
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Energy efficiency analysis of multi-stream MPEG-4 decoder
systems

Sébastien Lafonda and Jani Boutellierb and Johan Liliusa and Olli Silvénb

aÅbo Akademi University, Joukahainengatan 3-5, Turku, Finland
bUniversity of Oulu, PO BOX 4500, Oulu, Finland

ABSTRACT

This paper presents a comparison of two systems that can simultaneously decode multiple videos on a simple
CPU and dedicated function-level hardware accelerators. The first system is implemented in a traditional way,
such that the decoder instances access the accelerators concurrently without external coordination. The second
system implementation coordinates the tasks’ accelerator accesses by scheduling. The solutions are compared
by execution cycles, energy consumption and cache hit ratios. In the traditional solution each decoder task
continuously requests access to the needed hardware accelerators. However, since the other tasks are competing
on the same resources, the tasks must often yield and wait for their turn, which reduces the energy-efficiency.
The scheduling-based approach assumes that the accelerator latencies are deterministic and assigns time slots for
accelerator accesses required by each task. The accelerator access schedule is re-designed for each macroblock at
run-time, thus avoiding the over-allocation of resources and improving energy-efficiency. Deterministic accelerator
latencies ensue that the CPU is not interrupted when an accelerator finishes. The contribution of this study is
the comparison of the accelerator timing solution against the traditional approach.

Keywords: Video codecs, Parallel processing, Power demand

1. INTRODUCTION

Multimedia applications running on modern mobile devices require huge amounts of computational resources.
Performing all the required computations in software is not a feasible alternative, since general-purpose processors
(GPP) offer low energy-efficiency and low data throughput. Thus, the computationally intensive application
parts are often offloaded to dedicated processing elements (PEs) that can perform the computations faster
and with lower power consumption.1 However, running the application on multiple PEs raises the problem
of synchronization: a processor must know before interacting with another PE, if the device is ready for the
interaction. This synchronization can be performed either by polling the status of the other PE, or by letting
the working PE announce when it is finished.2 Recently, also an alternative way has been proposed for doing the
synchronization of the accelerators: by using deterministic scheduling3,4 it is possible to avoid repeated polling
of other PEs, as well as interrupts.

In this paper we compare the synchronization overhead of a hardware-accelerated polling-based system against
a more sophisticated synchronization-by-scheduling system. As a reference we also compare the aforementioned
solutions against a full-software implementation. The comparison is based on the measurement of execution
cycles, energy consumption and cache hit ratios. The measurement results have been acquired by running a
multi-stream MPEG-4 decoding application on a cycle-accurate strongARM SA-1100 processor simulator.

Further author information:
Sébastien Lafond: sebastien.lafond@abo.fi
Jani Boutellier: bow@ee.oulu.fi

2. MEASUREMENT FRAMEWORK

The application framework for our measurements was multi-stream MPEG-4 video decoding performed by the
open-source XViD5 codec. MPEG-4 video decoding was chosen as the application framework, because it is
computationally very demanding and dynamic. Decoding one second of a 320x240-pixel movie (with 25 fps)
involves processing 7500 macroblocks, of which each can have a different decoding procedure. The decoding
procedure of a macroblock is discovered as the video bitstream is read and can not be predicted in advance.
Therefore, if the decoding is accelerated by hardware, the accelerator elements must be so fine-grained that
they can be adapted to the decoding needs of each macroblock.3 Naturally, the decoding hardware designer
can also just assume the worst-case scenario and allocate the maximum amount of hardware resources for each
macroblock, but this will lead to an inefficient solution. Although MPEG-4 is a bit dated as a video compression
scheme, the results of this paper can also be applied to upcoming standards such as RMC.6

The measurements were conducted on three different system configurations: one of the systems ran several
independent unmodified XViD software decoders on a single GPP by using multitasking, whereas the other two
systems contained the GPP and several dedicated hardware accelerators to do the same task. Since the XViD
codec is originally described in monolithic c-code, some effort was required to make the decoder suitable for
hardware acceleration. These modifications introduced some processing-time and memory overhead.

