
 

 

Designing a Fault-Tolerant Satellite System in SystemC 

Kashif Javed 
Department of Information Technologies 

Abo Akademi University 
Turku, FIN-20520, Finland 

Kashif.Javed@abo.fi 
  

Elena Troubitsyna 
Department of Information Technologies 

Abo Akademi University 
Turku, FIN-20520, Finland 
Elena.Troubitsyna@abo.fi 

 
 

Abstract—Designing fault-tolerant satellite systems is a 
challenging engineering task. Often behavior of satellite 
systems is structured using notion of modes.  Ensuring 
correctness of mode transitions is vital for guaranteeing safe 
and fault-tolerant functioning of a satellite. In this paper, we 
propose an approach to designing fault-tolerant satellite 
systems in SystemC. We demonstrate how to develop Attitude 
and Orbit Control System in SystemC and verify its 
correctness via model checking.   
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I.  INTRODUCTION 
Designing a system controlling a spacecraft is a 

challenging engineering task. The system should satisfy a 
large number of diverse functional and non-functional 
requirements. In particular, the designers should aim at 
building a fault-tolerant system, i.e., the system that should 
cope with faults of various system components. Often 
behavior of satellite systems is structured using the notion 
of modes – mutually exclusive sets of system behavior. 
Fault-tolerance is achieved by putting the system to some 
downgraded mode when an error occurs. In this paper, we 
consider an Attitude and Orbit Control System (AOCS) – a 
generic subsystem of a spacecraft [1]. We demonstrate how 
to achieve fault-tolerance via backward mode transitions. 

AOCS is a complex control system consisting of several 
components. To ensure correctness of mode transition, we 
need to guarantee that all components reach a certain state. 
Moreover, when a component fails we need to guarantee 
that all other components make an appropriate backward 
transition.  

In this paper, we propose an approach for designing 
more-rich system in SystemC programming language. We 
propose an algorithm defining mode-transition scheme of 
AOCS. To confirm correctness of our algorithm, we have 
converted it into Promela [6,7] and the results have been 
verified using SPIN model checker [7,8]. 

Section II presents architecture of the system. Unit 
branch state and state transitions have been explained in 
Section III and the controller phases & phase transitions of 
the AOCS are described in Section IV. Mode transitions and 
fault-tolerance procedures for correct functioning of the 
satellite under faulty conditions are illustrated in Sections V 
and VI respectively.  Section VII explains verification of the 

implemented system and the paper is summarized in Section 
VIII besides giving direction for the future work.  

 

II. ARCHITECTURE 
The main purpose of AOCS is to control attitude and 

orbit [1] of a satellite. AOCS consists of a number of 
components -- AOCS Manager, FDIR (Failure Detection, 
Isolation and Recovery) Manager, Mode Manager and Unit 
Manager. The AOCS manager plays key role while dealing 
with the processing of sensor data, managing actuator 
movements relating to the units of Reaction Wheel (RW) 
and Thruster (THR) and doing computation for various 
controls. The responsibility of FDIR is to timely deal with 
such tasks as failure detection, isolation and recovery. Mode 
transitions are handled by the Mode Manager whereas the 
Unit Manager deals with unit reconfigurations and unit level 
state transitions [2,3]. Mode and Unit Manager 
Architectures are further elaborated in the following 
paragraphs. 

A. Mode Manager 
The responsibilities of mode include checking of mode 

transition preconditions, execution of mode transitions, 
management of controller phases and partially management 
of related units. There are six different types of controlled 
modes (i.e. Off, Standby, Safe, Nominal, Preparation and 
Science) in the mode manager and each mode has its own 
well-defined unique function. A brief summary of these 
modes is given below: 

1) Off Mode: The satellite is immediately switched in 
the off mode as soon as the AOCS software booting is 
completed from the central data management unit.  

2) Standby Mode: It is important to check and ensure 
successful separation of the spacecraft from the launcher 
and this work is continuously monitored and completed by 
the software process during the standby mode. 

3) Safe Mode: Satellite enters this mode when the 
separation from the launcher is done.  As soon as the system 
is in the safe mode, the relevant portions of Earth Sensor 
(ES), RW (Reaction Wheel) and Sun Sensor (SS) are 
switched to on state, the coarse pointing controller goes in 
the running phase and fine pointing controller is put in the 
idle phase. Initially the satellite acquires a stable attitude 
and then it achieves the coarse pointing. 
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4) Nominal Mode: When a mode transitions to nominal, 
the coarse pointing controller becomes idle and the fine 
pointing controller is set to the running phase. The selected 
branches of RW, Star Tracker (STR) and THR are switched 
to on state. In this mode, the satellite utilizes fine pointing 
control so that the Payload Instrument (PLI) in the AOCS is 
properly used for measurements.  

