
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Static Energy Saving Through Multi-Bank Memory
Architecture

Sébastien Lafond
Turku Centre for Computer Science

Embedded Systems Laboratory
Lemminkäisenkatu 14A, FIN-20520 Turku, Finland

Email: sebastien.lafond@abo.fi

Johan Lilius
Åbo Akademi University

Department of Information Technologies
Lemminkäinengatan 14A, FIN-20520 Åbo, Finland

Email: johan.lilius@abo.fi

Abstract— Managing the energy consumption of embedded
systems has become a major problem with the increasing demand
for portable electronic devices. This paper propose a multi-bank
memory architecture as a solution to decrease the static energy
cost in memory. We set up the equations ruling the optimization
problem for decreasing the memory static energy cost, analyze
the impact of different parameters on the energy cost and finally
present some case study results.

I. INTRODUCTION

In recent years we have seen an explosion of the market
for portable electronic devices such as PDAs, personal com-
municators and mobile phones. They have in common strong
constraints on energy consumption, and thus maximizing bat-
tery life for such devices is crucial.

Several studies [1] show that memory is becoming a pre-
dominant energy consumption component in handheld devices.
As the static energy due to leakage currents is becoming the
major element of memory energy consumption [2], a reduction
of the static energy cost will have a significant impact on the
overall system energy consumption. In traditional systems one
continuous memory region is generally used to store dynamic
memory allocation and its size must to be sufficiently large
to hold in any case all allocations. This required size is most
of the time oversized for the average allocation behavior of
the application(s), leading to a waste of static energy in the
memory area used only during the worst cases. In order to
cut down the cost associated to this ’most of the time’ unused
memory area we propose a multi-bank memory architecture
(MBMA) as a solution to decrease the static energy cost
of the memory. Such architecture would have the ability
to follow the application(s) memory need by adjusting the
number of memory bank switched on. Fig. 1 simply illustrates
the general behavior of such MBMA. In Fig. 1, which doesn’t
take into account the possible fragmentation in a bank, the
maximal energy savings would be proportional to the size of
the switched off memory area. The remain wasted static energy
would be proportional to the size of Free Memory area.

The major contributions of this paper are: 1) the introduction
of a complete static energy costs model for a multi-bank
memory architecture, 2) the establishment of the equations
governing optimization problem for decreasing the static en-
ergy consumed by the memory and an analysis of the impact

B
a
n
k
2
B
a
n
k
3

B
a
n
k
4

B
a
n
k
5

Bank2
switched off

Bank2
switched on

Time

B
a
n
k
1 alive+garbage

objets

free
Memory

switched off
Memory

Fig. 1. MBMA behavior

of the different parameters on energy consumption and 3) the
performance analysis of such architecture in terms of static
energy consumption and execution speed.

The paper is organized as follow: we briefly describe
software allocation behavior and the general memory model
for static energy consumption. We then present the static
energy consumption model for a MBMA and two reference
architectures. Then we setup the optimization problem for the
MBMA static energy cost and show some simulation results.
We conclude with a discussion of related and future work.

II. ALLOCATION BEHAVIOR

Dynamic memory allocation is the assignment of memory
block(s) to store specific data used during the runtime of an
application. A dynamically allocated memory block remains in
allocated state until it is explicitly deallocated or implicitly
deallocated by the means of a garbage collector (GC). Before
a block is deallocated it can be in an intermediate state, called
garbage, where the block content is no longer needed by the
application.

The software applications(s) is driving the allocation ta,
garbage tg and deallocation td events occurring in the memory.
We define the variables free, alive and garbage as the total
memory size of blocks in respectively free, alive and garbage
state. For each new event concerning b blocks of size S Table
I presents the variables updates triggered by the event.

When different size objects are dynamically allocated, a
deallocated block might let an free and unuseable space for
the following allocations. In that case this space contributes to
memory fragmentation which denotes a waste of the memory.