The codec itself is only capable of decoding one video stream at a time, therefore an OS-like wrapper
application was created for the two hardware-accelerated systems. Upon start, the wrapper application initializes
1...4 video decoders and starts decoding the video streams. The wrapper application does not run the decoding
of separate streams in parallel, instead it uses time-division multiplexing of the GPP processing time. When the
code execution of decoder instance n reaches a point that it requires code execution on hardware accelerators, it
returns control to the wrapper application along with the accelerator access requests. The wrapper application
stores these accelerator access requests (but does not activate the accelerators yet) and starts decoder instance
n+1. When decoder n+1 code execution reaches the stage that it can not proceed without use of accelerators,
decoder n+1 returns control to the wrapper application and so on. Once all the decoder instances have finished
executing the control code and are waiting for computation results from the accelerators, the wrapper application
starts to execute the accelerator access requests. How this is done, depends on the synchronization scheme.

The traditional, polling-based system starts processing the stored accelerator access requests in a first-
requested first-served manner. However, if an accelerator is reserved, the new access request must yield and
wait until the accelerator is freed – meanwhile the system continues polling the other accelerators to see if some
other access request could be executed. The second system implementation uses run-time scheduling to plan the
accelerator access pattern in advance. The scheduling algorithm itself causes some overhead, but on the other
hand avoids completely the polling overheads later, because the schedule tells in advance when the resources will
be freed. The completely software based stream decoding does not need further explanation: all computations
are performed on the GPP in traditional time-division multitasking fashion.

Figure 1 shows approximately the behaviour of the hardware accelerated solutions in a Gantt chart. W
represents processing time spent within the wrapper application and D1, D2 and D3 refer to activity in the
control code of the respective decoder instances. The blocks on the accelerator rows below show an arbitrary
schedule of task executions on the accelerators.

2.1 Scheduler

The scheduler used by the second accelerated system implementation is based on the idea that is described
in.4 Theoretically it is a permutation flow-shop (PFS)7 scheduler, that has been applied to the problem of PE
scheduling. In PFS terminology the processing units are machines and the tasks perfomed by the processing units
are operations. Dependencies between tasks are described by grouping tasks into jobs. A job is defined to contain
an operation for each machine, and each job must access the machines in the same order. In our application, we
have also used machine skipping, which means that for some jobs, the execution time of certain operations may
be zero: i.e. nothing is performed on that machine. By the PFS definitions, the execution times of operations
are deterministic. This is not a severe limitation, since the accelerated functions are very predictable. Also,
the assumption about deterministic execution times has been made previously in similar contexts.8,9 From this

Figure 1. Sequential control code processing and parallel accelerator operation.

description, it is evident that PFS can be applied only to some scheduling problems, as the one presented in this
paper.

The benefit of such a restricted scheduling problem is that the scheduling algorithm can be very straight-
forward and since the scheduler is called with a high frequency, a low overhead will be the most important
characteristic of the scheduler. Thus, of the different scheduler implementations described in,4 the ”no job or-
dering, no-wait timetabling” was selected for computing schedules in this environment. No-wait timetabling
(Figure 2) means that within the same job, the next operation is started immediately after the previous one
finishes. In our scheduling problem this is essential, because it ensures that buffers between processing units are
not overwritten too early.

2.2 Hardware Accelerators

The parts of the XViD code to be hardware accelerated, were selected manually. Evidently, it is most bene-
ficial to use acceleration for compact parts of the code that are invoked often, e.g. nested loops. In MPEG-4
video decoding this part is found from macroblock decoding and especially in block decoding (in our case each
macroblock consists of six blocks).

