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Abstract—We approach the construction of design methodolo-
gies for on-chip multiprocessor platforms, with the focus on the
SegBus, a segmented bus platform. We study how applications
can be mapped on such distributed architecture and show how to
build the concrete level software procedures that will coordinate
the control flow on the platform. The approach employs models
developed in the Matlab-Simulink environment considering also
a unified representation of both platform and application. The
running example is represented by the H.264 encoder. Allocation
of processing elements on the platform, structure and functional-
ity and the eventual control code for arbiters are the main topics
described here.

I. INTRODUCTION

The tremendous technological advances of the last decade
or so, in the direction of ever smaller technology figures,
induced a matching increase of the complexity of modern
silicon devices. It is possible today to transfer architectures
previously only considered at computer levels into the bound-
aries of single chip systems. The intent is to implement the
increasing requirements concerning design features like per-
formance, power consumption, adaptability, reusability, apart
from allowing a better understanding of the huge increase in
complexity. In general, these architectures attempt to exploit
at maximum the benefits from current technologies, with
respect to the mentioned design characteristics, while allowing
a transparency with respect to newer technological advances.

In this context, distributed on-chip architectures, or multi-
core, or multiprocessor system-on-chip (MPSOC) paradigm
gains increasing support from system developers. Instances
of such architectures are mostly known as networks-on-chip
(NOC) or segmented buses. However, while the tasks of
hardware designers seem to be, at least at higher levels of
abstraction, eased by the employment of MPSOC architec-
tures, these pose great challenges in front of application and
software developers. The latter hardly see effort benefits in
MPSOC designs, as the traditional software development is
based on sequential, single processor design process.

One of the reasons behind the difficulties in MPSOC
development is the lack of design methodologies [2]. Due
to environmental and application requirements, the operation
and communication characteristics of the employed devices
and architectural instances may vary greatly from system to
system. Performance measures are intrinsically related to the
specifics of the underlying hardware platform. The lack of
information availability at the higher abstraction (application)

layers affects how specification requirements are reflected
in the final system realization. Another important issue is
the control of data transfers between different devices, as
concurrent communication will certainly create conflicting
situations.

At the same time, there is a sensible growth in the demand
for multimedia applications performance. In order to address
such issue, both performant platforms, but as well efficient
design methodologies need to be developed. Employment of
Intellectual Property (IP) designs is one of the high require-
ments in order to allow a fast deployment of new design so-
lutions. Alternatively, hardware design languages might prove
at times to be too restrictive, as only a small part of the design
community has good respective knowledge. The tendency is
therefore to replace, or to make transparent, whenever possible,
VHDL (for instance) based design with higher level constructs,
for instance C-like languages. The new challenges reside now
in having a good platform representation at these higher levels,
such that early evaluations are possible to perform.

The present work delves into aspects related to design
methodologies for MPSOC. We describe the principles of a
stepwise design methodology that targets a distributed on-chip
architecture, namely the SegBus platform [11]. We continue
the work of previous research results in the direction of raising
the levels of abstraction at which such methodology is benefi-
cial. We also take a step further in the direction of automation,
by providing platform models in the framework offered by
Matlab [3]. We are interested in Matlab/Simulink as a high
level design environment which allows the exploration of
allocation results and offers the possibility for early assessment
of application - platform mapping.
Related work. Even though multiprocessing was not part
of the mainstream practices, studies reflecting on this topic
have been around for a long period, now, mostly considering
computer networks. In recent years, however, research started
to address on-chip solutions.

The most common current methods to deal with con-
currency are threads, semaphores, mutual exclusion locks,
etc. However, these approaches are intended to build virtual
parallel environments, most often not well suited for current
heterogeneous multi processor systems. For instance, threads
are defined as sequential processes, exchanging information
through shared memory resources, and several synchronization
methods must be implemented in order the ensure the security



and reliability of the shared data. This is because threads are
highly non-deterministic, and a immense effort is dedicated to
establishing an order of execution.

Our approach here is based on the existence of segment and
central arbiters that contain the schedule for data exchanges
between devices within the same segment, or in different ones.
Out of a possible group of ”enabled” transfers, these devices,
with a built-in policy of granting select the appropriate one.
The present study builds on the work of Truscan et. al [14], and
it provides an improved tooling support for the development
of applications.

