

SEEC – A Software Error Estimation
Method for Multi-component Software

Projects

Timo KUUSELA, Tuomas MÄKILÄ
Department of Information Technology

University of Turku, Finland

Abstract. In this article, some existing error estimation methods are presented and
their suitability for modern software development projects is analyzed. Based on
this analysis, a new software error estimation method SEEC (Software Error
Estimation by Component-wise comparison), specifically designed for multi-site,
multi-component software projects, is introduced. The required activities and the
mathematical formulation of the new method are presented. Finally, the integration
of the SEEC method to a software development process is illustrated with the
SPEM process modeling language.

Keywords. Software development, software project planning, software error
estimation

Introduction

More and more often software development projects can last years, cost loads of
money and require continuous effort of hundreds of people. The projects can be
divided in several sites in terms of software process activities and responsibilities or in
several parts in terms of software functionality itself. Messing around with a bunch of
code by a fistful of talented programmers has turned to large and complex projects that
hold enormous resources and bury various different risks.

These large software projects require increasingly planning and management
related activities: resource and schedule planning, budgeting, risk management, and
software reliability and quality management to mention a few. To be reliable, all the
related decision-making has to be based on established practices and techniques. One
part of these techniques includes different estimations that are produced to assist the
important planning activities and that can be based on, for instance, history data, expert
opinions or future indicators.

One crucial, but perhaps a bit underrated, category of estimation is software error
estimation. That is, estimating the number and the cumulative rate of software errors in
the developed software during the project. The later an error is found in the project, the

more cost it brings to be corrected. It is clear that estimating software defect amounts
has everything to do with the required resources in testing, error management and
implementation. A reliable total error amount estimate helps the project to be prepared
to the upcoming errors and to avoid unexpected expenses. In addition, comparing the
prevailing error amount of the software to the original estimate also gives direct
indications of the current state of the software’s reliability during the project.

Error estimation can be seen as an important activity in a mature software process.
Producing a reliable estimate requires some time and resources (depending on the
applied estimation method) but it can be an effective tool to assist the planning and
analysis of the project. This article presents the basic categories of software error
estimation and introduces some known techniques and models. Having stated that none
of them live up to the demands of a modern software development project, a new
estimation method is introduced. A view on how the new method can be applied in a
real project is also presented and modeled with the SPEM (Software Process

Engineering Meta-model) language [1].

1. Different Classifications of Error Estimation

Some error estimation methods exist in the literature, varying from simple
mathematical techniques to more complex, closely project time-line related models.
Some of them are meant to be used in the early stages of the software development
project producing one static total amount estimate that is used throughout the whole
project. Some have a more dynamic nature. They are updated and fine-tuned during the
project to give a more up-to-date picture of the current state of the project [2].

Both categories of error estimation have their purposes. An estimate made in the
beginning of the project can be used by the project management to guide the resource
planning and scheduling. It can also be used in software maturity estimations later on in
the project when the decisions about software releasing points are made. A dynamic
estimate being updated during project’s timeline, on the other hand, gives a different
kind of view on the state of the project by predicting the project based on the current
situation [3].

An extensive error estimate – either static or dynamic – can be further divided into
two more or less independent parts: total error amount estimate and error rate estimate
(see Table 1). The former holds the estimate of the total error amount of the final
software. These errors originate in different phases of the development project and are
usually found in the different testing phases. The latter tries to describe at which stage
of the project the errors are found. This behavior is usually described with a cumulative
error curve [3].

Table 1: Error estimation categories.

Static total amount
estimation

Dynamic total amount
estimation

Different categories of
error estimation

Static error rate estimation
Dynamic error rate

estimation

Many modern software development processes use iterative way of working.

Therefore also testing – that is, discovering errors – is something that is being done in
the development project a) during a long period of time and b) in many levels of
abstraction (as also the traditional V-model of testing suggests). Hence, both error rate
estimation and dynamic error estimation have an important role in the field of error
estimation. This article focuses, however, mainly to the static total amount estimation.
The main goal is to find the right way to estimate the total amount of software errors in
a big, multi-site project developing large, feature-rich software.