Besides being often invoked, it is desirable that the accelerated code parts should have a minimal amount
of inputs and outputs. Based on these reasons, the hardware accelerators were created from the block decoding
functions, that are depicted in Figure 3. The figure consists of boxes (accelerators), circles (buffers) and arrows
that indicate the dataflow between the entities. It can be seen that there are several different dataflows, of which
only some are used for each block, depending on the coding scheme.

When choosing the accelerated functions, some compromises had to be made with the modularity (amount
of inputs and outputs) of accelerators. This does not affect the results between the two hardware accelerated
systems, since both of them use the same accelerator units. However, it causes some extra overhead to the
hardware accelerated systems when they are compared against the full-software based approach.

Figure 2. No-wait timetabling of three jobs (A,B,C) on three processors.

Table 1. Hardware accelerator latencies in clock cycles

Accelerator 1 Accelerator 2 Accelerator 3 Accelerator 4 Accelerator 5
16 25 13 8 200

Figure 3. Data flow between accelerators.

2.3 Hardware Platform

The two hardware-accelerated decoding systems are based on the hardware platform presented in Figure 4. It
consists of six PEs: a general purpose processor and five dedicated hardware accelerators. The PEs are triggered
according to the polling-based approach or by the scheduling solution, that has been described previously. Both
solutions trigger the accelerators in a ”waterflow” manner, where each accelerator passes its computed results to
the following accelerator via a shared local memory. The full-software decoding system is running on the GPP
of the same platform and does not have any use for the dedicated hardware accelerators. The used hardware
accelerator latencies can be seen in Table 1.

3. SIMULATION FRAMEWORK

The simulation framework presented in this section models a typical handheld device featuring basic multimedia
application. It includes a hardware platform, an operating system and a set of applications and hardware
accelerators.

3.1 Processor simulator

The Sim-Panalyzer10 processor simulator was used for this study. Sim-Panalyzer is based on the SimpleScalar11

processor simulator, and performs cycle accurate simulation of a strongARM SA-1100 processor. At every
simulated cycle it computes the energy consumption of each module within the ARM core (clock, ALU, cache,
etc.). The processor simulator allows running an ARM-based operating system on top of it.

Figure 4. Hardware platform.

3.2 Operating system

The SimpleScalar port of the real-time operating system RTEMS (v. 4.6.2) was used in this study.12 This port
includes a SimpleScalar extension for supporting an interrupt based programmable timer which is needed by
RTEMS. RTEMS is a free open source real-time operating system designed for embedded systems and supporting
a variety of application programming interfaces (APIs) and interface standards. This real-time operating system
allows the execution of a set of applications as independent tasks in a pre-emptive multitasking environment,
which enabled us to conduct the measurements with multiple independent software decoders.

3.3 Accelerators

The accelerators are implemented within the Sim-Panalyzer framework and the applications can trigger the
accelerator via dedicated system calls. It is the responsibility of the application to move the input data into the
local memory 1 feeding the hardware accelerators 1 and 2 on Figure 4. In the same way, it is the responsibility
of the application to read the results from local memory 5 when needed. For the rest of the accelerators reading
input parameters is automatically done when the accelerator is triggered.

The following pseudo code illustrates how the communication with the hardware accelerators is handled for
the polling-based and the scheduled systems:

Polling-based accelerator access
> repeat:
> if(accelerator is free)
> read input data to local memory
> trigger/call hardware accelerator

> endif
> goto repeat

Implementation using the scheduler
> compute schedule
> repeat:
> sleep until designated time
> read input data to local memory
> trigger/call hardware accelerator

> goto repeat

In order to maintain the cache coherency the Sim-Panalyzer handles the memory accesses to the accelera-
tor local memories as uncached memory regions. It is important to note that the execution of the hardware
accelerators is performed outside the simulated platform. The energy consumption of the hardware accelerator
is therefore not directly measured by the system. Instead, based of the difference in power dissipation between
the full-software decoder system and hardware-accelerated systems presented in the results-section, it is possible
to calculate an energy budget that tells us how much energy the accelerators can use to still provide a better
energy efficiency than the full-software decoder.

