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Abstract

We survey in this paper the main differences among three variants
of an intramolecular model for gene assembly: the general, the simple,
and the elementary models. We formalize all of them in terms of sort-
ing signed permutations and compare their behavior with respect to: (i)
completeness, (ii) confluence (with the notion defined in three different se-
tups), (iii) decidability, (iv) characterization of the sortable permutations
in each model, (v) sequential complexity, and (vi) experimental validation.

1 Introduction

Gene assembly in ciliates has been subject of intense research in the last few
years, both regarding the molecular details driving it, as well as the theoretical
implications of some mathematical models proposed for it, see [6, 9, 10, 16, 17,
23, 1, 20]. For a brief introduction to the biology of ciliates, especially to the
gene assembly process we refer to [6]. We only recall here that ciliates have
two types of nuclei: micronuclei and macronuclei. The macronuclear genes are
contiguous sequences of nucleotides. The micronuclear genes on the other hand,
are split into coding blocks (called MDSs), shuffled and separated by noncoding
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blocks (called IESs). This shuffling and inversion of MDSs is especially visible
in a species of ciliates called stichotrichs. At some point during their life cycle,
ciliates destroy all macronuclei and develop new ones from the micronuclei; in
the process they must assemble correctly all coding blocks of the micronuclear
genes. This process is called gene assembly.

We focus in this paper on an intramolecular model for gene assembly pro-
posed in [9, 10] (called in the sequel the general model) and on two of its vari-
ants: the simple model, introduced in [13] and the elementary model, introduced
in [15].

The general model consists of three molecular operations, ld, hi, dlad, see [9,
10], allowing the MDSs participating in an operation to be located anywhere
along the molecule. Arguing on the principle of parsimony, a simplified model
was introduced in [13], asking that all operations are applied ‘locally’. This
simple model consists of the same three molecular operations as the general
model, requiring however that there is at most one coding block involved in each
of the three operations. This idea was then further developed into two separate
models, both using the terminology of simple gene assembly . In the first one,
that we will refer to in here as the elementary model , introduced in [14, 15],
the model was further restricted so that only micronuclear, but not composite,
MDSs could be manipulated by the molecular operations. Consequently, once
two or more micronuclear MDSs are combined into a larger composite MDS,
they can no longer be moved along the sequence. The second model, that we
will refer to as the simple model [18], allowed that both micronuclear, as well as
composite MDSs may be manipulated in each of the three molecular operations.

However minor the difference between the frameworks of the simple and the
elementary models may seem, it does have a great impact on the characteristics
of each model. We survey in this paper the main known results on the simple
and elementary gene assembly, comparing them also with the corresponding
properties of the general model with respect to: (i) completeness, (ii) conflu-
ence (with the notion defined in three different setups), (iii) decidability, (iv)
characterization of the sortable permutations in each model, (v) sequential com-
plexity, and (vi) experimental validation. For this, we introduce in this paper
a permutation-based presentation of the general model. We discuss in particu-
lar the question of model validation and consider the assembly of all currently
known ciliate gene patterns, see [4]. We also present several open problems in
this area.

2 Mathematical preliminaries

For a finite alphabet A = {a1, . . . , an}, we denote by A∗ the free monoid gen-
erated by A and call any element of A∗ a word. For any v ∈ A∗, we denote
dom(v) = {a ∈ A | a occurs in v}.

Let A = {a1, . . . , an}, where A ∩ A = ∅. For p, q ∈ A ∪ A, we say that
p, q have the same signature if either p, q ∈ A, or p, q ∈ A and we say that
they have different signatures otherwise. For any u ∈ (A ∪ A)∗, u = x1 . . . xk,
with xi ∈ A ∪ A, for all 1 ≤ i ≤ k, we denote ‖u‖ = ‖x1‖ . . . ‖xk‖, where
‖a‖ = ‖a‖ = a, for all a ∈ A. We also denote u = xk . . . x1, where a = a, for all
a ∈ A. We say, that u is uniformly signed, if either xi ∈ A for all 1 ≤ i ≤ k, or
xi ∈ A for all 1 ≤ i ≤ k.

Last updated March 4, 2008.