5) Preparation Mode: The moment the mode is 
transitioned to the preparation, the concerned portion of 
Global Positioning System (GPS) is set to fine state, the 
relevant branch of PLI is switched to standby state and 
needed processes of RW, STR and THR go to on state. 
Thus, this mode ensures that the fine pointing control is 
reached and PLI gets ready for fulfilling its required tasks.  

6) Science Mode: In science  mode,  the selected branch 
of GPS remains in the fine state, the concerned branch of 
PLI goes in the science state and the relevant parts of RW, 
STR and THR maintain their on state. Therefore, the PLI in 
this mode is ready to perform the tasks for which it has been 
designed. It stays in this mode till the completion of planned 
tasks. 

B. Unit Manager 
The AOCS consists of seven different units and internal 

state changes in these units are controlled by the unit 
manager.  Mode manager controls the components of unit 
manager. Seven different controlled units are ES, SS, STR, 
GPS, RW, THR and PLI.  Their brief description is as 
under: 

1)  ES is a device that measures the direction to the 
earth in the sensor’s field of view. ES’s internal state is 
either on and off. 

2) SS is a tool to measure the direction to the sun in the 
sensor’s field of view. It is also in the on or off state. 

3) STR is an optical device that measures the position of 
stars in its field of view and performs pattern recognition on 
these stars in order to identify the portion of the sky at 
which it is looking. Two possible STR’s operational states 
are on and off. 

4) GPS is a sophisticated gadget that receives readings 
related to the satellite position and makes calculations to 
determine satellite’s attitude. Two possible states of GPS 
operation are coarse navigation and fine navigation. 

5) RW is a rotating wheel which is essentially required 
in order to apply the required torque to the satellite. It is 
achieved by accelerating or breaking the wheel. RW’s state 
can be either on or off. 

6) THR is a position actuator that is used to force the 
satellite to change its position and its orbit by emitting gas. 
It can also be in either on or off state. 

7) The PLI is an instrument which provides required 
measurements pertaining to the specific mission. It can 
operate in standby or science state. 

III. UNIT BRANCH STATE AND STATE TRANSITIONS 
Every unit is implemented as a pair of identical devices 

to maintain the nominal branch and the redundant branch. 
For each unit, one and only one branch is selected at a time. 
Every selected branch is in on state and its status is locked. 
In other words, a branch in the off state is always allocated 
an unlocked status. 

In total, there are six states of unit components (i.e. on, off, 
coarse, fine, standby and science). Whenever an unit state 
goes from off to on, the powering takes place. Similarly, 
when the unit switches from on to off state, un-powering 
takes place. Powering and un-Powering are associated with 
the states and state transitions of a branch of ES, SS, STR, 
RW or THR. Occurrence of such states and state transitions 
is shown in Figure 1. For the GPS unit, unit state goes from 
off to coarse state and coarse to fine state, then powering 
and upgrading is carried out respectively. In case of fine to 
off state transition, first downgrading is performed then un-
powering is done. States and State Transitions of a Branch 
of GPS are depicted in Figure 2. 
 

 
 

Figure 1:  States and State Transitions of a Branch of ES, 
SS, RW, STR or THR [1] 

 
In case of PLI unit, when the unit state goes from off to 
standby and from standby to science state, then powering 
and upgrading is achieved respectively. In case of science to 
off state transition, first downgrading occurs and then un-
powering takes place. Figure 3 demonstrates states and their 
transitions of a branch of PLI.  

 

 
 

Figure 2:States and State Transitions of a Branch of GPS [1] 
 

 
 

Figure 3:  States and State Transitions of a Branch of PLI [1] 
 

50Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



 

 

State transitions are very fast to accommodate time 
constrains for real-time satellite operations. Hence, any state 
transition to powering, un-powering, upgrading or 
downgrading takes less than one AOCS cycle. However, 
every state transition to off takes minimum three and 
maximum four AOCS cycles. Any state transition to on, 
coarse, fine, standby or science has a success condition if 
the transition gets completed during the first AOCS cycle 
when the condition is observed to hold. However, any state 
transition to on, coarse, fine, standby or science is 
overridden if the associated success condition is not 
observed to hold within a predefined number of AOCS 
cycles from start of the transition. 

IV. CONTROLLER PHASES AND PHASE TRANSITIONS 
The AOCS has two controllers -- Coarse Pointing 

Controller (CPC) and Fine Pointing Controller (FPC). The 
main objective of these two controllers is to direct the line 
of sight with a specified coarse accuracy and fine accuracy 
respectively. It is an essential requirement and must be met 
within given time limits. The following rules have to be 
observed during the controller phase transitions when a 
certain operational mode is reached: 

1) Both controllers go to idle phase when the mode 
transition is set to off or standby state. 

2)  When the mode transition is switched to safe state, 
the CPC enters the running phase and the FPC remains in 
the idle phase. 