Table 2. Memory latencies in cycles

IL1 DL1 UL2 Local acc. memory Main memory Main memory

first chunk access inter chunk access

Latency 1 1 4 4 30 4in cycles

Table 3. Configuration of the caches

Caches Associativity Size # of blocks Block size
IL1 Direct mapped 4 Kb 128 32 bytes
DL1 Direct mapped 4 Kb 128 32 bytes
UL2 4-way 8 Kb 256 32 bytes

3.4 Simulation Parameters

This subsection defines the constant and variable parameters and the corresponding values used in the simulation
framework. Sim-Panalyzer defines the processor parameters and the configuration of the caches. For this study
the processor speed was set at 233 MHz. The configuration for the level 1 instruction and data cache and the
unified secondary cache is presented in Table 3. Table 2 shows the different latencies for the caches and the local
accelerator memories. All other parameters used by the Sim-Panalyzer were set to their default values. The used
input data for all systems consisted of four compressed 320x240 pixel video streams, that had 45 frames each
and a nominal speed of 15 fps. For the full-software implementation RTEMS uses time slices of 50 ms, which
implies 20 task switches per second. This configuration tries to model an average embedded system that could
be used in a multimedia handheld device.

4. RESULTS

For clarity all graphs presenting measurement results are given at the end of the paper in Appendix A. In the
abbreviations FS stands for ”full-software-based”, HA for ”hardware accelerated”, PH for ”polling, hardware
accelerated” and SH for ”scheduler, hardware-accelerated”. Figures 5 to 9 present the cost differences for
initializing the MPEG-4 video decoder with the full-software and hardware accelerated decoding systems. As
the two hardware-accelerated decoding systems share the same piece of code for initializing the decoder, the
initialization costs are common for both systems.

Figure 5(a) presents the execution time in clock cycles and Figure 5(b) presents the power dissipated by the
microarchitecture for initializing the full-software and the hardware accelerated decoding systems. The better
results for the hardware accelerated decoding systems presented in these two graphs can be explained by the
task switching overhead in the multi-tasking environment for the full-software system. The numbers in Figure 7
can also be explained by the task switching overhead.However, Figure 8(b) presents an increase of misses in the
level one data cache for the hardware accelerated decoding systems, which according to figures 9(a) and 9(b) led
to an increase of hits in the unified level 2 cache. As shown on Figure 6, this affect the power dissipated by the
unified level 2 cache. These variations in cache activity are explained by the modifications done to the XViD
codec, to make it suitable for hardware acceleration. As stated before, the full-software implementation uses the
original XViD.

Figures 10 to 14 present the average costs for decoding one frame with the full-software and the two hardware
accelerated decoding systems. For each measurement the average costs for decoding one frame is obtained by
applying the following formula:

Average cost per frame =
Total cost - Initialization cost

Total number of decoded frames
(1)

Figure 10(a) shows the average speed of execution for decoding one frame on each system. The system
using the hardware accelerator and the scheduler is more than twice faster than the polling based system and
about 40% faster than the full-software system. Thus, if we take an average power dissipation of 550 mW for a
strongARM SA-1100 processor,13 the maximum average energy budget for all accelerators must stay below 220
mW, if we want to get the scheduler based system to have a better energy efficiency than the full-software system.
On the other hand, figures 10 and 11 clearly show the inefficiency of the polling based system compared to the
two others. As the graphs in figures 13 and 14 show, this inefficiency in execution time and power dissipation is
mainly due to a huge data access increase in the polling based system. However, it must be pointed out that the
software-based polling solution used here is clearly very inefficient and could be implemented in a much more
efficient way by using some kind of hardware support. Finally, with the used simulation parameters, we can

see that only the scheduler-based system is able to decode the four video streams in real time at 15 frames per
second.