TABLE I
EVENTS TRIGGERING VARIABLES UPDATES

Event Variables updates
(occur simultaneously)

ta free = free − b · S
alive = alive + b · S

tg alive = alive − b · S
garbage = garbage + b · S

td garbage = garbage − b · S
free = free + b · S

There is commonly two types of fragmentation : internal and
external. Internal fragmentation refers to waste in the memory
due to alignment and storage of additional information needed
by the allocator such as bookkeeping. External fragmentation
describes on the other hand a waste due to holes of free
memory interspersed with live objects. As this study aims to
analyze the external fragmentation in the context of MBMA, in
the remain of this paper the term fragmentation means external
fragmentation.

There is several ways to evaluate memory external frag-
mentation. One can measure it as a percentage of the actual
memory usage or as a percentage of the amount of live
objects. This late approach has been used by Johnstone and
Wilson in [3]. However their four proposed ways to measure
fragmentation require knowledge about the past allocation
behavior which demand extra storage place if the system has
to manage by itself on the pertinence to launch a memory
compaction. In the context of MBMA we propose to compute
the instantaneous fragmentation for each bank as:

fragmentation = 1 −
largest free area

total free area
(1)

With this evaluation a bank containing all its free memory
in one continuous area has a fragmentation of 0. If the largest
free area tends to be relatively small compare to the total free
area the bank fragmentation will approach 1. Additionaly a
fully allocated bank is considered to have fragmentation of 0.
This fragmentation evaluation method has several advantages:
(a) it returns a value relative to the largest free block available,
(b) the returned value is bounded between 0 and 1 and (c) it
compute the total free memory available in the bank. These
advantages can be used to precisely evaluate the state of
each bank in term of fragmentation and potential memory
availability for future allocations.

III. MEMORY MODEL

There are two main families of RAM technology: Static
Ram (SRAM) and Dynamic RAM (DRAM). SRAM’s store
each bit in a memory cell that are basically flip flops build
from six CMOS transistors. The static dissipation of SRAM’s
is due to the leakage current of each memory cell. During
the idle phase the SRAM cell leakage current for a given
threshold voltage and temperature will be constant. Thus the
static energy consumed by an SRAM during idle time is
proportional to its number of cells [4]. DRAM’s stores each

Time

Active state

Powered down
state

t tPd AA PdtA0
tA1

tPd0

tt tt1 2 3 4

Fig. 2. Memory state transitions

bit in a memory cell consisting of one capacitor and one
transistor. In addition to the transistor leakage currents the
DRAM static energy consumption should also include the
energy dissipated in order to refresh the cells. Assuming that
there is a 1

2 probability for a cell to hold 1, the energy needed
in order to refresh the memory cells will be proportional to
half memory size.

A the static energy cost for a RAM or DRAM memory
is proportional to its size, for a determined technology the
average static power dissipated by a memory can be modeled
by the following equation :

PS = k · Size (2)

where P represents the average static power dissipated by
the memory, Size the size of the memory and k a constant
factor depending on the memory technology and hardware
implementation.

We adopt a two-state memory model consisting of one
active and one powered down state. In active state the memory
can be accessed for read and write operation and dissipates
an average static power of P = k · Size. In powered down
state data retention is not required and the memory does not
consume any energy.

Fig. 2 represents the memory state transitions and define
tA→Pd and tPd→A respectively the time needed to switch from
state active into powered down and conversely. From Fig. 2 we
assume that the initial and last state of the memory is powered
down and the memory has been in active state N times. We
can then define TA, TPd, TA→Pd and TPd→A as:

TA =

N∑
i=0

tAi
TPd =

N∑
i=0

tPdi

TA→Pd = N · tA→Pd TPd→A = N · tPd→A

where TA represents the total time during which the memory
was in active state, TPd the total time during which the mem-
ory was in powered down state , TA→Pd the total time during
which the memory was in transition phase from active state
into powered down state, and TPd→A the total time during
which the memory was in transition phase from powered down
state into active state.

