand side of the operations for the chosen

value. Students using SeeC can simply look at the
value’s children in the dynamic evaluation tree.

SeeC consistently uses highlighting to visualize re-
lationships and thus minimize the cost of finding re-
lated information, both within the dynamic evalua-
tion tree and between different visualizations. We
can see this highlighting in Figure 3 (above). The ac-
tive expression is outlined in yellow in both the source
code window and the dynamic evaluation tree. The
annotation under the mouse cursor has its associated
expression highlighted in violet, and as it is an lvalue
the designated object is similarly highlighted in the
memory visualization. This method is applied consis-
tently throughout SeeC, e.g. moving the mouse cur-
sor over an expression in the source code window will
highlight the corresponding expression (and its pro-
duced value) in the dynamic evaluation tree.

In Jeliot 3, when a variable’s value is used in an
expression an animation shows the value “flying in”
to the expression evaluation area. This provides only
a transient association which, if it is important to
the student’s task, must be held in working memory,
unnecessarily burdening their working memory load.
Furthermore, the student may not know whether the
association is important at the time the animation oc-
curs, and there is no option to display the association
after the fact: instead, students must determine the
association themselves by mentally integrating infor-
mation from Jeliot 3’s multiple displays.

Bruce-Lockhart et al. (2007) described The Teach-
ing Machine, a program visualization system support-
ing subsets of the Java and C++ languages, which
also uses highlighting to illustrate relationships be-
tween different visualizations. Figure 7 provides an
example: the active top-level expression’s source code
is highlighted in yellow, and the active sub-expression
is an lvalue whose designated object (lon1) is also
highlighted in yellow. If the student wishes to see the
relationship between a different sub-expression and
the values in memory, they must step backwards or
forwards until that sub-expression is active.

The Teaching Machine visualizes expression eval-
uation using expression rewriting, in which an evalu-
ated sub-expression’s source code is replaced with its
resulting value. Figure 6 shows the rewrite caused by
an evaluation in The Teaching Machine: the under-
lined source code is the active sub-expression, which
will be replaced by its result when the student steps
forward. This visualization shows no history: stu-
dents must step backwards to see previous operations.
Furthermore, an operation’s operands and result are

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

179

not simultaneously visible, so considering an opera-
tion requires a student to hold relevant information
in working memory while stepping forwards or back-
wards. Effectively, the student is required to mentally
integrate information from two visualizations which
cannot be displayed simultaneously. The dynamic
evaluation tree does not require this information to
be held in working memory, because it is always ac-
cessible via rapid eye movements or mouse hovering.

Figure 6: The Teaching Machine 2’s rewriting

Expression rewriting is also used by WADEIn, a
web-based tool designed to help students construct
knowledge of C’s expression evaluation rules, pre-
sented by Brusilovsky & Spring (2004). WADEIn
annotates the source code of an expression with the
order in which the individual sub-expressions will
be evaluated (shown as numbers beneath the sub-
expressions). The evaluation of the complete expres-
sion is visualized by a “shrinking copy” of the source
code: the active sub-expression is copied into an
“evaluation area”, its evaluation is visualized, and the
result then replaces the original sub-expression in the
“shrinking copy”. Only the active sub-expression’s
evaluation is shown, so students must step backwards
and forwards to observe the evaluation of different
sub-expressions. WADEIn is a tutoring system for
isolated expressions: it supports only mathematical
and logical operators with int and double type vari-
ables. The system tracks the student’s exposure to
different operators, increasing the speed of animation
and removing certain sub-steps as the student’s “level
of knowledge” increases.

The dynamic evaluation tree is the only method
of visualization that shows every step of a complex
expression’s evaluation in a single image while main-
taining relationships from evaluated sub-expressions
to their original source code, and from lvalue expres-
sions to their designated objects. Considering the ad-
vice and information provided by Sweller et al. (1998)
and by Ware (2008), we believe the dynamic evalu-
ation tree is a significant advancement in terms of
both reducing extraneous cognitive load and optimiz-
ing the process of finding information that is related
to something already discovered.

