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In this paper a new notation for representing double-interpretations is in-
troduced. Especially when working with word equations, one often needs to
look at two factorizations or interpretations of a word. This usually leads to
a complicated case analysis, see for example [3]. To make these kind of con-
siderations easier to the reader, one traditionally provides some kind of tile or
line-arc pictures, see [1, 2, 4]. The problem is that these pictures are not exact
enough and might not handle all the cases. Hence, additional information has
to be added to the base text. The new notation is intended to counteract these
difficulties, by providing a formally defined, exact, and also more compact way
of representing this information, but still maintaining the illustrative nature of
a picture.

As an example the fact that a word v is imprimitive is equivalent to the fact
that v is a proper factor of vv, which is represented by the following tile picture.

v

v v

Same thing is represented by the formula

+
][

[ v ]
∗

[ v ]

][
∗

][

[ v ]
+ . (1)

If we would replace the symbols + in the beginning and the end of the formula
with symbols ∗, then the cases that v is a prefix and that v is a suffix of vv
would also be included. The detailed definition is given next.

Assume that a word w has two interpretations x1x2 · · ·xm and y1y2 · · · yn,
that is

p1wq1 = x1x2 · · ·xm and p2wq2 = y1y2 · · · yn, (2)

where |p1| < |x1|, |q1| < |xm|, |p2| < |y1| and |q2| < |yn|, with fi = |x1 · · ·xi| −
|p1|, for i = 0, . . . ,m; and gj = |y1 · · · yj| − |p2|, for j = 0, . . . , n. A restriction

is an explicitly given relation (<,≤,=,≥ or >) between two numbers fi and gj ,
that is, a relation we are aware of.
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Before the main definition, we need some auxiliary definitions. Example
pictures are provided along the way in order to illustrate the concepts in these
definitions. We call a pair (δ, ǫ) ∈

(

{0, . . . ,m} × {l}
)

∪
(

{0, . . . , n} × {r}
)

a
factor point, or more precisely a left factor point, if ǫ = l, or a right factor point,
if ǫ = r. Moreover, ⊢ is called the starting factor point and ⊣ the ending factor

point. The length |(δ, ǫ)| of a factor point (δ, ǫ) equals fδ, if ǫ = l, or gδ, if ǫ = r;
and |⊢| = 0, |⊣| = |w|. The length concept allows us to write for any two factor
points ϕ and ψ that ϕ ≺ ψ, ϕ � ψ, ϕ ∼ ψ, ϕ � ψ or ϕ ≻ ψ, if we have the
restriction |ϕ| < |ψ|, |ϕ| ≤ |ψ|, |ϕ| = |ψ|, |ϕ| ≥ |ψ| or |ϕ| > |ψ|, respectively.

x1

|(1, l)|

x2x3

|(3, l)|

x4 · · ·x8

|(8, l)|

x9

|(9, l)|

x10

|(10, l)|

|⊢| w

y1y2

|(2, r)|

y3

|(3, r)|

y4y5

|(5, r)|

y6y7y8

|(8, r)|

y9

|(9, r)|

Assume that P =
{

(δ1, ǫ1), . . . , (δℓ, ǫℓ)
}

is a chain of factor points, written
in non-decreasing order, that is, for any two factor points (δi, ǫi) and (δj , ǫj),
with i < j, the relation (δi, ǫi) � (δj , ǫj) holds. Here we assume that ⊢ and
⊣ are not included in P , but allow P to be a multiset. Moreover, we assume
that ⊢ and ⊣ are comparable with all the factor points in P . We call a triple
(α, β,Γ) a constraint of P , if (α, l) and (β, r) are two consecutive factor points of
P , that is, if