2. Existing Error Estimation Methods

The word technique is used here to describe the somewhat straightforward ways to
estimate the total error amount of software. A technique is considered to be a statistical
or mathematical calculation that merely utilizes numerical data describing the software.
A model, on the other hand, is considered to a more complex estimation method
including more expert judgment and software project related figures like estimated
time-line, software size or even more precise project parameters.

2.1. Error Estimation Techniques

Past error density is one of the oldest and simplest ways to estimate the total error
amount [4]. It relies on comparing the size of the software of past projects to the one of
the upcoming project. Having the error data of past projects available and relying to the
fact that the ratio of errors to software size is the same in past and future software,
error estimate for the future software can be made based on an analogy.

Error seeding is also a widely documented technique that is based in traditional
statistics [4]. As the name suggests, some errors are produced on purpose by an extra
group of programmers while another group is trying to find them by testing the
software. Knowing 1) the number of seeded errors, 2) the number of discovered seeded
errors and 3) the total number of discovered errors, estimate of the total error amount
can be made. It relies on the assumption that a small sample of errors – that is, the
seeded errors – reflects the state (in terms of total error amount) of the whole software.
It should be noticed that the error seeding technique can only be utilized after the
software has already undergone some testing activities. The formulation of the
technique is as follows:

founderrorsfoundseedederrorstotalseedederrorstotalerrors NNNN ,,,,,, *)/(= (1)

In the error pooling technique, the testers are divided into two independent groups,
both reporting errors to their own pools [4]. The testing should be profound and cover
the whole functionality of the software. At any given point of time the amount of
unique errors in both pools, and most importantly, the amount of common errors found
from both of the pools, can be calculated. According to the approach of the error
seeding technique, the total amount of software errors can now be estimated using the
following formulation (not mathematically derived, but estimated itself):

BAerrorsBerrorsAerrorstotalerrors NNNN &,,,, /)*(= (2)

2.2. Error Estimation Models

The field of software error estimation models highlights somewhat different aspects of
estimation. A wider range of data describing the current development project is
utilized. In addition, the methods become more complex, making good use of things
like expert judgment in addition to mere mathematical calculations.

One large category of error estimation models is formed by the different models
based on the Weibull distribution, a time-dependent mathematical formulation [2]. It
includes parameters of shape, scale and time and describes the dynamics of the
cumulative error rate in different situations. In the environment of software
development, the two most widely applicable special cases of the distribution are the
Rayleigh model and the exponential model [2], [5]. It should be noticed, though, that
the total error amount is only a parameter in these formulations, not the output. They
cannot be applied to the total amount estimation as such and are therefore left without
further studies in this context.

Probably the most well-known model for software quality and error amount
estimation is COQUALMO (Constructive Quality Model), published by Barry Boehm
in 1997 and based on the widely acknowledged COCOMO (Constructive Cost Model)
[6]. It has the somewhat same structure than COCOMO II but has its focus in software
quality and error amounts instead of cost. At the time being published, it had already
gone through some calibration with error data from certain real software projects.

COQUALMO is actually a combination of two sub-models: the Defect
Introduction model and the Defect Removal model. The former estimates the total
amount of software errors discovered from the software during the project, the latter
estimates the amount of errors being removed from the software. In the context of this
article, the former sub-model is the more interesting one.

The Defect Introduction model divides the incoming errors in three sources:
requirements, design and coding. The input parameters of the mathematical
formulation of the Defect Introduction model include a) software size, b) an error
source specific calibration constant and c) an economy scale factor - all separately for
the three error sources – as well as d) the so called defect introduction drivers (DID’s)
that are the main factors used to fine-tune the estimate and are partly inherited from the
originating COCOMO II. This results in the following formulation:

∑ ∏
= =

=

3

1

21

1

, *)(*
j i

ij

B

jjtotalerrors DIDSizeAN j (3)

where j relates to the three sources of errors, Aj is the calibration constant related to
the j:th error source, Sizej is the size of the j:th error source, Bj is the economy scale
factor of the j:th error source and DIDij is the i:th DID of the j:th error source.