Lahiri et al. [8] address design optimality for a segmented
bus platform similar to the SegBus. The segmented bus ar-
chitecture [8] is, however, memoryless, different to our case,
where the segments are separated by storage devices. More-
over, the protocols are fit to one application, and contentions
can be extracted following a higher level simulation. The ap-
proach introduces a valuable simulation-based trace extraction,
to indicate the communication patterns, considered consistent,
after which an algorithmic solution is found to the allocation
problem. Arbitration issues are not specifically addressed, and
hence, possible contention problems and precedence relations
are not analyzed. The intermediate arbitration tables, in our
case, solve both the contention and the precedence issues.

Srinivasan et al. [12] introduce an AMBA-like hierarchy of
a segmented bus. The authors employ genetic algorithms for
finding optimal segmented bus allocations, but the methodol-
ogy is not continued to other levels of abstraction. There is
a similarity with [8], in the sense that no control procedures,
either for local or inter-segment activities, is presented. The
arbitration is possibly organized following AMBA protocols,
but this may affect both allocation optimality and solving the
conflicting task execution.

De Jong [7] elaborates a system design flow based on UML
and SDL, mainly for the purpose of control, communication
and synchronization refinement of both hardware and software
components. As it pertains more to the area of software-
hardware co-design, this study is viewed as a complementary
research to the present work.

Dekeyser et al. [6] propose a “Y-chart” methodological
approach to multiple SOC system design with UML. While the
results are applicable to our specific platform-based approach,
in general, several design steps, such as application and
platform refinement, granularity, communication restrictions,
are not captured in [6].

The approach we illustrate here does not impose restric-
tions towards other MPSOC platforms. We are the moment
exploring the creation of network-on-chip [5] models in order
to enlarge the basis of the solution. Considered together with
earlier results [14] on high level design methodologies, we
approach the realisation of a complete framework for the
design of multiprocessor systems.

II. BACKGOUND

A. Segmented Bus Architecture

A segmented bus is a bus which is partitioned into two or
more segments. Each segment acts as a normal bus between
modules that are connected to it and operates in parallel with
other segments. Neighboring segments can be dynamically
connected to each other in order to establish a connection
between modules located in different segments. In this case,
all dynamically connected segments act as a single bus. Due to
the segmentation of this shared resource, parallel transactions
can take place, thus increasing the performance. A high level
block diagram of the segmented bus system which we consider
in the following sections is illustrated in Figure 1.

Fig. 1. Segmented bus structure.

The SegBus platform [11] is thought as having a single cen-
tral arbitration unit (CA) and several local segment arbitration
units (SA), one for each segment. The SA of each bus segment
decides which device, generically referred as functional unit
(FU), within the segment will get access to the bus in the
following transfer burst.
Platform communication. Within a segment, data transfers
follow a “traditional” bus-based protocol, with SAs arbitrating
the access to local resources. The inter-segment communica-
tion is a package based, circuit switched approach, with the
CA having the central role. The interface components between
adjacent segments, the border units - BUs, are basically FIFO
elements with some additional logic, controlled by the CA. A
brief description of the communication is given as follows.

Whenever one SA recognizes that a request for data transfer
targets a module outside its own segment, it forwards the
request to the CA. This one identifies the target segment
address and decides which segments need to be dynamically
connected in order to establish a link between the initiating and
targeted devices. When this connection is ready, the initiating
device is granted the bus access. This one starts filling the
buffer of the appropriate bridge with the package data. The
latter is taken into account by the corresponding next segment
SA which forwards it further, until it reaches the destination.
At this point, the SA of the targeted segment routes the
package to the own segment lines, from here it is collected
by the targeted device.

A transfer from the initiating segment k to the target
segment n is represented in Figure 2. The segments from k



to n are released for possible other inter-segment operations
in a cascaded manner, from the source k to the destination,
n. However, the figure stresses the relatively long duration of
an inter-segment transfer: whenever the data has arrived in
the BU FIFOs, such a transaction collides with on-going local
activities. A solution in this sense, that is, speeding up the
global communication, comes in the form of interrupts [13]:
when a data package arrives at one BU, the local operations of
the next segment to be traversed is interrupted, to make way
for the inter-segment package.

Fig. 2. Inter-segment package transfer.

