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Abstract

The current trend in handheld devices is to provide users
with various embedded multimedia applications. Architec-
ture developers have to use dedicated hardware accelera-
tors to meet the timing requirements of these new appli-
cations. For physical and economical reasons the use of
dedicated monolithic hardware accelerators is impractical.
Instead, because the multimedia applications share com-
mon functionalities, monolithic hardware accelerators can
be split into smaller accelerators to remove redundancy and
save on silicon area. Unfortunately, lowering the granular-
ity of accelerators increases synchronization calls between
the main processor and the accelerators.

This paper presents a methodology for analyzing the im-
pact of short latency hardware accelerators on a typical em-
bedded system. We show that hardware accelerator granu-
larity has a direct effect on system performance in terms of
cache misses, execution time and thus energy consumption.

1. Introduction

Handheld devices integrate more and more functionality,
and providing more multimedia applications is becoming a
de facto requirement. Solutions are therefore needed for
accelerating these computationally intensive applications in
order to fulfill the requirements. The main acceleration ap-
proaches can be classified into two categories [8]:

1. A short portion of code is accelerated by extending the
processor instruction set with a corresponding instruc-
tion. In this case the new instruction has a typical ex-
ecution latency from 1 to 4 cycles, thus limiting the
size of the accelerated software. Developing longer
instruction would make the pipeline execution flow in-
efficient.

2. A full application functionality is accelerated with a
monolithic hardware accelerator used as peripheral de-
vice. The hardware accelerator is then synchronized
with the application by the means of interrupts. In
this case the hardware accelerator has a typical exe-
cution latency from several thousand cycles up to sev-
eral hundreds of thousands of cycles. However dedi-
cated monolithic hardware accelerators are onerous to
achieve due to physical and economical constraints.

The use of fine grained hardware accelerators has the ad-
vantage of saving silicon area by allowing collaborative use
of common accelerated functionalities among several ap-
plications, thus cutting down implementation redundancy
over several accelerators. For example, applications using
reconfigurable media coding (RMC) [3] [2], where arbitrary
combinations of algorithms may be assembled without pre-
defined standardization, could easily take advantage of col-
laborative use of common accelerated functionalities. Also
one could accelerate the time consuming DCT function in
a MPEG4 video decoder and share the created accelerator
with a JPEG decoder application. In such a case an access
management system or dedicated scheduler is needed in or-
der to avoid blocking state when two tasks would request
the use of an accelerator at the same time. The study of
such access management system or dedicated scheduler is
however beyond the scope of this paper. This would restrict
our study to a specific set of applications while we are here
exclusively interested in analyzing the impact of short la-
tency hardware accelerators on a typical embedded system.

Splitting a monolithic hardware accelerator into several
fine grained hardware accelerators can also in some cases
permit a pipelined execution of the accelerators. Never-
theless, it transfers control complexity to the software run-
ning on the processor and as a consequence increases the
synchronization frequency between the accelerators and the
processor. Synchronization between an accelerator and the
processor is needed to inform the processor about execution



Figure 1. Execution sequence for accelerator
synchronization [9]

termination of the accelerator. As a result, the use of short
latency hardware accelerators tends to amplify the interface
cost used for synchronization between the processor and the
hardware accelerators.

A hardware accelerator is typically used as a peripheral
device and synchronized with the OS running on the pro-
cessor with an interrupt [9]. Figure 1 shows the sequence of
operations needed in a multitasking environment when an
interrupt instructs the OS about the termination of an accel-
erator task. Task 9 previously called a hardware accelerator.
After termination of the accelerator execution an interrupt is
triggered by the accelerator which will wake up the calling
task 9 in order to fetch the computed results.

In a single tasking environment this extra synchroniza-
tion cost is limited to the execution of the interrupt mecha-
nism and handler as no scheduler is needed. But in a mul-
titasking environment the extrinsic (intra-task) cache be-
havior will be affected by the synchronization mechanism.
Each time an accelerator is called the content of the cache
is changed by the new scheduled task running during the
accelerator execution. This will result in a performance lost
called the cache refill penalty [7] [6] each time an acceler-
ator is called and an interrupt is triggered. The cache refill
penalty is due to an increase of cache misses each time a
context switch is performed. It introduces an increase in ex-
ecution cycles and energy consumption since a cache miss
leads to more bus and main memory activity. The cache
refill penalty could be reduced by using various cache par-
titioning approaches where the cache is logically divided
into multiple partitions and each partition is exclusively ac-
cessed by a single task [12] [5]. However such partition-
ing techniques are relevant only in the case the number of
tasks is fixed and completely defined for the whole system
life time. In the case of reconfigurable media coding ap-

plications, where arbitrary combinations of algorithms may
be used, cache partitioning approaches would require one
cache partition for each algorithm combination. This would
request an unreasonable total cache size.