The starting point of the model is size that has to be estimated separately for the

three different error sources. It can be expressed in lines of code, in function points or

in some other applicable way depending on the nature of all the error sources being
estimated. The error source specific calibration constant and the economy scale factor
are parameters that can be utilized to adjust the estimation based on available project
data outside the scope of the DID’s.

The DID’s form the central control point of the model. They are divided in four
main categories: platform, product, personnel and project. In these categories the DID’s
are further divided to altogether 21 separate drivers (like required reusability, platform
volatility, programmer capability and process maturity). As the formulation shows,
these drivers acting as multiplicative constants are the main medium used to fine-tune
the estimate. They hold the organization and project specific information that is utilized
to get the final estimate. The initial valuation of the DID’s – the most essential thing
having an effect on the estimation result – is based on expert judgment. As projects go
by, the drivers must be calibrated with the available data.

2.3. Notable Shortcomings of the Existing Methods

Let us revise the modern software development environment to which an error
estimation method should fit. First of all, the software can be remarkably large and
consist of various independent components. It may include a lot of new features and
technologies compared to preceding releases and/or to software of other companies.
Secondly, the software can be developed by multiple suppliers working in various
separate sites. The different suppliers may have their own processes and ways of
working. Thirdly, organizations developing software this large usually manage several
successive projects with the software somewhat related to each other. It would not be
realistic to assume that an organization would only have been put up for one project.
This factor of continuity is also something that has an effect on the ways to handle
error estimation. So, what are the biggest deficiencies of the existing methods? Is one
of them the solution for the whole problem?

Relying purely on the analogy between past and upcoming projects – as in the past
error density technique – can be quite dangerous. As new features and technologies are
introduced in the software, it is impossible to say whether it can directly be compared
to the preceding released software of the organization in question or not. In addition,
using only the size of the software to illustrate its complexity can lead to incorrect
estimates.

The biggest problem with the error seeding technique is the demand of extra
resources. While the normal implementation and testing activities are ongoing, other
groups are needed to produce and to look after the seeded errors. It is highly debatable
whether a software development organization would invest to error estimation by
hiring several new professionals or not. The answer is most likely: not. In addition to
the first problem, error seeding also contains the risk of seeded, even critical, errors to
remain undiscovered in the software. These can cause unwanted functionality or side-
effects later on in the software.

The error pooling technique has some of the same downsides than the error
seeding. Firstly, two independent testing teams are required. Both of them are required
to have the expertise to test the whole functionality of the software. Secondly, a lot of
extra work (in terms of creating several overlapping error reports) is done for the sake
of estimation. Thirdly, one more expert is needed to do the comparison between the

two error pools. Hence, the technique seems too resource-greedy to be actually utilized
in real projects.

Different life-time models, like the models based on the Weibull distribution, are
very useful when describing the cumulative error amounts during the development
project, described by the error curve. They cannot, however, be used in the total
amount estimation because they only utilize such information, do not produce it.
Combined with a reliable way to estimate the total amount estimate they can, however,
form a solid practice to end-to-end software error estimation.

The Defect Introduction model of the COQUALMO is the most realistic and
extensive effort to match the demands of proper error estimation method. It perceives
the software development project as a complex system from which several independent
areas of making can be identified and separately valuated. It has many clear weak
points, though. First of all, the model focuses on calibration which means that it
requires data from several upcoming consecutive projects to become reliable. It is not
guaranteed that the model still fits the environment of the applying organization after
the calibration time has passed and it is finally ready to be utilized. Secondly, the key
input parameters like the DID’s are highly supplier specific and are unwieldy adapted
to describe the whole organization of a multi-supplier project. The multi-site factor also
makes it hard to form a common practice to evaluate the size of the software which is
the starting point of the whole estimation.

3. SEEC – A New Approach to Software Error Estimation

As the existing techniques and models do not seem to offer a complete solution, the
principles of a whole new estimation method have to be settled. A new method may
make good use of some of the upsides and inventions of the presented methods but it
introduces a new way to divide and conquer the difficult field of error estimation. In
the following, the most important aspects of software error estimation are discussed
and the important decision-making related to the new estimation method is presented.