In addition, it becomes necessary that arbitration at CA
level, that is, for global transfers, implements the application
dataflow, with respect to these transfers. Hence, one has
to implement accurate control procedures for inter-segment
transfers, as possible conflicting requests must be appropriately
satisfied, in order to reach performance requirements and to
correctly implement applications.
Platform characteristics. The SegBus platform specifics con-
sist in a set of global parameters that have a great impact on
the implementation [11]: (i) topology - a linear or circular
geometry; (ii) number of segments; (iii) size of the package.

III. DESIGN METHODOLOGY

Truscan et. al [14] introduced a MDA approach to appli-
cation development for the SegBus platform. We complement
that here with additional tooling support coming in the form
of Matlab / Simulink descriptions. As a running example we
employ a H.264 encoder [10] - Figure 3.

The proposed design flow is illustrated in Figure 4.

A. Tool Environment

Matlab / Simulink. Matlab Simulink Environment [3] is a tool
commonly used for modeling, simulation, analysis and profil-
ing of multi domain systems. These systems range from a sim-
ple adder to complex application like Video coding, transceiver
synchronization in communication systems or control system
design. It comprises of different block sets, libraries and pro-
gramming functionalities. After the application specification,
a working Simulink model can be modeled and application
algorithm can be verified using different configurations and
random as well as normal inputs.

Here, we use the ”Video and image processing” blockset
from Simulink to model the H.264 Encoder application. This
blockset provides a variety of functions that can be used for
modeling of Image and Video applications.

The Matlab Simulink environment also supports obtaining
the communication matrix necessary to compute the optimal
allocation scheme for the platform.
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Fig. 4. SegBus Design Process

Altera. At the time, the implementation technology for the
SegBus platform is offered by Altera [1] devices. Hence, after
application modeling and platform customization the flow is
taken into the Quartus design environment, where previously
defined functional units are mapped on actual devices. Follow-
ing compilation, a simulation is performed within a Modelsim
[4] framework.
Application development. We start by analyzing the targeted
application by splitting it in processes. The interaction between
these is observed in terms of input-output data-flows. In subse-
quent steps the top-level process is decomposed hierarchically
into less complex processes and the corresponding data-flows
between these processes.

The decomposition process is based on designer’s expe-
rience and ends when the granularity level of the identified
processes maps to existent library elements or devices that can
be developed by the design team. The communication between
processes is organized as a Packet SDF diagram [14].
The Packet SDF. A PSDF comprises mainly two elements:
processes and data flows; data is, however, organized in
packets. Processes transform input data packets into output



Fig. 3. The H.264 application specification

ones, whereas packet flows carry data from one process to
another. A transaction represents the sending of one data
packet by one source process to another, target process, or
towards the system output. A packet flow is a tuple of two
values, P and T . The P value represents the number of
successive, same size transactions emitted by the same source,
towards the same destination; the T value is a relative ordering
number among the (package) flows in one given system. Thus,
a flow is understood as the number of packets issued by the
same process, targeting the same destination and having the
same ordering number.

The Packet SDF (PSDF) of a certain system is a sequence
of packet flows, < (P1, T1), . . . , (Pn, Tn) >, where ∀i, j ∈
{1, . . . , n} · Pi 6= Pj and T1 ≤ T2 ≤ . . . ≤ Tn.

The non-strictness of the relation between T values of the
above definition models the possibility of several flows to
coexist at moments in the execution of the system. In the case
of the SegBus platform, this most often will describe local
flows, that is flows where the source and the destination are
situated in the same segment. However, considering a segment
number larger than 3, global flows, where the source and
the destination are in different segments, are also possible
to be characterized by the same ordering number. In this
case, it means that the CA, if possible, allows a simultaneous
execution of transactions from all the “same number” global
flows.

An additional and optional third dimension is added to
the definition of the packet flow - the package kind. This
(another number) identifies flows from the same source, but
with different destinations, where the content of the data is
the same. This will allow a simplification of the overall PSDF
scheme and is the basis for development of services such as
message broadcasting.

For the H.264 encoder, the corresponding diagram is shown
in Fig. 7. For the moment, the reader should ignore the
partition in segments, which is based on developments in
the next sections. The processing elements (P0, P1, . . . , P12)
correspond respectively to YUV generator, Chroma resampler,

Motion vector estimator units, etc.