6 Limitations and future work

Future developments should be guided by the require-
ments of novice programmers learning the C program-
ming language, thus the most important remaining
task is to evaluate the dynamic evaluation tree’s us-
age by novice programmers. We are currently inves-
tigating SeeC’s usage by students in our second year
course covering the C programming language and Op-
erating Systems, and will be collecting feedback from
students including their perceptions of the dynamic
evaluation tree visualization and their suggestions for
future development. During our own development
and use of the dynamic evaluation tree we have iden-
tified some potential areas of investigation, which we
describe in the remainder of this section.

We use Clang’s expressions to generate our dy-
namic evaluation tree. This reduces our system’s im-

plementation requirements and provides robust, com-
plete support for the C programming language, but
could expose technical details that may confuse novice
programmers. We hide some information from stu-
dents: for example, in Figure 5, we hide the expres-
sions representing the reference to to_radians and its
decay to a function pointer. It may be useful to pro-
vide an option to display all expressions, or to imple-
ment an adaptive system that reveals technical details
when a student’s knowledge is sufficiently advanced.

User-controlled information eliding may also be
useful for handling macro expansion. Our imple-
mentation either fully expands or does not expand
macros, but in some situations it may be useful to
show a partial expansion. Listing 4 shows a definition
for the function-like macro S_ISREG; a raw use of this
macro; and a partial expansion of this use, in which
the expanded tokens have not undergone rescanning
which would have expanded S_IFMT and S_IFREG.
Showing S_IFMT and S_IFREG rather than their ex-
panded numeric constants may be more informative
than the fully preprocessed code (e.g. shown in List-
ing 3). Students could interactively control whether
individual macros are expanded, allowing them to in-
spect the preprocessor’s actions and to select an ap-
propriate representation for the task at hand.

Listing 4 Partial macro expansion

Macro definition:
S_ISREG(m) (((m) & S_IFMT) == S_IFREG)

Raw:
S_ISREG(st.st_mode)

Partially expanded:
(((st.st_mode) & S_IFMT) == S_IFREG)

The dynamic evaluation tree visualizes the values
produced by each expression, but it does not represent
expressions’ side effects. For example, a postfix in-
crement operator’s node would show the value loaded
from the operand’s designated object, but would not
indicate that the object’s value was modified. This
problem is generalised by annotating function calls,
which may have numerous side effects. It may be
useful to visually indicate that an annotation’s asso-
ciated expression caused some side effects. The exact
nature of the side effects could be represented in the
tooltip produced by hovering the mouse cursor over
the annotation.

7 Summary

The dynamic evaluation tree concisely visualizes ex-
pression evaluation while maintaining a visual rela-
tionship between each expression’s source code and its
produced value. The complete history of a complex
expression evaluation can be shown in a single static
frame, enabling students to rapidly scan each step
of the evaluation. In this paper we generalised the
dynamic evaluation tree to account for arbitrary ex-
pressions in the C programming language, presented
our implementation of the dynamic evaluation tree for
the novice-focused program visualization and debug-
ging tool SeeC, and compared this implementation to
previous visualizations of expression evaluation.

We believe that the complicating factors discussed
and mitigated within this work will support attempts
to implement the dynamic evaluation tree in other
novice-focused tools, regardless of their supported
programming languages. For example, the difficul-
ties of representing pointers may also apply to the
representation of references in Java or Python.

CRPIT Volume 160 - Computing Education 2015

180

Figure 7: The Teaching Machine 2’s highlighting

The dynamic evaluation tree was introduced by
Lahtinen & Ahoniemi (2009) with the intention of re-
ducing novice programmers’ switching of visual atten-
tion while using program visualization tools. To our
knowledge, we have presented the first implementa-
tion of this concept. We believe this is a robust, main-
tainable implementation and yet its development was
straightforward, which speaks to the underlying SeeC
system’s potential as a foundation for novice-focused
program visualization research.

Finally, this implementation enables investigation
of the dynamic evaluation tree’s usefulness for novice
programmers learning the C programming language.

8 Acknowledgements

This research is partially supported by an Australian
Postgraduate Award.

References

Boustedt, J., Eckerdal, A., McCartney, R., Moström,
J. E., Ratcliffe, M., Sanders, K. & Zander, C.
(2007), ‘Threshold concepts in computer science:
Do they exist and are they useful?’, SIGCSE Bull.
39(1), 504–508.