Moreover, since the pace of instruction execution speeds
up much faster than main memory access time, the cache
refill penalty has increased and will in the future continue
to increase along with the difference between processor and
memory speed.

The major contribution of this paper is the establishment
of a simulation framework showing the overall cost due to
interrupts used for synchronization between the hardware
accelerators and the processor on a typical embedded sys-
tem. This overall cost is composed by (a) a direct cost due
to the use of hardware accelerators as peripheral devices and
(b) indirect cost due to the cache refill penalty.

The methodology presented in this paper can be re-used
with other platform configuration for evaluating the granu-
larity range of new hardware accelerators which will pro-
vide a good trade off between implementation redundancy
and synchronization cost.

The rest of this paper is organized as follow: In Section
2 we present the simulation framework established for this
study. Section 3 gives the simulation parameters used to run
the simulation framework, section 4 evaluates our results
and section 5 concludes the paper.

2. Simulation framework

The simulation framework presented in this section mod-
els a typical handheld device featuring basic multimedia ap-
plications. It includes a hardware platform, an operating
system and a set of applications and hardware accelerators.

The Sim-Panalyzer [10] processor simulator is used for
this study. Sim-Panalyzer is based on the SimpleScalar [1]
processor simulator and performs cycle accurate simulation
of a strongARM SA-1100 processor. It computes at every
simulated cycle the energy consumption of each module
constituting the ARM core (clock, alu, cache, etc.). Such
processor simulator permits the execution of an operating
system ported on ARM architecture.

As RTEMS 4.6.2 has been ported onto SimpleScalar
by Jack Whitham [11], RTEMS was chosen as the real-
time operating system for this study. This port includes a
SimpleScalar extension for supporting an interrupt based
programmable timer which is needed by RTEMS. RTEMS
is a free open source real-time operating system designed
for embedded systems and supporting a variety of applica-
tion programming interfaces (APIs) and interface standards.
This real time operating system allows us to execute a set of
applications as independent tasks in a pre-emptive multi-
tasking environment, a prerequisite for our simulation.



Table 1. Selected functions to be accelerated
Application Chosen functions Nb of calls
GSM coder APCM quantization() 532

GSM decoder GSM RPE Decoding() 532
JPEG comp. forward DCT() 128

JPEG decomp. h2v2 fancy upsample() 512

A set of 4 applications are chosen from the MiBench
benchmark suite [4]. These applications are present on typ-
ical handheld devices: a GSM audio coder, a GSM audio
decoder, a JPEG compressor and a JPEG decompressor. For
each application an execution time profiling was carried out
in order to identify the most time consuming functions. Out
of this profiling some functions were selected to be exe-
cuted on dedicated hardware accelerators. Table 1 shows
the selected functions and the number of times the func-
tions are called. Each application is implemented as a task
running on the OS. An idle task with low priority is also
implemented and is executed in the case all other tasks are
waiting for their hardware accelerators to terminate.

The presented applications and hardware accelerators
define our reference environment. In addition to this ref-
erence environment a fifth application was implemented.
This last application will be called the exploration appli-
cation, and will be used to explore the impact of a short
latency hardware accelerator synchronized by interrupts on
the overall performance of the system. The exploration ap-
plication can be seen as an added task disturbing the refer-
ence environment.

Figure 2 represents the parameters influencing the ex-
ecution pattern of the exploration application in a single
task environment. Executed in the pre-emptive multitask-
ing environment of our simulation framework, the OS will
schedule other tasks to run during the suspended state of
the exploration application. The exploration application is
the task used for measuring the cost of short latency hard-
ware accelerators. One hardware accelerator with variable
latency is associated with the exploration application. Thus
the simulation framework requires two parameters: (a) the
length in cycles of execution performed before a call to the
hardware accelerator is done (see Figure 2) and (b) the la-
tency in cycles of its associated accelerator. When the accel-
erator execution terminates the exploration application will
be scheduled by the OS to run depending on its priority and
the priority of other tasks.