B. Application Partitioning

We consider that the application is already partitioned and
mapped on the available devices as described in Fig. 7. In
general,this means also that all possible software procedures
are already mapped within the hardware devices. However, this
is not the case in Fig. 7, where all the devices are hardware
elements.

At this moment, we can extract the communication features,
that is, the frequency with which the various devices commu-
nicate with each other. We group these frequencies in the so-
called ”communication matrix”. For the application at hand,
this matrix is illustrated in Fig. 5. The matrix was obtained
by using the signal dimension option in Simulink.

The matrix is fed into the PlaceTool programme which de-
livers the allocation costs for various scenarios [9]. The results
of the exercise are given in Fig. 6. While we can observe
that already 2 segment platform will deliver the best of the
performance improvement. The improvement diminishes with
the number of segments, due to the additional communication
overhead. However, for the sake of exemplification, we select
the solution with 3 segments in our case.

The resulting segmented application model is obtained as
in Fig. 7.

C. Code Generation

The segmentation process, while providing premises for a
more performant execution, it raises the complexity related to
finding a (good) schedule for both the processing tasks, but,
mostly for the data transfers. The communication matrix is
just a means to obtain an as optimal as possible allocation of
resources with respect to global (inter-segment) transfers, but
in order to implement the application functionality, both local
(intra-segment) and global transfers must be appropriately
scheduled.

The PSDF representation helps in creating such a commu-
nication & processing schedule. This is applied in two turns,
once at the segment level and once at the platform level, in



From / To P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P0 0 35840 17920 17920 17920 0 0 0 0 0 0 0 0

P1 0 0 0 0 8960 0 0 0 0 0 0 0 0

P2 0 0 0 12780 0 0 0 0 0 0 0 0 0

P3 0 0 0 0 176 0 0 176 0 0 0 0 0

P4 0 0 0 0 0 26880 0 0 0 0 26880 0 0

P5 0 0 0 0 0 0 13440 0 0 0 0 0 0

P6 0 0 0 0 0 0 0 4200 4200 0 0 0 0

P7 0 0 0 0 0 0 0 0 0 0 0 0 0

P8 0 0 0 0 0 0 0 0 0 1536 0 0 0

P9 0 0 0 0 0 0 0 0 0 0 1536 0 0

P10 0 0 0 0 0 0 0 0 0 0 0 0 14136

P11 0 0 0 0 14539 0 0 0 0 0 0 0 0

P12 0 0 0 0 0 0 0 0 0 0 0 14539 0

Fig. 5. The communication matrix for the example

4 143100 9 || 8 || 4 5 6 7 10 11 12 || 0 1 2 3 -39%

2 132000 4 5 6 7 8 9 10 11 12 || 0 1 2 3 -43%

3 137400 4 5 6 7 8 10 11 12 || 0 1 2 3 || 9 -41%

Nr. Segs Cost Allocation Improvement

1 233000 0 1 2 3 4 5 6 7 8 9 10 11 12 100%

Fig. 6. The allocation and associated cost results.
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Fig. 7. PSDF application specification

order to obtain the programme that will coordinate the activity
of the segment and central arbiters, respectively.
Arbitration programmes. A programme at the level of the
SAs illustrates the schedule that must be implemented by the
respective arbiter unit. For a given (single) application, this
is simply the order in which the masters of the segment can
be granted access to the local or global bus lines for data
transfers. However, a simple ordering will render ineffective
the operation of bus splitting. The arbiters should allow,
whenever possible, a certain kind of parallelism (interleaving)
in data transfers. This, superimposed over the simultaneous
processing activities of (some of) the masters within the
segment will offer the benefits in performance.

The programme for both the SAs and the CA is a grouped
collection of VHDL statements placed in the controlling
process of the arbiter’s specification. Through specific mech-
anisms (described in the further paragraphs) the sequential
execution of VHDL statements within a process is improved
with a non-deterministic interleaved execution model. This
gives the possibility for several lines to be perceived as
executed in parallel, whenever appropriate.

A programme line for a SA is a VHDL statement that can
be interpreted as an instruction with several fields - Fig. 8,
with the following meaning.

1) PC. This is the Programme Counter, providing reference
to the lines of instructions possible to be accessed from
other instructions.