IV. MBMA MODEL FOR STATIC ENERGY COST

The energy cost model for a MBMA consisting of B

banks has the following parameters: the average static power
dissipated by the ith bank PSi

, the total time during which
the ith bank was powered on in active state TAi

, the average
static power dissipated by the ith bank in transition phase

from active state into powered down state P (A→Pd)i
and

from powered down state into active state P (Pd→A)i
, the total

time during which the ith bank was respectively in transition
phase from active into powered down state T(A→Pd)i

and vice
versa T(A→Pd)i

. The static energy cost model for a MBMA
composed of B banks is then defined by:

Estotal =
B∑

i=1

[(PSi
· TAi

) + (P (A→Pd)i
· T(A→Pd)i

)

+(P (Pd→A)i
· T(Pd→A)i

)] (3)

During transition phases the instantaneous dissipated power
will most likely not be constant. In order to simplify
the expression we use the average power P (A→Pd)i

and P (Pd→A)i
instead of the respective literal expressions∫ t2

t1
PA→Pd(t) · dt and

∫ t4

t3
PPd→A(t) · dt. This simplification

doesn’t change the correctness of Estotal definition if we
consider that tA→Pd, tPd→A, PA→Pd(t) and PPd→A(t) are
equal for each active to powered down and powered down to
active transitions. With BankSizei standing for the ithbank
size we have then :

Estotal =

B∑
i=1

[(k · BankSizei · TAi
)

+(P (A→Pd)i
· T(A→Pd)i

)

+(P (Pd→A)i
· T(Pd→A)i

)] (4)

For each instant t, BankSizei can be further refined as :

BankSizei = alive(t)i + [(free(t)i + garbage(t)i)] (5)

During power down states alive(t), free(t) and garbage(t)
are considered to be null. During the transition t(Pd→A)i

,
free(t)i = BankSizei and alive(t)i = garbage(t)i = 0.
During transition t(A→Pd)i

values for live(t)i, dead(t)i and
free(t)i are considered constant and equal to their respective
last active state value. Thus BankSizei · TAi

in (4) can also
be expressed by :

BankSizei · TAi
=

∫ TAi

0

alive(t)i · dt

+

∫ TAi

0

free(t)i · dt

+

∫ TAi

0

garbage(t)i · dt

= Alivei + Freei + Garbagei (6)

And Estotal from (4) can be re-expressed as :

Estotal =

B∑
i=1

[(k · (Alivei + Freei + Garbagei))

+(P (A→Pd)i
· T(A→Pd)i

)

+(P (Pd→A)i
· T(Pd→A)i

)] (7)

Time

Time for the first possible
allocation into the new active bank

Powered down ActiveTransition

Working

(n+1)th

Bank state

System state
Waiting Working

∆t

New bank needed

t
startWait

t
ready

Fig. 3. Waiting state

During the system life the MBMA can be in two different
states : waiting state and working state. A waiting state, as
illustrated on Fig. 3, occurs when the system needs to allocate
a new object on the memory but all switched on banks are
full. In that case, if the system was not able to anticipate this
allocation need beforehand, the system will have to wait for a
time 4t until a new bank has been switched on. The waiting
cost is expressed by :

Ewait =

n∑
i=1

[BankSizei · k · 4t] + P wait · 4t (8)

where Ewait represents the energy cost wasted during the
waiting state and P wait the average power dissipated during
the waiting time by the (n + 1)th bank which is in transition
phase. 4t is bounded by value 0 and (tA→Pd + tPd→A) if
we assume that the transition phase from active into powered
down state can’t be interrupted before it ends.

During the working state the MBMA has enough free
available memory space for new allocation, and the need for
new bank doesn’t exist. With l and m representing respectively
the numbers of active to powered down and powered down to
active transitions occurred during TAi

, PTrans.(t) the function
describing the instantaneous power during the period from last
transition request to the new transition request time , each bank
is consuming during active states:

Eworkingi
= k · BankSize · TAi

+l · (P (A→Pd) · t(A→Pd))

+m · (P (Pd→A) · t(Pd→A))

+

∫ tRpd

t.Last

PTrans.(t) · dt (9)

For a B banks system where W waiting states occur we
can express Estotal as :

Estotal =

W∑
k=1

Ewaitk
+

B∑
i=1

[Eworkingi
] (10)