Miika Langille, Ion Petre, Vladimir Rogojin

2



3 2 MATHEMATICAL PRELIMINARIES 3

For strings u, v over Σ, we say that u is a substring of v, denoted by u ≤ v,
if v = xuy, for some strings x, y. We say that u is a subsequence of v, denoted
by u ≤s v, if u = a1a2 . . . am, ai ∈ Σ∪Σ and v = v0a1v1a2v2 . . . amvm, for some
strings vi, 0 ≤ i ≤ m, over Σ.

A permutation π over A is a bijection π : A → A. Fixing the order relation
(a1, a2, . . . , am) over A, we often denote π as the word π(a1) . . . π(am) ∈ A∗. A
signed permutation over A is a string ψ ∈ (A∪A)∗, where ‖ψ‖ is a permutation
over A. We say that a signed permutation π is (circularly) sorted if it is of either
of the following forms:

(i) π = akak+1 . . . ana1 . . . ak−1, for some k ≥ 1. In this case, we say that π is
an orthodox sorted permutation.

(ii) π = ak−1 . . . a1 an . . . ak+1 ak, for some k ≥ 1. In this case, we say that π
is an inverted sorted permutation.

In both cases, if k = 1, then we say that π is a linear sorted permutation;
otherwise, we say that it is circular.

A sorted block in the signed permutation π is a substring of π either of
the form aiai+1 . . . aj , or of the form aj . . . ai+1 ai, 1 ≤ i ≤ j ≤ n, where
ai−1ai, ai ai−1, ajaj+1, aj+1 aj are not substrings of π. By S(π) we denote the
total number of sorted blocks in π. Clearly, the permutation is cyclically sorted
if we have S(π) ≤ 2.

The notion of structure of a permutation will be useful in the paper. To
define it, we first introduce the morphism ξi : (A ∪ A)∗ → (A ∪ A)∗, for any
1 ≤ i ≤ |A|:

ξi(aj) =





λ if j = i;
aj if j < i;
aj−1 if j > i;

where aj ∈ A ∪A.
Consider the mapping σi : (A ∪ A)∗ → (A ∪ A)∗, where for any string

u ∈ (A ∪A)∗, σi(u) is defined as follows:

(a) σi(u) = u, if aiai+1 � u, with ai, ai+1 ∈ A, or ai+1 ai � u, with ai, ai+1 ∈
A, and

(b) σi(u) = ξi(u) otherwise.

Then, the structure of a string is the mapping σ : (A ∪ A)∗ → (A ∪ A)∗,
such that σ(u) = (σ1 ◦ σ2 ◦ . . . ◦ σ|A|−1 ◦ σ|A|)(u). Note that the structure of a
sorted permutation π is either σ(π) = a1, or σ(π) = a2a1, where a1, a2 ∈ A, or
σ(π) = a1a2, where a1, a2 ∈ A.

Example 1. Consider a sorted permutation π = 34512. We find its structure
σ(π) as follows:

π5 = σ5(π) = π π2 = σ2(π3) = π3

π4 = σ4(π5) = ξ4(π5) = 3412 π1 = σ1(π2) = ξ1(π2) = 21
π3 = σ3(π4) = ξ3(π4) = 312 σ(π) = π1 = 21
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3 Gene assembly as a sorting of signed permu-
tations

As discussed in [18, 14, 15], a natural formalization of the simple and elementary
operations is through rewriting rules for signed permutations. A given gene is
represented as a signed permutation by denoting the sequence and the orienta-
tion of its MDSs and assembling the gene is modeled through the sorting of the
associated permutation.

For a straightforward comparison, we formalize in this paper also the general
model of gene assembly [6] as a sorting of signed permutations. As observed
also in the case of simple and elementary operations, it is a characteristic of
permutation-based models for gene assembly that the ld operation is not explic-
itly modeled. Instead, it is just assumed that two consecutive blocks are going
to be spliced together in a bigger composite block at some arbitrary point,
independently of the other operations applied to the permutation.