The complete simulation framework now consists of five
tasks and their respective hardware accelerators. Figure 3
shows the system architecture used for this study. The five
tasks running on the RTEMS operating system need to com-
municate with their corresponding hardware accelerators.
For each accelerator a new system call is assigned and Sim-
Panalyzer is modified to catch these five new system calls.

Figure 2. The exploration application in single
task environment

Figure 4 represents the sequence of executed operations
following a hardware accelerator call. These operations are
explained as the following:

1. Sim-Panalyzer reads the possible parameters from de-
fined registers and executes the hardware accelerator
job. Then it writes the possible results on defined reg-
isters.

2. Sim-Panalyzer sets the corresponding interrupt flag
valid in X cycles, X being the accelerator latency.

3. RTEMS suspends the calling task by changing its pri-
ority to a low level, making the task non-executable.

4. RTEMS schedules the remained non-suspended tasks
to run.

5. The interrupt handler will acknowledge the triggered
interrupt and call the OS to resume the corresponding
task by restoring its previous priority.

6. Sim-Panalyzer gets the interrupt acknowledgement
and clears the associated flags.

7. RTEMS schedules all non-suspended tasks to run.

It is important to note that the hardware accelerator jobs
are executed within the Sim-Panalyzer simulator, which
means that their executions are performed outside the sim-
ulated platform. The hardware accelerator execution costs,
including possible data transfer between the processor and
accelerators, are thus not taken into account in this study.
This omission does not affect the measurements because the
cost due to the use of interrupts and the indirect cache refill

Figure 3. System architecture



Figure 4. Sequence of operations

penalty cost are not affected by the internal accelerator ac-
tivities or read/write operations initiated by the accelerator.

3. Simulation parameters

The simulation parameters bind the simulation frame-
work within a defined execution window. This section de-
fines the constant and variable parameters and their corre-
sponding values used in the simulation framework.

3.1 Sim-Panalyzer

Sim-Panalyzer defines the processor parameters and the
configuration of the caches. For this study the processor
speed was set at 233 MHz. The configuration for the level
1 instruction cache, level 1 data cache and the unified level
2 cache is presented on table 2. Table 3 shows the different
latencies for each memory level. This configuration tries to
target an average embedded system performance that could
be used for a multimedia handheld device. The relatively
small level 1 and 2 caches compensate for the relatively
small footprint of the benchmark applications (see Appli-
cations and HW accelerators subsection). All other param-
eters used by Sim-Panalyzer were set to their default values.

3.2 RTEMS

RTEMS has a few parameters influencing the timing be-
havior of the executed tasks. For this study all tasks, except
the idle task, have their priority levels set to 10. The idle

Table 2. Caches configuration
Caches Associativity Size Nb blocks Block Size

il1 direct mapped 4 Kb 128 32 bytes
dl1 direct mapped 4 Kb 128 32 bytes
ul2 4-way 8 Kb 256 32 bytes

Table 3. Memory Latencies with a clock fre-
quency of 233Mhz

il1 dl1 ul2 main memory main memory
first chunk access inter chunk access

Latency 2 2 6 30 4in cycles

task has a priority of 20. Following a call to a hardware ac-
celerator the task priority level is changed to 250, making
the task un-executable by the RTEMS scheduler. The inter-
rupt handler will restore the task priority level to 10 when
the corresponding interrupt is triggered. The preemptive ex-
ecution is activated and the time slice is set to 5 ticks, one
tick representing one hundredth of a second. In absence of
hardware accelerator interrupt, the scheduler is then set to
run 20 times per second.

3.3 Applications and HW accelerators

The hardware accelerators used by the applications
defining the reference environment have fixed execution la-
tencies and table 4 shows their latency values in cycles. As
input data, the jpeg compression and decompression appli-
cation process a 512 by 512 pixels image, and the GSM
encoder and decoder process a 2 seconds 8-bit audio sig-
nal. The executable file containing the 5 applications and
the idle task consists of 370kB of instructions and 17kB of
data.

Table 4. Hardware accelerator latencies
Application Accelerator latency
GSM coder 2500 cycles

GSM decoder 2500 cycles
JPEG comp. 3000 cycles

JPEG decomp. 2500 cycles

The exploration application implements an empty loop
in ARM assembly code followed by a system call to its
hardware accelerator.