5. CONCLUSION

We have presented a comparison between three different multi-stream MPEG-4 video decoding systems. The
comparison was made based on measurements of execution time, power dissipation and cache behaviours. The
compared systems consisted of one fully software-based and two hardware accelerated solutions. One of the
hardware-accelerated solutions used polling to do synchronization between processing elements, whereas the
other one used a new scheduling-based synchronization approach. The measurement results showed that the
hardware accelerated, scheduling-based solution provided the best energy efficiency of these three, if the hardware
accelerators do not consume too much power.

REFERENCES
1. W. Wolf, High-Performance Embedded Computing, Morgan Kaufmann, 2006.
2. O. P. Gangwal, A. Nieuwland, and P. Lippens, “A scalable and flexible data synchronization scheme for

embedded hw-sw shared-memory systems,” in ISSS ’01: Proceedings of the 14th international symposium
on Systems synthesis, pp. 1–6, ACM, (New York, NY, USA), 2001.

3. T. Rintaluoma, O. Silven, and J. Raekallio, “Interface overheads in embedded multimedia software,” Em-
bedded Computer Systems: Architectures, Modeling, and Simulation , pp. 5–14, 2006.

4. J. Boutellier, S. S. Bhattacharyya, and O. Silven, “Low-overhead run-time scheduling for fine-grained accel-
eration of signal processing systems,” Signal Processing Systems, 2007 IEEE Workshop on , pp. 457–462,
17-19 Oct. 2007.

5. XViD-codec, “http://www.xvid.org.”
6. C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck, “Reconfigurable media coding: a new specifica-

tion model for multemedia coders,” in Proceeding of the IEEE 2007 Workshop on Signal Processing Systems
(SiPS), 2007.

7. S. French, Sequencing and Scheduling, Mathematics and its applications, Ellis Horwood Limited, 1982.
8. Y.-S. Chen, C.-S. Shih, and T.-W. Kuo, “Dynamic task scheduling and processing element allocation for

multi-function socs,” in Proc. 2007 Real Time and Embedded Technology and Applications Symposium,
pp. 81–90, (Bellevue, WA), April 2007.

9. Y.-J. Kim and T. Kim, “A hw/sw partitioner for multi-mode multi-task embedded applications,” The
Journal of VLSI Signal Processing 44, pp. 269–283, 2006.

10. Sim-Panalyzer, “http://www.eecs.umich.edu/˜panalyzer.”
11. D. C. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” Tech. Rep. CS-TR-1997-1342,

1997.
12. RTEMS, “http://www.jwhitham.org.uk/simplescalar/.”
13. Intel-Corporation, “Intel strongarm sa-1100 microprocessor for embeddedapplications, brief datasheet,

1999.”

APPENDIX A.

(a) Execution time (b) Microarchitecture power dissipa-
tion

Figure 5. Execution time and microarchitecture power dissipation during initialization stage.

Figure 6. Power dissipation in level 1 and 2 caches during initialization stage.

(a) IL1 hits (b) IL1 misses

Figure 7. Instruction level 1 cache hits and misses during initialization stage.

(a) DL1 hits (b) DL1 misses

Figure 8. Date level 1 cache hits and misses during initialization stage.

(a) UL2 hits (b) UL2 misses

Figure 9. Unified level 2 cache hits and misses during initialization stage.

(a) Execution time (b) Microarchitecture power dissipa-
tion

Figure 10. Execution time and microarchitecture power dissipation on average for decoding one frame.

Figure 11. Power dissipation in level 1 and 2 caches on average for decoding one frame.

(a) IL1 hits (b) IL1 misses

Figure 12. Instruction level 1 cache hits and misses on average for decoding one frame.

(a) DL1 hits (b) DL1 misses

Figure 13. Date level 1 cache hits and misses on average for decoding one frame.

(a) UL2 hits (b) UL2 misses

Figure 14. Unified level 2 cache hits and misses on average for decoding one frame.