3.1 Modeling of the general operations

Consider a gene pattern formalized as a signed permutation over alphabet Πn =
{1, 2, . . . , n}. We formalize the general operations over signed permutations as
follows:

Definition 1. i. For each 1 ≤ p < n, hip is defined as follows:

hip(xpy(p + 1)z) = xp(p + 1)yz,

hip(xpy(p + 1)z) = xyp(p + 1)z,

hip(x(p + 1)ypz) = xy(p + 1)pz,

hip(x(p + 1)ypz) = x(p + 1)p yz,

where x, y, z are signed strings over Πn. We denote Hi = {hii | 1 ≤ i < n}.
ii. For each 1 ≤ p, q < n, where |p− q| > 1, dladp,q is defined as follows:

dladp,q(xp′′uq′′vp′wq′z) = xwq′q′′vp′p′′uz,

dladp,q(xp′′uq′vp′wq′′z) = xwvp′p′′uq′q′′z,

dladp,q(xp′uq′′vp′′wq′z) = xp′p′′wq′q′′vuz,

dladp,q(xp′uq′vp′′wq′′z) = xp′p′′wvuq′q′′z,

where p′ = p, p′′ = p + 1, or p′ = (p + 1), p′′ = p, and q′ = q, q′′ = q + 1,
or q′ = (q + 1), q′′ = q, and x, u, v, w, z are signed strings over Πn. In all
these case, we also denote dladq,p = dladp,q.

For each 1 < p < n, we define dladp−1,p and dladp,p−1 as follows:

dladp−1,p(xp′′′up′′wp′z) = xwp′p′′p′′′uz,

dladp−1,p(xp′′vp′wp′′′z) = xwvp′p′′p′′′z,

dladp−1,p(xp′up′′′vp′′z) = xp′p′′p′′′vuz,

where p′ = p−1, p′′ = p, p′′′ = p+1, or p′′′ = (p + 1), p′′ = p, p′ = (p− 1),
x, u, v, w, z are signed strings over Πn. We denote Dlad = {dladi,j | 1 ≤
i, j < n, i 6= j}.
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Example 2. Consider the permutation π1 = 2514376. We sort it by hi and
dlad as follows:

hi5(2514376) = 27 34156 hi4(4 7 3 2 156) = 1237456
hi2(27 34156) = 2374156 dlad3,6(1237456) = 1234567
hi1(2374156) = 4 7 3 2 156

3.2 Modeling of the simple operations

Simple operations are a restriction of the general operations [7, 6]: they rear-
range pieces of DNA containing at most one MDS, be that micronuclear, or
composite.

Definition 2. The molecular model of simple hi and simple dlad can be for-
malized as follows.

i. For each 1 ≤ p < n, shp is defined as follows:

shp(xp . . . (p + i)(p + k) . . . (p + i + 1)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i) . . . p(p + i + 1) . . . (p + k)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i + 1) . . . (p + k)(p + i) . . . py) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

shp(x(p + k) . . . (p + i + 1)p . . . (p + i)y) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

where k > i ≥ 0 and x, y are signed strings over Πn. We denote Sh =
{shi | 1 ≤ i ≤ n}.

ii. For each p, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p . . . (p + i) y (p− 1) (p + i + 1) z) = xy(p− 1)p . . . (p + i)(p + i + 1)z,

sdp(x (p− 1)(p + i + 1)yp . . . (p + i)z) = x(p− 1)p . . . (p + i)(p + i + 1)yz,

sdp(x(p + i + 1)(p− 1)y(p + i) . . . pz) = x(p + i + 1)(p + i) . . . p(p− 1)yz,

sdp(x(p + i) . . . py(p + i + 1)(p− 1)z) = xy(p + i + 1)(p + i) . . . p(p− 1)z,

where i ≥ 0 and x, y, z are signed strings over Πn. We denote Sd =
{sdi, sdi | 1 ≤ i ≤ n}.

Example 3. Consider the following signed permutation π1 = 54 763 1 2. It can
be sorted by the following composition of simple operations

sh6(π) = 54 7 6 3 1 2, sh4 ◦ sd2 ◦ sh6(π) = 5 4 7 6 3 2 1,
sd2 ◦ sh6(π) = 54 7 6 3 2 1, sd4 ◦ sh4 ◦ sd2 ◦ sh6(π) = 7 6 5 4 3 2 1.

3.3 Modeling of the elementary operations

The elementary model is a restriction of the simple model: elementary in-
tramolecular operations rearrange only micronuclear MDSs. This leads to the
following formalization for elementary operations.