With such rudimentary implementation the exploration
application is used to look into the effect of hardware ac-
celerator granularity on the overall system running several
other applications. This implementation has a very small
instruction and data footprint in order to interfere as little
as possible with the cache behavior. At first only the im-
pact of having different hardware granularities is studied.
The hardware granularity is adjusted by dividing at the same
time the loop length and the accelerator latency by a mul-
tiple of 2. Splitting the hardware accelerator into 2 inde-
pendent smaller accelerators is thus simulated by dividing
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Figure 5. Influence of granularity on execution time

the exploration application loop length and its accelerator
latency by 2.

A second measurement series is performed with the ex-
ploration application having data accesses after the loop.
Data accesses are obtained by copying in an array of 200
integers the nth array value into the n-1 location. Adding
data accesses in the exploration application is done in order
to obtain a more realistic application behavior.

4. Results

We run the simulation framework with different granu-
larities for the hardware accelerators of the exploration ap-
plication. For each granularity the loop length of the explo-
ration application is set to the accelerator latency value. For
all measurements nine different granularities are used: from
the coarse-grained system having 10 calls to a 131072 cy-
cles hardware accelerator latency to the fine-grained system
calling 2560 times a hardware accelerator with a latency of
512 cycles. We express the granularity in term of cycles: a
granularity of 131072 represents a system having one hard-
ware accelerator with a latency of 131072 cycles and called
in our experiment 10 times. In the same way, a granularity
of 65536 represents a system with one hardware accelera-
tor having a latency of 65536 cycles and called 20 times.
In our experiment a granularity of 65536 is then equivalent
to a system with two hardware accelerators being called 10
times and both having a 32768 cycles latency, introducing a
split coefficient of 2.

As we can see from Figure 4, if the latency is too short
the accelerator will trigger an interrupt before the RTOS fin-
ished to suspend the calling task, which will result in dead-

locking the calling task. In our simulation framework the
fastest accelerator we are able to simulate is an accelerator
with a 512 cycles latency. This indicates the mechanism for
lowering a task priority in RTEMS (sequence 3 on Figure
4) takes less than 512 cycles.

All results presented in this section are relative measure-
ments using the values obtained for the coarse-grained sys-
tem as reference. In other words, all figures trace the rel-
ative evolution in percent of the measured elements com-
pared to the values obtained for the system having a granu-
larity of 131072. The figure legends indicate the results for
the second measurement series with the term 2nd.

Figure 5 presents for the two exploration applications
the evolutions of the number of executed instructions, taken
branches and total execution time in cycles for all the tasks
running on the system. For the two exploration applica-
tions the three measurements show an exponential increase
when the hardware granularity is reduced. For the explo-
ration application having data accesses the total execution
time increases by about 11% with the finest grained accel-
erator compared to the coarse-grained implementation. This
is about twice of the increase obtained by the rudimentary
exploration application. This difference can be explained by
an increase in data cache misses, being presented afterward,
due to the extra data accesses.

Figure 6 shows for the two exploration applications the
granularity influence on level 1 instruction cache. On Fig-
ure 6 il1.pdissipation represents the total energy dissipated
by the cache. The two exploration applications present sim-
ilar results concerning the number of cache misses, with
an increase of almost 25% when fine grained accelerators
are used. This is explained by the fact that the two ex-



Figure 6. Influence of granularity on level 1 instruction cache

ploration applications have little difference in term of in-
struction footprint. Indeed only very few instructions were
added in order to implement extra data accesses. However
the number of cache hits is bigger with the second explo-
ration application due to the added data accesses. Thus, as
the number of cache misses is equivalent for the two explo-
ration applications, the cache miss rate for the second explo-
ration application is increasing at a slower rate. The leakage
current is a static cost in a memory and its resulting energy
consumption is only dependent on the time the memory is
in use. This explains why the energy, il1.leakage, wasted
due to leakage current inside the cache is increasing at the
same rate than the increase of the total execution time. On
the other hand the energy consumption due to switching ac-
tivities in a memory is dependent on the number of occur-
ring read and write accesses. As a general comment, one
can say that decreasing the hardware granularity will have a
relatively large impact on the level 1 instruction cache miss
rate with a 25% increase for the finest grained accelerator
compared to the coarse-grained implementation.