Bruce-Lockhart, M., Norvell, T. S. & Cotronis, Y.
(2007), ‘Program and algorithm visualization in
engineering and physics’, Electron. Notes Theor.
Comput. Sci. 178, 111–119.

Brusilovsky, P. & Spring, M. (2004), Adaptive, En-
gaging, and Explanatory Visualization in a C Pro-
gramming Course, in ‘ED-MEDIA’2004 - World
Conference on Educational Multimedia, Hyperme-
dia and Telecommunications’, pp. 21–26.

Fitzgerald, S., Lewandowski, G., McCauley, R., Mur-
phy, L., Simon, B., Thomas, L. & Zander, C.
(2008), ‘Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers’,
Computer Science Education 18(2), 93–116.

Heinsen Egan, M. & McDonald, C. (2014), Program
visualization and explanation for novice C pro-
grammers, in ‘Sixteenth Australasian Computing
Education Conference (ACE 2014)’, Vol. 148 of
CRPIT, ACS, Auckland, New Zealand, pp. 51–57.

Lahtinen, E. & Ahoniemi, T. (2009), ‘Dynamic evalu-
ation tree for presenting expression evaluations vi-
sually’, Electronic Notes in Theoretical Computer
Science 224, 41 – 46. Proceedings of the Fifth Pro-
gram Visualization Workshop (PVW 2008).

Moreno, A., Myller, N., Sutinen, E. & Ben-Ari, M.
(2004), Visualizing programs with Jeliot 3, in ‘AVI
’04: Proceedings of the Working Conference on Ad-
vanced Visual Interfaces’, ACM, New York, NY,
USA, pp. 373–376.

Rountree, J. & Rountree, N. (2009), Issues regarding
threshold concepts in computer science, in ‘Pro-
ceedings of the Eleventh Australasian Conference
on Computing Education - Volume 95’, ACE ’09,
Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, pp. 139–146.

Sweller, J., van Merrienboer, J. & Paas, F. (1998),
‘Cognitive architecture and instructional design’,
Educational Psychology Review 10(3), 251–296.

Ware, C. (2008), Visual Thinking for Design, Morgan
Kaufmann Publishers, 30 Corporate Drive, Suite
400, Burlington, MA, USA.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

181

CRPIT Volume 160 - Computing Education 2015

182

Author Index

Ahadi, Alireza, 165

Bower, Matt, 37
Butler, Matthew, 91
Butler, Matthew , 81, 101

Calder, Paul, 73
Carbone, Angela, 29
Comber, Tim, 3
Cooper, Graham, 3, 47

D’Souza, Daryl, iii, vii, 129, 137
Daniels, Mats, 19

Egan, Matthew Heinsen, 175

Falkner, Katrina, iii, vii, 37, 63, 81, 91, 101
Falkner, Nickolas, 63
Fenwick, Joel, 111
Foster, Keith, 129
Fukazawa, Yoshiaki, 155

Gonsalvez, Christabel , 29
Guerin, Cally, 73

Haden, Patricia, 119
Hamilton, Margaret, 29, 129
Handoyo Putro, Iwan, 137
Harland, James, 129
Hellou, Anne, 3
Honda, Kiyoshi, 155

Jayatilaka, Asangi, 73
Jollands, Margaret, 29

Kaila, Erkki, 147
Karavirta, Ville, 147
Koziniec, Terry, 57
Kurvinen, Einari, 147

Lárusdóttir, Marta, 19
Laakso, Mikko-Jussi, 147
Lindén, Rolf, 147
Lister, Raymond, 165
Lopez, Mike, 137
Luxton-Reilly, Andrew, 137

Mason, Raina, 3, 47
McCulloch, Alistair, 73
McDermott, Roger, 19
McDonald, Chris, 175
McGill, Tanya, 57
Morgan, Michael, 81, 91, 101
Murray, David, 57

Parsons, Dale, 119
Pulkkis, Göran, 11

Rajala, Teemu, 147
Ranasinghe, Damith, 73
Robbins, Phil, 137

Sakamoto, Kazunori, 155
Salakosk, Tapio, 147
Sheard, Judy, 81, 91, 101, 137
Simon, 47, 81, 91, 101, 137