Definition 3. i. For each p ≥ 1, ehp is defined as follows:

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(x(p + 1)pz) = x(p + 1)pz,

ehp(x(p + 1)pz) = x(p + 1)pz,

where x, z are signed strings over Πn. We denote Eh = {ehp | 1 ≤ p ≤ n}.
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ii. For each p, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(xpy(p− 1)(p + 1)z) = xy(p− 1)p(p + 1)z,

edp(x(p− 1)(p + 1)ypz) = x(p− 1)p(p + 1)yz,

edp(xpy(p + 1) (p− 1)z) = xy(p + 1) p(p− 1)z,

edp(x(p + 1) (p− 1)ypz) = x(p + 1) p (p− 1)yz,

where x, y, z are signed strings over Πn. We denote Ed = {edp | 1 < p <
n}.

Note that Eh ⊂ Sh ⊂ Hi and Ed ⊂ Sd ⊂ Dlad.

Example 4. Consider the signed permutation π = 315246. It can be sorted by
a composition of elementary operations as follows

ed5(π) = 312456, ed3 ◦ eh1 ◦ ed5(π) = 123456.
eh1 ◦ ed5(π) = 312456,

3.4 Sorting strategies: terminology

A composition of operations Φ = φk ◦φk−1 ◦ . . . φ2 ◦φ1, where all operations are
from either Hi ∪Dlad, or Sh∪Sd, or Eh∪Ed is called a strategy. A composition
Φ = φk ◦φk−1 ◦ . . . φ2 ◦φ1 of operations is called a sorting strategy for π, if Φ(π)
is a (circularly) sorted permutation. If φ ∈ (Hi ∪ Dlad) for all 1 ≤ i ≤ k, we
say that Φ is a general sorting strategy. If φ ∈ (Sh∪Sd) for all 1 ≤ i ≤ k, we
say that Φ is a simple sorting strategy. If φ ∈ (Eh∪Ed) for all 1 ≤ i ≤ k, we
say that Φ is an elementary sorting strategy. We say that an unsorted signed
permutation π is blocked if no (simple, elementary) operation is applicable to it.
We say that Φ is an unsuccessful strategy for π, if Φ(π) is blocked. If there are
no sorting strategies for π, then we say that π is an unsortable permutation.

4 Comparison of the three models

In this section we compare the general, simple and elementary intramolecular
models for gene assembly by different criteria:

- completeness: whether any gene pattern may be assembled or not;

- confluence, defined in three different ways:

(i) whether there are permutations having both successful and unsuccess-
ful strategies,

(ii) whether different assembly strategies starting from the same gene
pattern lead to assembled genes with the same structure,

(iii) whether different assembly strategies starting from the same gene
pattern lead to the same assembled gene;

- decidability of assembly: whether it is possible to decide effectively if a given
gene pattern can be assembled or not;

- characterization of gene patterns that can be assembled (starting from certain
characteristics of a given gene pattern we can conclude whether the gene
pattern can be assembled);
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- sequential complexity is constant: whether all assembly strategies apply the
same number of intramolecular operations;

- model validation: whether it is consistent with biological data.

4.1 Completeness

It was shown in [7, 6] that the general model is complete, i.e., it assembles any
gene pattern. The result was proved in terms of MDS-descriptors. To prove it
for signed permutations, one may take two different approaches.

On one hand, one may observe that the set of signed permutations and
that of MDS descriptors are in an one-to-one correspondence. Moreover, for
a signed permutation π, if ψ(π) is its corresponding MDS descriptor, then for
any operation f ∈ Hi ∪ Dlad, ψ(f(π)) = f(ψ(π)). The completeness result for
signed permutations then follows easily from the corresponding result for MDS
descriptors.

On the second hand, one may give a direct proof of the completeness, by
essentially mimicking the proof in the case of MDS descriptors. The essential
observation in this case is that for any φ ∈ Hi∪Dlad and any signed permutation
π, the number of sorted blocks of φ(π) is smaller than that of π (i.e., S(φ(π)) <
S(π)). One needs to observe then that a signed permutation π is sorted if and
only if S(π) ≤ 2 and π is uniformly signed.

Theorem 1. All signed permutations are sortable over Hi ∪ Dlad.

Note however that the simple and the elementary models are not complete,
as shown by the following example.

Example 5. Consider the permutation π = 321. We cannot apply either eh or
sh operations as all pointers have the same signature, and there is no applicable
ed or sd operation either. On the other hand, π is successful in the general
model: dlad1,2(π) = 123.