In order to simplify the model one could assume that the
average power dissipated by banks during transition phases
from active into powered down state, and analogously for
powered-down into active state, is the same for all such tran-
sitions. In addition a conservative simplification would assign
to P (A→Pd), P (Pd→A) and Pwait the PS value representing
the upper bound for the functions P(A→Pd)(t), P(Pd→A)(t)
and Pwait(t). In the same way 4t can be simplified by its

maximal value (tA→Pd + tPd→A). From (4) Estotal can then
be re-expressed as:

Estotal =

B∑
i=1

[(k ·BankSizei ·(TAi
+T(A→Pd)i

+T(Pd→A)i
)]

= k ·

B∑
i=1

[

∫ (TAi
+T(A→P d)i

+T(P d→A)i
)

0

BankSizei · dt] (11)

Based on these assumption we can simplify (8) and (9):

Ewait =k ·

n+1∑
i=1

[

∫ tActive

tLastT rans

(alive(t)i+(free(t)i+garbage(t)i)·dt]

Eworkingi
= k ·

∫ TAi

0

(alive(t)i + free(t)i + garbage(t)i) · dt

+k ·l·

∫ tA→P d

0

(alive(t)i+free(t)i+garbage(t)i)·dt

+k ·m·

∫ tP d→A

0

(alive(t)i+free(t)i+garbage(t)i)·dt

From now on, if not explicitly mentioned we will always refer
to this simplified model.

V. REFERENCE ARCHITECTURES

The ideal MBMA would be composed of an infinity of 1 bit
size banks with the ability to be instantaneously switch on and
off. Such ideal MBMA would permanently be able to adjust
its memory size (i.e. the total size of the all banks that are
powered on) to the exact system needs and thus reaches the
obtainable minimum static energy consumption due to leakage
current without any additional time penalty. This ideal system
is reducing the functions free(t)i and garbage(t)i as well as
the value of t(A→Pd)i

and t(Pd→A)i
to the constant zero. The

ideal model can be modeled by the following equations :

free(t) = garbage(t) = O (12)

Estotal = k ·

∞∑
i=1

[

∫ TAi

0

alive(t)i · dt] (13)

Ewait = 0 (14)

Eworkingi
= k ·

∫ TAi

0

alive(t)i · dt (15)

This theoretically best solution to reduce static energy cost
can’t be obtained for evident physical constraints, but we will
use it as a reference.

Compare to this idealistic architecture, a ‘real life’ MBMA
has three additional costs: the sum of Ewait for all waiting
states, Ewastedi

representing the static energy consumed by
Free and Garbage memory area during all system working
states for the ith bank and Etransi

representing the static
energy consumed by state transition during working states for
the ith bank. For each active state Ewastedi

and Etransi
can

be expressed using the simplified model by :

Ewastedi
= k ·

∫ TAi

0

(free(t)i + garbage(t)i) · dt (16)

Etransi
= k · l ·

∫ tA→P d

0

(alive(t) + free(t) + garbage(t)) · dt

+k · m ·

∫ tP d→A

0

(alive(t)+free(t)+garbage(t))·dt (17)

If during the system life time the MBMA will be J times
in waiting state the total extra costs Eextra compare to the
idealistic architecture reference can be expressed by :

Eextra =
J∑

m=1

[Em
wait] +

B∑
i=1

[Ewastedi
+ Etransi

] (18)

where Ek
wait represents the costs due to the kthwaiting state,

Ewastedi
and Etransi

respectively the wasted energy and
transition energy consumed in ith bank during all active states.
Thus :

Estotal = Eextra + k ·

B∑
i=1

[

∫ TAi

0

alive(t)i · dt] (19)

The second interesting architecture reference to compare with
is the architecture consisting of only one region memory
to hold all dynamic allocations. This traditional architecture,
which can also be seen has an one bank architecture, has the
advantage to completely eliminate the waiting cost Ewait and
Etrans but to the detriment of Ewasted. Indeed in that case the
memory size needs also to match with the worst case allocation
scenario and thus most likely drives a much greater free(t)
function compare to the one achievable with a MBMA.