2) Guard. The Guard signals if the respective line is
possible to be selected for execution. This is to enforce
the necessary order of data transfers. Devices not part of
a granted transfer may, meanwhile, proceed with their
processing tasks. The value of the guard is a natural
number: 0 means the line is enabled and any number
larger than this will mark the line as disabled. In the
first case, the arbiter checks the ”rest” of the instruction
for a possible granting operation, if additional conditions
are met; in the latter, the arbiter operation ignores the
information. Several lines with guards evaluated to 0 are
potentially selectable for granting operation. However,
only one of the instructions can be actually ”executed”.

3) Source. This field contains the address of the requesting
master - the initiator of a transfer request. Devices on
the platform (masters, slaves) are identified by an unique
number.

4) Destination. This field contains the address of the tar-
geted device - the slave.

5) Dest Seg. This field contains the address of the segment
where the Destination is located.



6) toGrant. This is the instruction for the arbiter to grant
the requesting master. At this moment the specification
is obsolete, but the field is preserved for future develop-
ments.

7) Count. This is represented as a natural number contain-
ing the number of consequent packages to be transferred
by a master. Every time the master is granted and
performs the transfer, this number is decreased. When
it reaches 0, the line cannot be anymore selected for
execution, even if the Grant field is also 0.

8) enables. Disabled lines will become enabled during the
execution of the programme. The enables field (one per
instruction) specifies which line can be moved towards
enabledness at the end of the current transfer. This is
achieved by subtracting 1 from the present value of the
Guard field of the respective line.

Guard Source Destination Dest_Seg toGrant count enables

0 2 5 0 2 200 6

Example:

1 6 3 0 6 120 9

PC

5

6

Fig. 8. The structure of the programme line, with two examples.

The programme construction considers also requests coming
from BUs as events to be part of schedules. In this case, as
an actual example, it may be interesting to observe the whole
code describing the operation of the SA for segment 2 of the
H.264 application, given as follows.
program(0) <= (guard => 0, source => RFL, dest => 9,

dest_seg => 2, togrant => RFL, count => 24,
enables => 1);

program(1) <= (guard => 1, source => 17, dest => 5,
dest_seg => 1, togrant => 17, count => 24,
enables => 0);

In the above, the ”RFL” term stands for ”request from left”.
In brief, and in correlation with the flow described in Fig. 7,
the SA of segment 2 waits first that a transfer is received from
left (segment 1), after which a transfer from the local device
(P9 - Fig. 7) is able to be executed, targeting a device in
segment 1.

The code for the CA has a similar structure, with the
exception of the Destination field.

IV. EXPERIMENTAL RESULTS

We have applied the illustrated techniques for the implemen-
tation of a H.264 model on a traditional single bus platform
and on a 3 segment SegBus platform, both on the same Stratix
III device. The SegBus solution is characterized by a linear
topology (as in Fig. 7) and 66 words package - similar for
the single bus. The first one run at a clock frequency of 100
MHz, while the SegBus solution utilizes four clock domains
(one for each segment - 100MHz, 60MHz, 50MHz and one
for the CA - 30 MHz).

The performance (throughput) results came close (within
1%) to the ones anticipated by the Fig. 6 for the respective
solution. Intuitively, this also means an approximated 40%

reduction in power. What is even more satisfying was a further
12% improvement in power consumption, as approximated
by the Altera’s PowerPlay Power Analyzer tool, both in a
vectorless and in a toggle-rate based approach. While the core
dynamic power dissipation was in the favor of the single bus
solution (due to the additional switching activity of the BUs),
the I / O and the total power dissipation go in the favor of the
SegBus platform.

V. CONCLUSIONS

The methodological chain used in this study (Matlab-DSP
Builder-Quartus-Modelsim) proved to offer a suitable frame-
work for the application development on the SegBus platform.
We have described the employment of arbiter programmes
for scheduling with a mostly static characteristic, but with a
certain degree of (useful) non-determinism in practice.

The approach showed improvements over previous results,
even in the context of a much more complex application. The
power estimates are encouraging for further optimization / tool
based approaches.
Future work. A very necessary step is in the continuation
of automation with respect to the design flow. UML-based
solutions may be one way to support a more straightforward
integration of the process while also providing at least guid-
ance for tool development.

Apart from supported services (preempted transfers), dy-
namic scheduling, broadcasting, and possibly virtual channel-
ing are future topics for analysis and implementation in the
context of the SegBus platform.
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