4.2 Confluence

We consider the notion of confluence in three different setups, so as to reflect
the success of different assembly strategies, the resulting gene structure, or
the resulting gene pattern. These aspects are discussed below stressing the
differences between the three models for gene assembly.

Consider first the most common notion of confluence, requiring that the
result of all assemblies of a given input is the same. Equivalently, all strategies
for a given signed permutation are confluent. It is easy to see that neither of
the three models for gene assembly is confluent in this sense. For this, consider
the permutation π = 2413. Then dlad2,1(π) = sd2(π) = ed2(π) = 4123, while
dlad2,3(π) = sd3(π) = ed3(π) = 2341.

The example above shows that all three models are nondeterministic in the
sense that different sorting strategies may lead to different results. A natural
question is then whether a given signed permutation may have both successful,
as well as non-successful strategies in any of the three models. Consider then
the following notion of confluence. We say that the general (simple, elemen-
tary, resp.) model is confluent if there are no signed permutations having both
successful and unsuccessful strategies.
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It follows from Theorem 1 that the general model is indeed confluent in the
sense above. As shown in [18], the simple model is also confluent. However,
the elementary model is not confluent. To see it, consider the permutation
π = 24135. Then ed3(π) = 23415 is a blocked permutation, while ed2 ◦ ed4(π) =
12345, a sorted permutation.

It was proved in [8, 21], see also [2], that for any gene pattern, either all
general assembly strategies assemble it to a linear molecule, or all of them
assemble it to a circular one. Consequently, even though if the assembly process
is non-deterministic, the results of all possible assemblies of a given gene pattern
have the same structure. I.e., the results of all sorting strategies applicable to
a permutation have the same structure. As such, the same result holds also for
all sorting strategies in the simple and in the elementary models. The question
may however be asked also for the unsuccessful strategies. In this context, we
say that a model for gene assembly is confluent if, for any signed permutation,
all its sorting strategies lead to permutations having the same structure. Based
on the considerations above, it follows easily that the general model is confluent
in this sense, while the elementary model is not (since a permutation may have
both successful and unsuccessful elementary strategies). Interestingly, it was
proved in [18] that the simple model is in fact confluent in this sense.

Example 6. Consider permutation π = 623514. There are only two simple
strategies applicable to π: π1 = sd2(π) = 651234 and π2 = sd4(π) = 623451.
These strategies are unsuccessful, and there are no other simple strategies appli-
cable to π. Permutation π cannot be sorted by simple operations. Note however,
that permutations π1 and π2 have the same structure σ(π1) = 321 = σ(π2).

The following table captures the behavior of the three models for gene as-
sembly with respect to the three notions of confluence above. Interestingly, none
of these notions distinguishes the simple and the general model. One property
that does distinguish between the two is the completeness, valid only for the
general model.

Success Same result Same structure
General confluent not confluent confluent
Simple confluent not confluent confluent

Elementary not confluent not confluent not confluent

Table 1: The results of considering confluence with regard to the three aspects
are summarized here.

4.3 Deciding the sortability problem

For the simple and elementary models, which are not complete, deciding the
sortability of a given signed permutation is an interesting problem. Based on the
confluence results in the previous section, it turns out that the problem is easy
for the simple model: for any signed permutation, either all its sorting strategies
are successful, or they are all unsuccessful. As such, to decide the sortability
problem, it is enough to find an arbitrary strategy (e.g., using a straightforward
procedure having quadratic time complexity) and answer ‘yes’/‘no’, depending
on whether or not that strategy is successful.
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For the elementary model the problem of the eh-sortability of a signed per-
mutation is easy.

Theorem 2 ([15]). The unsigned permutation π is eh-sortable if and only if
either

(i) ‖π‖ = k(k + 1) . . . n12 . . . (k− 1) and for some 1 ≤ i ≤ k− 1, k ≤ j ≤ n we
have i, j unsigned, or

(ii) ‖π‖ = (k − 1) . . . 21n . . . (k + 1)k, and for some 1 ≤ i ≤ k − 1, k ≤ j ≤ n
we have i, j signed.