{

(α, l), (β, r)
}

=
{

(δi, ǫi), (δi+1, ǫi+1)
}

, for some i ∈ {1, . . . , ℓ− 1};

and Γ =
{

γ ∈ {≺,�,∼,�,≻} | (α, l) γ (β, r)
}

. Moreover, constraint (α, β,Γ)
is called even, if ∼ ∈ Γ; negative, if it is not even and � ∈ Γ; positive, if it is
not even and � ∈ Γ; inner, if ⊢ � (α, l) � ⊣ and ⊢ � (β, r) � ⊣; outer, if it is
not inner. It follows from the construction that max{fα1

, gβ1
} ≤ min{fα2

, gβ2
}

or max{fα2
, gβ2

} ≤ min{fα1
, gβ1

} holds, for any two constraints (α1, β1,Γ1) 6=
(α2, β2,Γ2) of P . Hence, we get an order for constraints.

x1

|(δ1, l)|

x2x3

|(δ2, l)|

x4 · · ·x8

|(δ6, l)|

x9

|(δ8, l)|

x10

|(δ11, l)|

w

y1y2

|(δ3, r)|

y3

|(δ4, r)|

y4y5

|(δ5, r)|

y6y7y8

|(δ7, r)|

= |(δ9, r)|

y9

|(δ10, r)|
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x1 x2x3

(α0, β0, {�})

x4 · · ·x8

(α2, β2, {�})

x9 x10

(α5, β5, {�})

w

y1y2 y3 y4y5

(α1, β1, {�})

y6y7y8

(α3, β3, {∼})

= (α4, β4, {∼})

y9

Assume that C = {(α0, β0,Γ0), . . . , (αk, βk,Γk) is the set of all constraints
of P , written in non-decreasing order. We set l1 = x1 · · ·xα0

, l2 = y1 · · · yβ0
,

ui = xαi−1+1 · · ·xαi
, vi = yβi−1+1 · · · yβi

, r1 = xαk+1 · · ·xm, r2 = yβk+1 · · · yn,
for i = 1, . . . , k; and overlaps

sj =

{

(p−1
1 l1u1 · · ·uj)

−1(p−1
2 l2v1 · · · vj) if ⊢ � (αj , l) � (βj , r) � ⊣,

(p−1

2 l2v1 · · · vj)
−1(p−1

1 l1u1 · · ·uj) if ⊢ � (βj , r) � (αj , l) � ⊣,

for j = 0, . . . , k. Now, equalities (2) can be rewritten as

p1wq1 = l1u1 · · ·ukr1 and p2wq2 = l2v1 · · · vkr2. (3)

It follows from the construction, that if (αi−1, βi−1,Γi−1) and (αi, βi,Γi) are
inner constraints, i. e., the pair (ui, vi) is inside w, then ui and vi overlap, that
is fαi

≥ gβi−1
and gβi

≥ fαi−1
.

l1 = x1x2x3

(α0, β0, {�})

u1 = x4 · · ·x8

(α2, β2, {�}), |u2| = 0

u3 = x9

|u4| = 0

u5 = x10

(α5, β5, {�})

w

l2 = y1y2 v1 = y3y4y5

(α1, β1, {�})

v2 = y6y7y8

(α3, β3, {∼}) = (α4, β4, {∼}),

|v3| = |v4| = 0

v5 = y9

Finally we are ready for the main definition. We depict the constraints in C
as a formula

◦0 ρ1 ◦1 · · · ◦k−1 ρk ◦k , (4)

which we call a representation formula of double-interpretation. In this formula
the symbols ◦i are operators and ρj are terms defined as follows. Operator ◦i

equals one of the following: + or +si, if si is not empty ({≺,≻} ∩ Γ 6= ∅); ∗ or
∗si, if si might be empty ({≺,∼,≻}∩Γ = ∅); or empty (left out), if si is known
to be empty (∼ ∈ Γ). Moreover, operators + and ∗ are replaced with ⊕ and ⊛,
respectively, if (αi, βi,Γi) is an outer constraint. Next, we define the terms ρj .
If both (αj−1, βj−1,Γj−1) and (αj , βj ,Γj) are negative (resp. positive), then

ρj =

x

uj

x





y vj



y

(

resp.

x

uj

x





y vj



y

)

.
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If (αj−1, βj−1,Γj−1) is positive and (αj , βj ,Γj) is negative (resp. (αj−1, βj−1,Γj−1)
is negative and (αj , βj ,Γj) is positive), then

ρj =

x

uj

x





y vj



y

(

resp.

x

 uj

x





yvj



y

)

.