Teague, Donna, 137, 165
Tucker, Julie, 3

Vivian, Rebecca, 63

Washizaki, Hironori, 155
Weerasinghe, Amali, 81, 91, 101
Westerlund, Magnus, 11
Whalley, Jacqueline, 137
Wilks, Barry, 47
Wood, Krissi, 119

Yamazaki, Shohei, 155

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 137 - Database Technologies 2013
Edited by Hua Wang, University of Southern Queensland,
Australia and Rui Zhang, University of Melbourne, Aus-
tralia. January 2013. 978-1-921770-22-7.

Contains the proceedings of the Twenty-Fourth Australasian Database Conference
(ADC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 138 - Information Security 2013
Edited by Clark Thomborson, University of Auckland, New
Zealand and Udaya Parampalli, University of Melbourne,
Australia. January 2013. 978-1-921770-23-4.

Contains the proceedings of the Eleventh Australasian Information Security
Conference (AISC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 139 - User Interfaces 2013
Edited by Ross T. Smith, University of South Australia, Aus-
tralia and Burkhard C. Wünsche, University of Auckland,
New Zealand. January 2013. 978-1-921770-24-1.

Contains the proceedings of the Fourteenth Australasian User Interface Conference
(AUIC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 140 - Parallel and Distributed Computing 2013
Edited by Bahman Javadi, University of Western Sydney,
Australia and Saurabh Kumar Garg, IBM Research, Aus-
tralia. January 2013. 978-1-921770-25-8.

Contains the proceedings of the Eleventh Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2013), Adelaide, Australia, 29 January – 1 Febru-
ary 2013.

Volume 141 - Theory of Computing 2013
Edited by Anthony Wirth, University of Melbourne, Aus-
tralia. January 2013. 978-1-921770-26-5.

Contains the proceedings of the Nineteenth Computing: The Australasian Theory
Symposium (CATS 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 142 - Health Informatics and Knowledge Management 2013
Edited by Kathleen Gray, University of Melbourne, Australia
and Andy Koronios, University of South Australia, Australia.
January 2013. 978-1-921770-27-2.

Contains the proceedings of the Sixth Australasian Workshop on Health Informat-
ics and Knowledge Management (HIKM 2013), Adelaide, Australia, 29 January –
1 February 2013.

Volume 143 - Conceptual Modelling 2013
Edited by Flavio Ferrarotti, Victoria University of Welling-
ton, New Zealand and Georg Grossmann, University of South
Australia, Australia. January 2013. 978-1-921770-28-9.

Contains the proceedings of the Ninth Asia-Pacific Conference on Conceptual Mod-
elling (APCCM 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 144 - The Web 2013
Edited by Helen Ashman, University of South Australia,
Australia, Quan Z. Sheng, University of Adelaide, Australia
and Andrew Trotman, University of Otago, New Zealand.
January 2013. 978-1-921770-15-9.

Contains the proceedings of the First Australasian Web Conference (AWC 2013),
Adelaide, Australia, 29 January – 1 February 2013.

Volume 145 - Australian System Safety Conference 2012
Edited by Tony Cant, Defence Science and Technology Or-
ganisation, Australia. April 2013. 978-1-921770-13-5.

Contains the proceedings of the Australian System Safety Conference (ASSC 2012),
Brisbane, Australia, 23rd – 25th May 2012.

Volume 147 - Computer Science 2014
Edited by Bruce Thomas, University of South Australia and
Dave Parry, AUT University, New Zealand. January 2014.
978-1-921770-30-2.

Contains the proceedings of the Australian System Safety Thirty-Seventh Aus-
tralasian Computer Science Conference (ACSC 2014), Auckland, New Zealand, 20
– 23 January 2014.

Volume 148 - Computing Education 2014
Edited by Jacqueline Whalley, AUT University, New
Zealand and Daryl D’Souza, RMIT University, Australia.
January 2014. 978-1-921770-31-9.

Contains the proceedings of the Sixteenth Australasian Computing Education
Conference (ACE2014), Auckland, New Zealand, 20 – 23 January 2014.