The granularity influence on the level 1 data cache for
the two exploration applications is presented on Figure 7.
Adding data accesses to the exploration application results
in a roughly 30% cost increase compared to the rudimentary
exploration application implementation. As the number of
misses and hits increases in a similar proportion in the level
1 data caches, the value for the cache miss rate stays equal
for the two exploration applications. Figure 7 shows that for
the finest grained accelerator we obtain a 20% cache miss
and 10% energy consumption increase in the level 1 data
cache for the second exploration application. As a general
comment we observe that decreasing the hardware granu-

larity will primarily introduce an increase in level 1 data
misses, thus driving an increase of the cache energy con-
sumption.

Figure 8 shows for the two exploration applications the
influence of granularity on the unified level 2 cache. An in-
teresting observation is the drop of the unified level 2 cache
miss rate with the reduction of hardware granularity. The
miss rate decrease is due to a fast increase of the number of
cache hits while the number of cache misses stays almost
constant. For the two exploration applications, reducing the
hardware granularity increases significantly the number of
cache hits which raises the energy consumption because of
the increase in switching activity.

As a general comment we can say that decreasing the
hardware accelerator granularity on a typical embedded sys-
tem relying on interrupt mechanism for synchronization be-
tween the accelerators and the processor will slow down the
system execution time not only by increasing the number
of instructions to execute but also by increasing the level
one and two cache hits and misses. On the simulated sys-
tem, cost increases start to be seen from the granularity level
4096 which correspond to splitting the reference hardware
accelerator into 32 separate smaller accelerators.

4.1 Implication of the results

For the two exploration applications we also measured
the average time needed to perform the synchronization be-
tween the accelerators and the processor. For the simple
exploration applications each synchronization costs on av-
erage an extra 1375 cycles, with a standard deviation of 365
cycles, while for the second exploration application it costs
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Figure 7. Influence of granularity on level 1 data cache

131072 65536 32768 16384 8192 4096 2048 1024 512
-15

-10

-5

0

5

10

15

20

25

30
ul2.hits
2nd-ul2.hits
ul2.misses
2nd-ul2.misses
ul2.miss_rate
2nd-ul2.miss_rate

ul2.switching
2nd-ul2.switching
ul2.leakage
2nd-ul2.leakage
ul2.pdissipation
ul2.pdissipation

HW accelerator granularity

re
la

tiv
e 

ev
ol

ut
io

n 
in

 p
er

ce
nt

Figure 8. Influence of granularity on level 2 unified cache



on average an extra 3250 cycles with a standard deviation
of 315 cycles. The cost difference between the two explo-
ration applications is explained by the increase of the cache
refill penalty in the second exploration application.

If one extracts a discrete cosine transform out of a video
decoder implementation and use it as a hardware accelera-
tor decoding a QVGA (320x240 pixels) video at 25 frames
per second, the hardware accelerator will be called 45 000
times per second. Assuming on average a total cost of 3250
cycles per call, 145 Millions processing cycles per second
will be wasted due to the overhead introduced by the syn-
chronization mechanism between the processor and hard-
ware accelerator.

5. Conclusion

In this study we presented a methodology for analyzing
the impact of short latency hardware accelerators on a typ-
ical embedded system. The presented methodology can be
re-used with other platform configurations for evaluating
the granularity range of new hardware accelerators which
will provide a good trade off between implementation re-
dundancy and synchronization cost.

We demonstrated that when approaching the bottom line
imposed by the RTOS speed in the mechanism of suspend-
ing a task, decreasing the hardware accelerator granular-
ity will introduce relatively important extra costs in terms
of cache misses, execution time and energy consumption.
Therefore using a hardware accelerator can become ineffi-
cient if the accelerator latency is too short. This is due to an
increase of the number of instructions to execute and num-
ber of level one and two cache hits and misses. Reducing
the OS mechanism speed used in synchronization between
the accelerators and the processor will push down the min-
imum execution latency the accelerators can have, but will
also considerably increase the system execution time and
energy consumption. As a direct consequence, the addi-
tional cost due to the synchronization introduced by the fine
grained hardware accelerator will be in some case prepon-
derant on the gain obtained by the accelerated software.

If one needs to implement a frequently used hardware
accelerator that has a short latency, an original “interrupt
and context switch free” synchronization mechanism needs
to be used in order to provide an efficient solution.
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