VI. OPTIMIZATION PROBLEM

In order to minimize Estotal we need to determine the
MBMA configuration parameters influencing it. By MBMA
configuration parameters we mean the size of the banks, a
possible implementation of allocations prediction or bank need
prediction feature(s), and allocation policies. The optimization
goal is to reduce to the maximum the total static energy
Estotal consumed by a MBMA for a specific application
or a specific set of applications. From (19) we can derive
EActive which represents the active energy dissipated by the
MBMA, in other words the static energy that is spent only
on memory blocks holding alive objects during active states.
Thus EActive corresponds to the minimum energy that any
memory architecture will have to dissipate.

EActive = k ·

B∑
i=1

[

∫ TAi

0

alive(t)i · dt] (20)

Therefore optimizing Estotal comes to the problem of
minimizing Eextra value. Eextra can be decomposed into
the sum of three terms : EextraA

, EextraB
and EextraC

.
EextraA

expresses the energy wasted during waiting states,
EextraB

represents the energy wasted in holding garbage
objects and free memory space switched on and EextraC

denotes the energy wasted during transition phases (from bank
state powered-on into powered-off and vice versa) while the

system was in a working state. Fig. 4 illustrates the origin of
EextraC

cost components.

EextraA
=

J∑
m=1

[Em
wait]

=
J∑

m=1

[k ·

(n+1)m∑
i=1

[

∫ tActivem

tLastT ransm

BankSizei · dt]] (21)

EextraB
=

B∑
i=1

[Ewastedi
]

=

B∑
i=1

[k ·

∫ TAi

0

(free(t)i + garbage(t)i) · dt]

EextraC
=

B∑
i=1

[Etransi
]

=

B∑
i=1

[k · l ·

∫ tA→P d

0

(alive(t)+free(t)+garbage(t))·dt

+k · m ·

∫ tP d→A

0

(alive(t)+free(t)+garbage(t))·dt]

In (21) all variables labeled m refer to their respective value in
mth waiting state. EextraA

is thus dependent on the number of
waiting states that occurred during that execution. Determining
the number of waiting states is not a trivial problem as it will
depend on the configuration of the MBMA and the distribution
of the allocation, garbage and deallocation events. The weight
of EextraA

inside Estotal is also dependent on the time needed
for a bank to be switched from powered off to powered on
state.

As for EextraA
, EextraC

weight inside Estotal is driven
by the memory technology and more particularly by the time
needed for a bank to be switched between powered off and
powered on states. The more time is needed for the bank to
be switched, the more predominant EextraC

will be inside
Estotal.

VII. OPTIMIZATION PARAMETERS

In this section we go through parameters influencing the
optimization problem introduced in above section.

Time

First allocation into the
new active bank

Powered down Active

Working

Bank state

System state

Transition Trans. Powered down

tPd A tA Pd

Fig. 4. EextraC
components

a) Bank size: The bank size used for a MBMA has
an impact on all three optimization subproblems. Increasing
the banks size will increase the function free(t) and thus
obviously will increase EextraB

. For EextraA
and EextraC

the increase of free(t) has to be balanced by the fact that
bigger banks will most likely reduce the number of waiting
and transition states thus will reduce n in EextraA

, l and m in
EextraC

. The ratio between the energy increase due to free(t)
and the energy decrease due to n, l and m will depend on the
distribution of the allocation, garbage and deallocation events.

b) Deallocation scheme or garbage collector: Frequent
garbage collections (GC) or explicit deallocation will decrease
the function garbage(t). Moreover if an optimum deallocation
scheme is able to deallocate objects right after their last use, it
would be theoretically possible to reduce function garbage(t)
to the constant null. But a possible decrease in garbage(t)
generates an identical increase of free(t). In this way a better
deallocation scheme reduces functions EextraA

and EextraC

as it reduces the number of waiting and transition states. As the
possible garbage(t) decrease will be identical to the free(t)
increase it will not affect EextraB

value. In addition we also
have to remember that frequent GC increases the application
running time and thus tends to increase EextraB

with the
increase of TAi

.
c) Allocation or bank need prediction: Allocation pre-

diction or bank need prediction feature(s) intents to switch
on banks beforehand in order to avoid waiting states. As a
result it decreases the number of waiting states and intents
to decrease EextraA