Volume 149 - Information Security 2014
Edited by Udaya Parampalli, University of Melbourne, Aus-
tralia and Ian Welch, Victoria University of Wellington, New
Zealand. January 2014. 978-1-921770-32-6.

Contains the proceedings of the Twelfth Australasian Information Security
Conference (AISC 2014), Auckland, New Zealand, 20 – 23 January 2014.

Volume 150 - User Interfaces 2014
Edited by Burkhard C. Wünsche, University of Auckland,
New Zealand and Stefan Marks, AUT University, New
Zealand. January 2014. 978-1-921770-33-3.

Contains the proceedings of the Fifteenth Australasian User Interface Conference
(AUIC 2014), Auckland, New Zealand, 20 – 23 January 2014.

Volume 151 - Australian System Safety Conference 2013
Edited by Tony Cant, Defence Science and Technology Or-
ganisation, Australia. May 2013. 978-1-921770-38-8.

Contains the proceedings of the Australian System Safety Conference (ASSC 2013),
Adelaide, Australia, 22 – 24 May 2013.

Volume 152 - Parallel and Distributed Computing 2014
Edited by Bahman Javadi, University of Western Sydney,
Australia and Saurabh Kumar Garg, IBM Research, Aus-
tralia. January 2014. 978-1-921770-34-0.

Contains the proceedings of the Twelfth Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2014), Auckland, New Zealand, 20 – 23
January 2014.

Volume 153 - Health Informatics and Knowledge Management 2014
Edited by Jim Warren, University of Auckland, New Zealand
and Kathleen Gray, University of Melbourne, Australia.
January 2014. 978-1-921770-35-7.

Contains the proceedings of the Seventh Australasian Workshop on Health Infor-
matics and Knowledge Management (HIKM 2014), Auckland, New Zealand, 20 –
23 January 2014.

Volume 154 - Conceptual Modelling 2014
Edited by Georg Grossmann, University of South Australia
and Motoshi Saeki, Tokyo Institute of Technology, Japan.
January 2014. 978-1-921770-36-4.

Contains the proceedings of the Tenth Asia-Pacific Conference on Conceptual Mod-
elling (APCCM 2014), Auckland, New Zealand, 20 – 23 January 2014.

Volume 155 - The Web 2014
Edited by Stephen Cranefield, University of Otago, New
Zealand, Andrew Trotman, University of Otago, New
Zealand and Jian Yang, Macquarie University, Australia.
January 2014. 978-1-921770-37-1.

Contains the proceedings of the Second Australasian Web Conference (AWC 2014),
Auckland, New Zealand, 20 – 23 January 2014.

Volume 156 - Australian System Safety Conference 2014
Edited by Tony Cant, Defence Science and Technology Or-
ganisation, Australia. May 2014. 978-1-921770-39-5.

Contains the proceedings of the Australian System Safety Conference (ASSC 2014),
Melbourne, Australia, 28 – 30 May 2014.

	Frontmatter
	Table of Contents
	Preface
	Welcome from the Organising Committee
	CORE - Computing Research & Education
	Sponsors

	Contributed Papers
	Gender differences in experiences of TAFE IT students: A work in progress
	Designing a modern IT curriculum: Including information analytics as a core knowledge area
	Quality assurance using international curricula and employer feedback
	Breakfast with ICT employers: What do they want to see in our graduates?
	Computational thinking, the notional machine, pre-service teachers, and research opportunities
	Using cognitive load theory to select an environment for teaching mobile apps development
	Student perceptions of flipped learning
	Teaching computational thinking in K-6: The CSER digital technologies MOOC
	Why don't more ICT students do PhDs?
	Teaching in first-year ICT education in Australia: Research and practice
	Assessment in first-year ICT education in Australia: Research and practice
	Understanding the teaching context of first year ICT education in Australia
	Considerations in automated marking
	What are we doing when we assess programming?
	Repository of Wisdom: Automated support for Composing Programming Exams
	How (not) to write an introductory programming exam
	Comparing student performance between traditional and technologically enhanced programming course
	Comparative study on programmable robots as programming educational tools
	Mired in the web: Vignettes from Charlotte and other novice programmers
	Dynamic evaluation trees for novice C programmers

	Author Index