3) When the mode transition shifts to nominal, 
preparation or science, the CPC goes in the idle phase and 
the FPC moves in the running phase. 
 

Only one controller can be in non-idle phase at any point of 
time. When a controller phase has to switch from idle to 
running, first of all it is set to preparing. After predefined 
number of AOCS cycles, the controller is set to ready phase. 
Finally, the phase of controller is shifted to running as 
indicated in Figure 4. It can also be noticed that the 
controller can directly move to the idle phase from any of 
the other three phases (preparing, ready and running). 

 
Figure 4: Phases and Phase Transitions of a Controller [1] 

V. MODE TRANSITIONS 
The following rules are imposed on mode transitions in 

order to ensure correct satellite function in nominal (fault-
free) and faulty conditions: 

1) When a mode transition to off or standby is 
completed, it is ensured that every branch in every unit is 
put in the off state. 

2) On reaching to the safe mode, the selected branches 
of ES, RW and SS are set in the on state and all other 
branches pertaining to different units go to the off state. 

3) In case of a transition to the nominal mode, the 
selected branch of GPS is turned in the coarse state, the 
concerned branches of RW, STR and THR are set to on 
state, and remaining every branch in every unit is put in the 
off state. 

4) Completion of a mode transition to preparation 
ensures that the relevant branch of GPS is in the fine state, 
the chosen branch of PLI is in the standby state, the selected 
parts of RW, STR and THR are in the on state, and rest 
every branch in every unit is in the off state. 

5) A mode transition to science requires that the needed 
branch of GPS is in the fine state, the selected branch of PLI 
is in the science state, the concerned branches of RW, STR 
and THR are in the on state, and all other branches 
pertaining to different units remain in the off state. 
 

VI. FAULT TOLERANCE 
Fault-tolerance should guarantee that the system 

continues to operate in predictable way even in case of 
failure of any of its components. Recovery from errors in 
fault-tolerant systems can be characterized as either roll 
forward or roll back. Forward error recovery aims at 
bringing the system to a new error-free state. Backward 
error recovery rolls back the system to some previous state 
before an error occurrence. In mode-rich systems, the 
backward error recovery is achieved via backward mode 
transition, i.e., mode downgrading. The mode down-
gradation depends on various errors, which are explained 
below: 

A. Branch State Transition Errors 
A branch state transition error means that when some unit 

transitions to on state, the mode coarse, fine, standby or 
science gets overridden due to timeout condition. Because 
operation and state transition delays have to be avoided, we 
should time each mode transition. If a step of transition is not 
completed within a specified time limit, timeout signal is 
generated to get into a safe condition. The important error 
checks concerning to the branch state transitions are: 

 
1) A branch state transition error on the redundant 

branch of ES, RW or SS causes a mode transition to off. 
2) A mode transition to safe takes place when there is a 

branch state transition error on the redundant branch of 
GPS, STR or THR and there is no branch state transition 
error on the redundant branches of ES, RW and SS. 

3) When a  branch state transition error on the redundant 
branch of PLI occurs, it results into a mode transition to 
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nominal provided that there is no branch state transition 
error on the redundant branches of ES, SS, GPS, RW, STR 
and THR. 

B. Phase Transition Errors 
A phase transition error or an attitude error may arise 

during the computations done by the selected controller. An 
attitude error is generated when there is a problem in the 
execution of an AOCS algorithm. It means that an error 
occurs only when one of the two controllers (i.e. CPC and 
FPC) is in the running phase. The key factors relating to the 
attitude errors are: 

1) If the current mode is safe, then a non-ignored 
attitude error causes a transition to the off mode. 

2) In case the existing mode is nominal and a non-
ignored attitude error occurs, a mode transition to safe takes 
place. 

3) A mode transition to nominal takes place when the 
current mode is preparation and a non-ignored attitude error 
is generated. 

4) The generation of a non-ignored attitude error moves 
the mode transition to preparation with the condition that the 
existing mode is science. 

C. Unit Reconfiguration 
Each logical unit consists of two hardware units known 

as nominal and redundant. Initially, the nominal unit works 
in the active role and provides all the necessary support for 
normal operation of the system. The redundant unit serves 
as a backup resource. When an error is detected in the 
nominal unit, it becomes “reconfigured”. It means that the 
nominal unit is switched off and the redundant unit takes 
over the operational tasks. 

The important errors that take place during the unit 
reconfiguration are: 

1) A branch state transition error on the nominal branch 
of ES, SS or RW causes a reconfiguration of the unit if there 
is no branch state transition error on the redundant branches 
of ES, SS and RW. 

2) A branch state transition error on the nominal branch 
of GPS, STR, THR or PLI causes a reconfiguration of the 
unit if there is no branch state transition error on the 
redundant branches of ES, SS, GPS, RW, STR and THR. 

 
  Figure 6 shows detailed flow chart of the implemented 

system.  