First of all, the unit of estimation should be established. The two alternatives are a)
to deal with the whole software as a one large unit or b) to divide the software to well-
defined components. The software development environment to which the new
estimation method is targeted highly demands the latter approach to be used. The
software is most likely developed in independent components holding specific features
and technologies and it can be developed by multiple suppliers, internal or external to
the managerial organization.

At the same time, one should keep in mind that the components and their suppliers
are to be closely examined and valuated when the final estimate is fine-tuned. After all,
many different things may have an effect on the error amount of a software component.
So, dividing the software to too many components can lead to a dead end when the
final adjustment of the estimate is made. A proper level of granularity should therefore
be the goal of the component division of the software.

Secondly, the reference level of the estimation should be decided. Some existing
methods use the estimated software size as the starting point, some can be used only
after the testing is started and some actual error amount data is available. But if one

wants the new method to be a reliable tool for the project planners, the reference level
should be available in the beginning of the project and rely on existing data, not to be
an estimate itself.

The answer to this problem is analogy: not to use it in the whole total amount
estimation but to use it in the discovering of the reference error levels. In practice this
means that the error amounts of the defined components in the past projects of the
organization in question are chosen as the starting points for the estimation. In
whatever manner a component is discovered and defined, using the same kind of tactics
the error amount of that component in the preceding software is determined. If some
past error data from several projects is available, it is only reasonable to make good use
of as many of them as possible.

Third essential thing is to come up with a well-defined way to fine-tune the
reference error amounts so that the final estimate would actually reflect the expected
state of the upcoming software. The adjustment should not only be a collection of
educated guesses but instead a solid practice that could be used and further developed
through a flow of successive projects. Achieving this requires identification of the key
factors having an effect on the error amount of a component. These may include
concepts like changes in feature sets, changes in applied technologies, or changes in
supplier functions. This article does not try to identify all the possible influencing
factors but instead highlights the fact that the identification itself should be done and
the identified drivers should somehow be anchored to enable the evolution of the
estimation method. The intention is not to freeze the whole set of influencing factors
but to have a certain basic set as a starting point instead. This collection can and should
be extended in the context of a new evaluated project.

In the mathematical formulation of the new method, see Eq. (7), these so called
change factors take the form of multiplicative constants used to operate the reference
values component-wise. It is therefore clear that they have to be valuated. In the ground
level it means giving some kind of value for every type and amount of change in the
component or its supplier comparing to the preceding versions. After the set of
identified change factors is valuated, correct values are selected based on analysis on
preceding and upcoming products. Although the valuation and the selection of correct
values are essential parts of the estimation activity itself and they have to be done
before the method can be applied, they are also considered to be outside the scope of
this article. Only an estimation framework is introduced leaving highly domain, project
and organization specific details to further studies.

Dividing the software to components and comparing these components in the
preceding products with the ones in the evaluated product captures the essence of the
new estimation method. The initial goal was to discover a way to estimate software
error amounts. Taking these facts into account, the new method is given the name
SEEC - Software Error Estimation by Component-wise comparison.

Figure 1 illustrates how the SEEC method can be integrated as a part of a large
software project. The two primary activities utilizing the method are project planning
and project tracking. In the former activity, SEEC estimate can be applied for resource
planning. In the latter activity, it can be used to predict the current level of software
maturity and reliability, and, thus the progress of the project. The estimation activity

relies on past error and project history data. Therefore the process of the applying
organization must include corresponding data gathering activities.

Figure 1. SEEC method as part of a large software project.

One more important aspect of estimation has to be pointed out. Software projects
or processes are not machines that can be totally estimated and controlled in a
watertight way. In addition, the pure numerical data does not always describe them in a
comprehensive way. The recognition of these facts leads to the acknowledgement of
the importance of the human factor, the expert judgment. It is needed in many points of
the estimation, even with the new method. Both component division and the
identification and valuation of the change factors require expert judgment. What makes
the most essential difference between mere guessing and applying this method, though,
is the logical and well-defined manner the method is constructed and instructed to be
applied.