. But at the same time it also drives an
increase of free(t) and thus an increase of EextraB

and also
possibly EextraC

. The ratio between the energy increase due to
free(t) evolution and the energy decrease due to the number
of waiting states decrease depends on how long beforehand
banks are switched on. The extreme case would be to switch
on all banks beforehand, eliminating thus EextraA

, but then
maximizing free(t).

d) Allocation policies: Our strong feeling concerning the
allocation policies is that if the policies group in a same
bank objects with a similar life time, it decreases the number
of waiting and transition states. Regrouping similar life time
objects into particular banks is expected to increase the overall
number of banks switched on and thus limiting the need
for new banks. As a consequence such policy will reduce
the number of waiting and transition states while free(t)
will increase. EextraB

will then surely increase as EextraA

and EextraC
evolution will depend on the distribution of the

allocation, garbage and deallocation events.
e) Memory fragmentation: represents free memory areas

that might be unuseable for future dynamic allocations due to
their relative small sizes. If these free memory areas distributed
over each bank turn out to be unuseable for future allocations,
they will waste during all the system runtime a static energy
proportionally to their sizes. Hence fragmentation plays a role
in the MBMA static energy cost as higher fragmentation lead
to a potential increase of function free(t)i in Eextrab

and J

in Eextraa
.

VIII. MBMA BEHAVIOR SIMULATION

The MBMA behavior was simulate on 2 different applica-
tions: a) Tobi-Tris a tetris like game written in Java, b) Cfrac

[5] written in C. Cfrac is a allocation intensive application
factoring large integers using the continued fraction method.
The application input was 6 successive integers, from 21 to 37
digits, fed to the application with a 10 to 35 seconds interval.

For the Tobi-Tris Java application we used the SUN J2ME
Wireless Toolkit [6] and its MIDP device emulator to capture
the allocation, deallocations and garbage events. The Java
application is run twice, a first run is done on the emula-
tor compiled with default options and used to retrieve the
allocation and deallocation events. A second run is done
with the emulator compiled with options tuned to launch a
garbadge collection (GC) at each bytecode execution. From
this second run we are able to retrieve the garbage events.
The captured events deallocation reflect the GC actions of
the emulator’s Java Virtual Machine (JVM) in the context of
one memory region. We acknowledge that appropriate policies
ruling the GC launch might be different for a MBMA than
for a one memory region. However we want to constrain
the optimization problem and mainly look first at bank size
influence.

To analyze the energy behavior of an MBMA for Cfrac
application we implemented a customized memory allocator.
It features a first fit algorithm with one address-ordered free
list per bank. When an object is allocated it scans all free
lists until it finds the first free space that can hold the new
object. If no free space is available, a new bank is switched
on. When a object is deallocated its corresponding memory
block is inserted into the respective bank free list. If there is
adjacent free blocks they are coalesced in one free block. If
after a deallocation event one bank is left over empty the bank
is switched off. The allocator is able to trace all allocations,
deallocations and bank state transitions in order to compute
afterward the energy cost of the MBMA.

For all MBMA behavior simulations, no allocation nor bank
need prediction is used. The biggest allocated object fixes
the smallest possible bank size, and the maximum number
of powered on banks is used as reference for computing
EoneBank, the static energy cost if the MBMA would had only

TABLE II
CFRAC - BANK SIZE AND ENERGY COSTS IN JOULE

Bank Size (Kb) EActive EextraA
EextraB

EextraC

2 36.03 1.61e-4 32.08 1.35e-6 %
4 36.03 7.37e-5 38.35 1.03e-6 %
8 36.03 3.40e-5 42.38 6.87e-7 %

TABLE III
CFRAC - BANK SIZE AND ENERGY COSTS COMPARISON IN JOULE

Bank Size (Kb) Total EoneBank Saving
2 68,11 85,88 20 %
4 74.38 85,88 13 %
8 78.41 85,88 8.5 %