VII. VERIFICATION 
We have implemented mode-transition algorithm in 

SystemC language. The SystemC Verification Standard 
provides API for transaction based verification, constrained 
and weighted randomization, exception handling, and other 
verification tasks [4,5]. SystemC supports the use of special 
data types which are often used by the hardware engineers. 
It comes with a strong simulation kernel to enable the 

designers to write good test benches for easy and speedy 
simulation. It is extremely important because the functional 
verification at the system level saves a lot of money and 
time. 

The system architecture that is implemented in SystemC 
is verified in the SPIN model checker. SPIN [6,7,8] is often 
used to verify behavior of distributed and parallel systems. 
PROMELA (PROcess MEta LAnguage) is a high level 
language which is widely used to specify systems 
descriptions and is fully supported by SPIN for the purpose 
of verification of software-based applications. SPIN 
PROMELA is used to carry out detailed testing and 
verification of design and architecture of various systems. 

The simplified system architecture for AOCS is shown in 
Figure 5. 

 
 

Figure 5: System Architecture [1] 
 

An example of an interfaces between the FDIR Manager, 
Mode Manager and Unit Manager shown in Figure 5 are 
given below. 

When failure occurs in the system, FDIR detects the 
error and issues the requests of mode transition, and then 
Mode Manager is responsible for mode transitions to the 
downgraded mode on the basis of error type. The following 
part of the code represents the Interface I scenario for 
Science Mode. 

if (Mode==F) // Mode F: Science Mode  
{ if (ES==off && SS==off && GPS==fine && STR==on && 

RW==on && THR==on && PLI==science && CPC==idle 
&& FPC==run)  
{/* The associated code describes that the conditions are valid 
for Science Mode. The current mode is Science. */} 
else if ((ES!=off || SS!=off || RW!=on) && STR==on && 
GPS==fine && THR==on && PLI==science && CPC==idle 
&& FPC==run)  
{/* The associated code describes that the conditions are not 
valid for Science Mode as error occurs on the unit branch of ES, 
SS or RW. It causes the mode transition to Off Mode. */} 
else if ((GPS!=fine || STR!=on || THR!=on) && ES==off && 
SS==off && RW==on && PLI==science && CPC==idle && 
FPC==run)  
{/* The associated code describes that the conditions are not 
valid for Science Mode as error occurs on the unit branch of 
GPS, STR or THR. It causes the mode transition to Safe Mode. 
*/} 
else if (ES==off && SS==off && GPS==fine && STR==on 
&& RW==on && THR==on && PLI!=science && CPC==idle 
&& FPC==run)  
{/* The associated code describes that the conditions are not 
valid for Science Mode as error occurs on the unit branch of 
PLI. It causes the mode transition to Nominal Mode. */} 
else if (ES==off && SS==off && GPS==fine && STR==on 
&& RW==on && THR==on && PLI==science && 
(CPC!=idle || FPC!=run))  
{/* The associated code describes that the conditions are not 
valid for Science Mode as error occurs in the phase of Coarse or 
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Fine Pointing Controller. It causes the mode transition to 
Preparation Mode. */} 
else  
{/* The associated code describes that no transitions take place. 
*/ } } 

else  
{/* The associated code describes that it is an invalid mode. Program is 

terminated.*/} 
The SPIN’s verification model successfully checks all the 

global mode transitions and the fault-tolerance of the system 
architecture.  We have successfully verified forward and 
backward mode transitions and ensured correctness of 
global mode transitions with respect to component states.  

VIII. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed an approach to 

designing fault tolerant mode-rich control systems. Our 
work aimed at demonstrating how to design satellite control 
system in SystemC and verify correctness using model 
checking. Our approach has been demonstrated by the 
design of Attitude and Orbit Control System – a generic 
subsystem of spacecrafts. 

  The proposed system has been implemented in 
SystemC language as it is being used as a defacto 
verification standard in embedded systems. SystemC 
specification was easily aligned with Promela which works 
as the input language to SPIN for model checking and 
verification.  

We have presented the design of the system and 
verification steps pertaining to unit branch transition errors, 
controller phase transition errors and unit reconfiguration. 

 Our work complements research done on formal 
modeling of mode-rich satellite systems. The formal 
modeling undertaken in [9,10] aimed at enabling proof-
based verification of mode-rich systems modeled in Event-
B. In [11] the authors perform failure modes and effect 
analysis of each particular mode transition to systematically 
design mode transition scheme. Our work aims at building a 
gap between formal specification and code. This motivated 
our choice of SystemC as a design language and model-
checking based verification. 

As a future work, we are planning to investigate design 
and verification of decentralized mode-rich systems. In 
particular, we will study how to ensure correctness of mode 
transitions as a result of negotiation between several mode 
managers.  
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Figure 6: System Flow Chart 
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