4. Required Activities and the Mathematical Formulation of SEEC

Now that the most essential aspects of software error estimation are discussed and
related decisions concerning the new method made, the resulting approach has to be
summarized as a re-usable formulation. The error estimation is done component-wise
which indicates that the mathematical formula has to be a sigma expression. Error
amounts of past products are used as the reference level so they form the core of the
formulation. Change factors are used to fine-tune the estimate so they are present in the
formula as corresponding multiplicative constants. The required working activities and
the final formulation of the new method are presented in the following.

First, the component-division of the developed software is made. E.g. different
documents like project plans (maybe draft versions at the time), feature lists or product
specifications can be used to assist this activity. The main goal is to clearly define
independent software components (probably delivered by different suppliers) in a
proper level of generality.

Secondly, the software error amounts of the identified components in the
preceding software products are determined. Assuming that the projects are well-

organized and documented, error data of past projects should be available. The
outcomes of this activity are the reference error amounts:

nREFREF ...1 (4)

where n is the number of identified components and REFi refers to the reference
error amount of the i:th component.

Thirdly, based on careful analysis of the organization, project and the upcoming

product itself, the complete list of change factors is established. In case of the project
not being the first one of the organization in question deploying this method, this is
done by going through the basic set of change factors and by completing it if necessary.
In any case, the outcomes of this activity are the identified change factors:

Before the change factors can be applied they have to be valuated. In practice this
means that the values for different extents of change in the scope of that change factor
have to be decided. Regarding to the change factors of the basic set, the valuations are
only updated, if necessary. After this, correct values for every identified change factor
related to every identified component are selected from the collection of valuations
based on profound analysis on past and upcoming products. The outcomes of this
activity are the change factor values for every identified component:

nmCFVCFV ...11 (5)

where n is the number of identified components, m is the number of identified
change factors and CFVnm refers to the value of m:th change factor related to n:th
component.

Putting the reference error amounts and the change factor values together results in

the final formulation of the new estimation method:

i

n

i

m

j

ijtotalerrors REFCFVN *
1 1

, ∑ ∏
= =

= (6)

where n is the number of identified components, m is the number of identified
change factors, CFVij refers to the value of m:th change factor related to the n:th
component and REFi is refers to the reference error amount of the i:th component.

Figure 2 illustrates the required activities and related work products, roles and
tools of the SEEC method. Valuating change factors is the most demanding activity
when applying SEEC in real software projects. Thus, a new role responsible for the
valuation is introduced.

Figure 2. Internal activities, work products and roles of the SEEC method.

5. Conclusions

It was discovered that the existing error estimation methods are not fully sufficient for
modern, multi-site software development projects including several different
components. Therefore, a new way to estimate error in this kind of environment – the
SEEC method – was presented. It serves as a framework offering the basic principles
and activities to produce a reliable software error estimate. Before it can be applied in
real software projects, it has to be customized to support the software process of the
applying organization. Despite the fact that the overall structure of the method has been
defined, individual activities have to be further examined in order to maximize the
benefits of the method.

Also, illustration of software process metrics using the SPEM process modeling
language was experimented in this article. It is evident that the graphical presentation
helps to situate a solitary measurement method into the development process and to
form the general view of the requirements and benefits of the method.

References

[1] Object Management Group. 2005. Software Process Engineering Metamodel Spesification – version

1.1. Object Management Group, January 2005. formal/05-01-06.
[2] Kan, S. 1995. Metrics and Models in Software Quality Engineering. Reading, Massachusetts: Addison

Wesley.
[3] Kuusela, T. 2005. Developing a Software Error Estimation Method for Series 60 Product Programs.

Master thesis, Turku University, March 2005.
[4] McConnell, S. 1997. Software Project Survival Guide. Redmond, Washington: Microsoft Press.
[5] Putnam, L. & Myers, W. 1992. Measures of Excellence: Reliable Software on Time within Budget. New

Jersey: Prentice Hall.
[6] Boehm, B. & Chulani, S. 1999. Modeling Software Defect Introduction and Removal: COQUALMO.

Technical report, USC - Center for Software Engineering, 1999.