5 10 15 20 25 40
0

25

50

75

100

125

150

175

200

225

EextraA
EextraB
MBMA cost
One bank costBank size in Kb

No
rm

al
ize

d
co

st
s

15
 b

an
ks

 u
se

d

8
ba

nk
s u

se
d

5
ba

nk
s u

se
d

4
ba

nk
s u

se
d

3
ba

nk
s u

se
d

2
ba

nk
s u

se
d

Fig. 5. Tobi-Tris - Bank size and and energy costs

one bank. Numerical value for constant k is deducted from the
characteristics of the low power µPD431000A SRAM [7].
tPd→A and tA→Pd are over evaluated at 10 ms, twice the
µPD431000A operation recovery time from standby mode.

Fig. 5 shows the results for the Tobi-Tris game where all
values are normalized to EActive, 100 representing EActive

value. On Fig. 5 clearly appears the tradeoff between EextraA

and EextraB
to get the optimum bank size. For this application

small bank size is cost unefficient due to EextraA
and big

bank size is cost unefficient due to EextraB
. A tradeoff has

to be found in between and Fig. 5 shows that the most
cost efficient bank size is 15Kb. For Tobi-Tris application,
with a 15Kb bank size the MBMA is using 5 banks
and consumes about 175% of EActive, while a 75Kb single
bank architecture will consume about twice the EActive value.

Table IV shows statistics on Cfrac execution for 2Kb
banks. Tables II and III present the saving on static
energy consumption for 3 bank sizes. With this application
we note that EextraA

and EextraC
are relatively small

compare to EextraB
. This is due to the relatively small

period spend in switching on and off time compare to the
application run time. Each time a bank was switched on
the fragmentation was compute for all already powered on
banks. This gave us an average fragmentation of 0,27 with
a standard deviation of 0,31. But it is important to also
say that each time a new banks is switched on, on average
the already switched on banks occupation rate is 99%.
This clearly indicates that for this example fragmentation
is causing insignificant degradation on the MBMA costs.
The average occupation rate denotes the ratio over the
time between the bank size and the allocated objects size
in the bank. Figures from Table V indicates that banks
occupation rate have a bigger impact than fragmentation.
On average with a 2kb bank size only 52,91% of available
memory is allocated. This is mainly due to left alone objects
spread over several banks, preventing banks to be switched off.

Those results show that a substantial saving can be achieve
on static memory energy consumption through MBMA with-

out any application optimization nor customized allocation
policies. However it also indicates that further savings could
be obtained, mainly on EextraB

.

IX. RELATED WORK

Several researches have been done on data transformation
or migration and memory access scheduling to exploit MBMA
[8][9][10]. In contrast to these, this paper doesn’t explore
the possibilities to adapted the running application(s) on the
system but on the contrary how to set up an optimum MBMA
for a specific application. Nevertheless we believe that after
the optimal memory architecture has been set further cost
reductions can be achieve through application optimization. L.
Benini et al. propose an algorithm for automatic scratch-pad
RAMs partitioning from several application execution profiles
in [11]. In this work the scratch-pad RAMs doesn’t have the
possibility to be switched off and on. K. Flautner et al. present
in [12] a method using dynamic voltage scaling (DVS) for
putting cache lines in a low-power mode, called drowsy, where
data are preserved. In [12] only cache memories are addressed,
while our work addreses only static energy saving on the main
memory.

In [13] G. Chen et al. describe the impact of GC, com-
paction and bank size on an embedded Java environments with
MBMA. Our work differs from [13] in that we express the
optimization problem and explicitly describe the optimization
parameters influencing the system, providing in this manner
a total understanding on the relations between energy cost
evolution and optimization parameters.

X. CONCLUSION AND FUTURE WORK

In this paper we proposed a MBMA as solution to decrease
the static energy cost in memory and set up the equations rul-
ing the optimization problem. We showed that implementing
a MBMA and choosing appropriate bank size can lead to a
20% static energy saving without any software optimization,
nor bank need prediction, nor dedicated allocation policies.
We also observed that the banks occupation rate plays a
predominant role in the MBMA static energy cost.