If (αj−1, βj−1,Γj−1) (resp. (αj , βj ,Γj)) is even, then

ρj =

x

uj

x





y vj



y

or

x

 uj

x





yvj



y

(

resp.

x

 uj

x





yvj



y

or

x

uj

x





y vj



y

)

depending on whether (αj , βj ,Γj) (resp. (αj−1, βj−1,Γj−1)) is negative or posi-
tive. To conclude the definition, the end markers ↑ . . . ↑ of the upper part of the
term represent square brackets equal to [. . . ], if uj is known to be nonempty;
] . . . [, if uj might also be empty. Moreover, uj is omitted and brackets written
near each other ( ][ ) if uj is known to be empty. The lower part ↓ . . . ↓ is set
similarly with respect to vj .

The operators +si or ∗si are used in the case we need to explicitly denote
the overlap si. If all the constraints are inner, then the formula actually repre-
sents a double-factorization. If any of the words li or ri is nonempty, then the
representation is only partial, that is, it represents some middle part of the two
interpretations or factorizations.

Observe that a pair of interpretations of a word can have several different
representation formulas. Also many pairs of interpretations of words can have
the same representation formula. Usually we only use the representation for-
mulas without explicitly writing down the two interpretations, the set of factor
points or the set of constraints.

To better illustrate the intuition behind the definition, an example of a five
step transformation from a traditional tile picture of words to representation
formula is given next.

Step 1. Assume that we have an equality

l1u1u2u3r1 = l2v1v2v3r2

represented as a picture

u1 u2 u3

v1 v2 v3

where we already excluded the words li and ri. This picture tells us, for example,
that v1 is a factor of u1 and that u1 overlaps with v2. It does not tell us, however,
whether v1 is or can be empty or not or whether the overlap word of u1 and v2
is empty, i.e., whether u1 and v2 are only neighbouring each other.

Step 2. As a second step, we rip mercilessly the previous picture into three
separate blocks.
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u1 u2 u3

v1 v2 v3

Step 3. Next we transform the blocks into terms of representation formula.

[ u1 ]

[v1 ]

][

[ v2 ]

[ u3 ]

]v3 [

We can now read, that u2 is empty (it is, in fact, left out), v3 might be empty
and all the rest of the words are nonempty.

Step 4. This time we add the operators before, in between and after the terms.

+
[ u1 ]

[v1 ]
∗

][

[ v2 ]
+

[ u3 ]

]v3 [
∗

Again, we have also added new information. The first + implies that the starting
point of v1 is after the starting point of u1. The first ∗ indicates that u1 and v2
do not have to overlap. They could be only neighbours. The second +, however,
tells us that v2 and u3 do properly overlap. The second ∗ informs us, that it is
possible that u3 and v3 end at the same position.

Step 5. As a last step, we add the overlap words to the operator symbols, but
only in between the terms this time.

+
[ u1 ]

[v1 ]
∗s1

][

[ v2 ]
+s2

[ u3 ]

]v3 [
∗

Here s1 might be empty, but s2 is not empty. We could have introduced the
overlap words for the first and the last operator as well, but simply choosed not
to do so here. It is often the case that the first and the last overlap word do not
have much significance.

In the first example the formula (1) could represent a double-factorization
x1x2x3 = y1y2, with x2 = y1 = y2 = v. The set of factor points could be
{(0, r), (1, l), (1, r), (2, l), (2, r)}. The set of constraints could then be
{

(1, 0, {≻,�}), (1, 1, {≺,�}), (2, 1, {≻,�}), (2, 2, {≺,�})
}

.
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