The problem of the ed-sortability turns out to be technically more involved,
since a signed permutation may have both successful, and unsuccessful strate-
gies. A complete characterization of the ed-sortable signed permutation has
been given in [14, 15, 22]. The main notions used in the result are those of
dependency graphs and forbidden elements. We only present here these notions
for unsigned permutation; in the case of signed permutation, the setup is tech-
nically more complex, see [15]. Note also that an efficient decision procedure
for the sortability problem is only known for unsigned permutation, see [22]

Dependency graphs in the elementary model

Dependency graphs suggest in which order elementary operations should be
used to assemble a given gene pattern. Let π be an unsigned permutation with
dom(π) = {1, 2, . . . , n}. We associate to it a dependency graph Γπ = (Vπ, Eπ)
to π, where Vπ = dom(π), and

Eπ = {(1, 1), (n, n)} ∪ {(i, i)|(i + 1)(i− 1) ≤s π} ∪ {(j, i)|(i− 1)j(i + 1) ≤s π}.
Intuitively, an edge (j, i) in Γπ shows that in any sorting strategy for π, the

operation edj should be used first, in order for edi to become applicable. If there
is a loop (i, i) in Γπ, then edi cannot be applied in any strategy applicable to
π. We refer to [15] for a proof of these observations.

Example 7. Consider the unsigned permutation π = 62 8 4 10 7 1 3 5 9. Its
associated dependency graph Γπ = (Vπ, Eπ) is shown in Figure 1.

We have loops (1, 1), (5, 5), (6, 6), (10, 10) in the dependency graph, and
so, the operations ed1, ed5, ed6 and ed10 cannot be applied in any strategy
applicable to G. We have cycle 8 3 8 in Γπ and so, neither operation ed3, nor
operation ed8 can be applied in any strategy applicable to π. The dependency
graph Γπ suggests the following order of operations to be applied in any sort-
ing strategy of π: ed2 should be applied before ed7, and ed4 should be ap-
plied before ed9. Indeed, for instance, strategy ed9 ◦ ed4 ◦ ed7 ◦ ed2(π) sorts π:
ed9 ◦ ed4 ◦ ed7 ◦ ed2(π) = 6 7 8 9 10 1 2 3 4 5.

Forbidden elements, eh− and ed− sortability of unsigned permuta-
tions

For a signed permutation π, we say that p ∈ dom(π) is forbidden in π if and
only if there exists no composition of eh and ed operations applicable to π with
p in the domain of one of them. We denote Uπ the set of all forbidden elements
of π. It was proved in [15] that p ∈ U(π) if and only if
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Figure 1: The dependency graph associated to π = 6 2 8 4 10 7 1 3 5 9.

(i) p is on a cycle of Γπ or

(ii) there is a path from q to p in Γπ, for some q on a cycle of Γπ or

(iii) there exists r > 1 such that there are paths from r− 1 to p and from r to
p in Γπ.

The following result gives the eh− and ed−sortability of unsigned permu-
tations.

Theorem 3 ([15]). Let π be an unsigned permutation.

(i) π is eh-sortable if and only if either ‖π‖ = k(k + 1) . . . n12 . . . (k − 1),
and for some 1 ≤ i ≤ k − 1, k ≤ j ≤ n we have i, j unsigned, or
‖π‖ = (k − 1) . . . 21n . . . (k + 1)k, and for some 1 ≤ i ≤ k − 1, k ≤ j ≤ n
we have i, j signed.

(ii) π is ed-sortable if and only if π|Uπ is sorted.

Finding an efficient method for the eh, ed-sortability of a signed permutation
remains an open problem.

4.4 Characterization of sortable permutations

The following theorem characterizes ed-sortable unsigned permutations. A sim-
ilar, albeit technically more involved, characterization exists also for signed per-
mutations, see [15].

Theorem 4 ([15]). Let π be a unsigned permutation. Then π is Ed-sortable if
and only if there exists a partition {1, 2, . . . , n} = D∪U , such that the following
conditions are satisfied:

(i) π|U is sorted;

(ii) The subgraph induced by D in Gπ is acyclic;

(iii) If (p, q) ∈ Gπ with q ∈ D, then p ∈ D;

(iv) For any p ∈ D, (p− 1)(p + 1) ≤s π;

(v) For any p ∈ D, (p− 1), (p + 1) ∈ U .