Future work for this study includes more simulations with
deeper optimization parameter analyzes, especially on possible
bank need prediction algorithms and allocation policies. We
could also imagine to implement the MBMA management
process within the memory as it is done for intelligent memory
manager [14], leading to a probable performance improvement

TABLE IV
CFRAC - STATISTICS ON CFRAC EXECUTION FOR 2KB BANK SIZE

Total Number of Allocations: 59165
Total Number of Deallocations: 58596
Biggest allocated object in bytes: 1244
Maximum live objects size: 190041 bytes
162 times a bank has been switched on
71 times a bank has been switched off
Maximum numbers of powered on bank: 94∑

tA→Pd in mSec: 1620

TABLE V
CFRAC - STATISTICS ON THE BANKS OCCUPATION RATE FOR 2KB BANK

SIZE

Average occupation rate: 52,91 %
Maximal average occupation rate: 81,69 % (third bank)
Minimal average occupation rate: 0,15 % (94th bank)
Standard deviation: 23,73

for cache memory architecture. Moreover, we could also in-
vestigate the possibility to compact the allocated object within
all banks in order to increase the banks average occupation
rate. This might be impossible to implement for conventional
programming languages, such as C, Pascal, Ada, etc., but
would probably better fit with object oriented language like
Java. An other approach would be the use of region allocation
mechanism based on objects life time. Furthermore, in the case
of a multi applications platform, it is also worth exploring the
solution of having several sets of different bank sizes.

REFERENCES

[1] F. Catthoor, E. de Greef, and S. Suytack, Custom Memory Manage-
ment Methodology: Exploration of Memory Organisation for Embedded
Multimedia System Design. Kluwer Academic Publishers, 1998.

[2] J. A. Butts and G. S. Sohi, “A static power model for architects,” in
MICRO 33: Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, 2000.

[3] M. S. Johnstone and P. R. Wilson, “The memory fragmentation
problem: solved?” ACM SIGPLAN Notices, vol. 34, no. 3, pp. 26–36,
1999. [Online]. Available: citeseer.ist.psu.edu/johnstone97memory.html

[4] M. et al., “Leakage power estimation in srams,” UC Irvine, CECS
Technical report TR 03-32, Oct. 2003.

[5] D. Detlefs, A. Dosser, and B. Zorn, “Memory allocation costs in large
c and c++ programs,” Software-Pratcice and Experience, vol. 24(6), pp.
527–542, 1994.

[6] T. S. J. W. Toolkit, “http://java.sun.com/products/sjwtoolkit.”
[7] P. S. data sheet, “http://www.necel.com/memory/.”
[8] M. Kandemir, “Impact of data transformation on memory bank locality,”

in DATE’04.
[9] C.-G. Lyuh and T. Kim, “Memory access scheduling and binding

considering energy minimization in multi-bank memory systems,” in
DAC 2004.

[10] V. D. L. Luz, M. Kandemir, and I. Kolcu, “Automatic data migration for
reducing energy consumption in multi-bank memory systems,” in DAC,
2002.

[11] L. Benini, A. Macii, and M. Poncino, “A recursive algorithm for low-
power memory partitioning,” in ISLPED, 2000.

[12] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. N. Mudge, “Drowsy
caches: Simple techniques for reducing leakage power.” in ISCA, 2002,
pp. 148–157.

[13] G. Chen, R. Shetty, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
M. Wolczko, “Tuning garbage collection for reducing memory system
energy in an embedded java environment.” ACM Trans. Embedded
Comput. Syst., vol. 1, no. 1, pp. 27–55, 2002.

[14] M. Rezaei and K. M. Kavi, “Intelligent memory manager: Reducing
cache pollution due to memory management functions,” Journal of
Systems Architecture, vol. Volume 52, January 2006, 41-55.

	Text1: 1-4244-0155-0/06/$20.00 ©2006 IEEE
	Text3: 43
	Text10: 44
	Text11: 45
	Text15: 46
	Text16: 47
	Text17: 48
	Text18: 49