For simple operations we do not have a characterization of sortable permu-
tations for the moment. For general operations the question is moot since all
signed permutations are sortable.
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4.5 Sequential complexity

We focus now on the length of various sorting strategies of a given signed permu-
tation, where the length is defined as the number of operations in the strategy.
Consider first the general model and let π1 = 152 436. One can sort it by apply-
ing dlad1,5 ◦ hi2, or by applying hi2 ◦ hi3 ◦ hi1. These two sorting strategies are of
different length, and use a different combination of operations.

Somewhat surprisingly, the situation is different in the simple model and by
consequence, also in the elementary model. It was established in [19] (using
a string-based formalism) that any two sorting strategies for a given signed
permutation have the same assembly length.

Theorem 5 ([19]). Let π be a signed permutation and φ, ψ be two simple sort-
ing strategies for π. Then φ and ψ have the same sequential assembly length.
Moreover, they have the same number of sh and the same number of sd opera-
tions.

The differences between the general model and the two restricted models go
beyond Theorem 5. E.g., when choosing operations in the simple model, we
may always just choose the first available operation as the number of operations
required in the end remains the same. If the operations were given different
weights or costs, then the general model may have optimal and sub-optimal
sorting strategies. We refer to [12] for a detailed discussion on various measures
of complexity for gene assembly.

4.6 Model validation

A database of known sequences of micronuclear and macronuclear ciliate genes
can be found in [4]. Based on the completeness result for the general model,
it is clear that all the gene patterns have an assembly strategy in the general
model. As it turns out however, the elementary model cannot account for the
assembly of some of the gene patterns in [4].

Example 8. Actin I gene in it Sterkiella nova is represented by the permutation
π = 346579218. It is easy to check that there is no elementary sorting strategy
applicable to π. However, we can sort π by applying the simple sorting strategy

sh1 ◦ sh2 ◦ sd8 ◦ sd5(π) = 9 8 7 6 5 4 3 2 1.

Below we will outline all the available scrambled gene patterns in [4], to-
gether with one simple sorting strategy. Genes that are not scrambled in their
micronuclear form or the ones that have missing MDSs will not be included.

Actin I, Sterkiella nova : π = 346579218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 987654321.

Actin I, Sterkiella histriomuscorum : π = 346579 10 218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 10 987654321.

Actin I, Stylonychia pustulata : π = 34657821;

sh1 ◦ sh2 ◦ sd6(π) = 87654321.
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α Telomere Binding Protein, Sterkiella nova :

π = 1 3 5 7 9 11 2 4 6 8 10 12 13 14;
sd10 ◦ sd8 ◦ sd6 ◦ sd4 ◦ sd2(π) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14.

DNA Polymerase α, Paraurostyla weissei:

π = 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 1 2 3 4 5 7 9 11 13
15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46 47 48

The signed permutation sorting strategy for this gene is just sh1 repeated
40 times.

4.7 Summary

The following table summarize properties of general, simple and elementary
models considered in this paper.

General Simple Elementary
Completeness complete not complete not complete

Confluence (Success) confluent confluent not confluent
Confluence (Structure) confluent confluent not confluent
Confluence (Result) not confluent not confluent not confluent
Deciding Sortability trivial confluence forbidden

(success) elements
Characterizing sortable not a problem open dependency

permutations problem graph
Sequential Complexity no yes yes

is Constant
Model Validation unknown valid not valid

Table 2: Summary for general, simple and elementary intramolecular models

5 Open problems

There are two currently open problems related to the simple model: the linear
decidability of the sortability problem and computing the number of sortable
permutations of length n. It is however possible that these two problems are
intertwined and an answer to one may at least partly solve the other.

Decidability. It was shown in [18] that it is possible to decide whether a
permutation is sortable or unsortable in the simple model by applying available
operations in an arbitrary order until the permutation is blocked or sorted. This
gives us a quadratic method for deciding. Our first open problem is related to
the optimality of this method: is there a procedure to decide in linear time the
sortability problem in the simple model?

For the elementary model, finding an efficient decision procedure for {eh, ed}-
sortability problem is also open.
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Sortable permutations of length n. As we pointed out also in this paper,
not all permutations may be sorted using the simple operations. This differs
from the general model which has been shown to be complete. Thus, an inter-
esting problem is computing how many permutations of length n are sortable
in the simple/elementary models. As a related problem, it should even be in-
teresting to see whether the ratio of sortable signed permutations tends to 0
when n tends to infinity. Both problems are open also in the case of unsigned
permutations.
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