REPRESENTING DOUBLE-INTERPRETATIONS

Markku Laine
Department of Mathematics and Turku Centre for Computer Science, University of Turku Turku, 20014, Finland
majlain@utu.fi

In this paper a new notation for representing double-interpretations is introduced. Especially when working with word equations, one often needs to look at two factorizations or interpretations of a word. This usually leads to a complicated case analysis, see for example [3]. To make these kind of considerations easier to the reader, one traditionally provides some kind of tile or line-arc pictures, see $[1,2,4]$. The problem is that these pictures are not exact enough and might not handle all the cases. Hence, additional information has to be added to the base text. The new notation is intended to counteract these difficulties, by providing a formally defined, exact, and also more compact way of representing this information, but still maintaining the illustrative nature of a picture.

As an example the fact that a word v is imprimitive is equivalent to the fact that v is a proper factor of $v v$, which is represented by the following tile picture.

Same thing is represented by the formula

$$
\begin{equation*}
+\frac{][}{[v]} * \frac{[v]}{][} * \frac{][}{[v]}+ \tag{1}
\end{equation*}
$$

If we would replace the symbols + in the beginning and the end of the formula with symbols $*$, then the cases that v is a prefix and that v is a suffix of $v v$ would also be included. The detailed definition is given next.

Assume that a word w has two interpretations $x_{1} x_{2} \cdots x_{m}$ and $y_{1} y_{2} \cdots y_{n}$, that is

$$
\begin{equation*}
p_{1} w q_{1}=x_{1} x_{2} \cdots x_{m} \quad \text { and } \quad p_{2} w q_{2}=y_{1} y_{2} \cdots y_{n} \tag{2}
\end{equation*}
$$

where $\left|p_{1}\right|<\left|x_{1}\right|,\left|q_{1}\right|<\left|x_{m}\right|,\left|p_{2}\right|<\left|y_{1}\right|$ and $\left|q_{2}\right|<\left|y_{n}\right|$, with $f_{i}=\left|x_{1} \cdots x_{i}\right|-$ $\left|p_{1}\right|$, for $i=0, \ldots, m$; and $g_{j}=\left|y_{1} \cdots y_{j}\right|-\left|p_{2}\right|$, for $j=0, \ldots, n$. A restriction is an explicitly given relation $(<, \leq,=, \geq$ or $>)$ between two numbers f_{i} and g_{j}, that is, a relation we are aware of.

Before the main definition, we need some auxiliary definitions. Example pictures are provided along the way in order to illustrate the concepts in these definitions. We call a pair $(\delta, \epsilon) \in(\{0, \ldots, m\} \times\{l\}) \cup(\{0, \ldots, n\} \times\{r\})$ a factor point, or more precisely a left factor point, if $\epsilon=l$, or a right factor point, if $\epsilon=r$. Moreover, \vdash is called the starting factor point and \dashv the ending factor point. The length $|(\delta, \epsilon)|$ of a factor point (δ, ϵ) equals f_{δ}, if $\epsilon=l$, or g_{δ}, if $\epsilon=r$; and $|\vdash|=0,|\dashv|=|w|$. The length concept allows us to write for any two factor points φ and ψ that $\varphi \prec \psi, \varphi \preceq \psi, \varphi \sim \psi, \varphi \succeq \psi$ or $\varphi \succ \psi$, if we have the restriction $|\varphi|<|\psi|,|\varphi| \leq|\psi|,|\varphi|=|\psi|,|\varphi| \geq|\psi|$ or $|\varphi|>|\psi|$, respectively.

| $\|(1, l)\|$ | \| $(3, l)$ | $\|(8, l)\|$ | | \| | $9, l) \mid$ | $\|(10, l)\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x_{1} | $x_{2} x_{3}$ | | $\cdots x_{8}$ | x_{9} | x_{10} |
| $\|\vdash\| \cdots$ | w | | | | |
| | $y_{1} y_{2}$ | y_{3} | $y_{4} y_{5}$ | $y_{6} y_{7} y_{8}$ | y_{9} |
| | $\|(2, r)\|$ | | $\mid(5, r)$ | $\|(8, r)\|$ | $\|(9, r)\|$ |
| $\mid(3, r)$ | | | | | |

Assume that $P=\left\{\left(\delta_{1}, \epsilon_{1}\right), \ldots,\left(\delta_{\ell}, \epsilon_{\ell}\right)\right\}$ is a chain of factor points, written in non-decreasing order, that is, for any two factor points $\left(\delta_{i}, \epsilon_{i}\right)$ and $\left(\delta_{j}, \epsilon_{j}\right)$, with $i<j$, the relation $\left(\delta_{i}, \epsilon_{i}\right) \preceq\left(\delta_{j}, \epsilon_{j}\right)$ holds. Here we assume that \vdash and \dashv are not included in P, but allow P to be a multiset. Moreover, we assume that \vdash and \dashv are comparable with all the factor points in P. We call a triple (α, β, Γ) a constraint of P, if (α, l) and (β, r) are two consecutive factor points of P, that is, if $\{(\alpha, l),(\beta, r)\}=\left\{\left(\delta_{i}, \epsilon_{i}\right),\left(\delta_{i+1}, \epsilon_{i+1}\right)\right\}$, for some $i \in\{1, \ldots, \ell-1\}$; and $\Gamma=\{\gamma \in\{\prec, \preceq, \sim, \succeq, \succ\} \mid(\alpha, l) \gamma(\beta, r)\}$. Moreover, constraint (α, β, Γ) is called even, if $\sim \in \Gamma$; negative, if it is not even and $\preceq \in \Gamma$; positive, if it is not even and $\succeq \in \Gamma$; inner, if $\vdash \preceq(\alpha, l) \preceq \dashv$ and $\vdash \preceq(\beta, r) \preceq \dashv$; outer, if it is not inner. It follows from the construction that $\max \left\{f_{\alpha_{1}}, g_{\beta_{1}}\right\} \leq \min \left\{f_{\alpha_{2}}, g_{\beta_{2}}\right\}$ or $\max \left\{f_{\alpha_{2}}, g_{\beta_{2}}\right\} \leq \min \left\{f_{\alpha_{1}}, g_{\beta_{1}}\right\}$ holds, for any two constraints $\left(\alpha_{1}, \beta_{1}, \Gamma_{1}\right) \neq$ $\left(\alpha_{2}, \beta_{2}, \Gamma_{2}\right)$ of P. Hence, we get an order for constraints.

Assume that $C=\left\{\left(\alpha_{0}, \beta_{0}, \Gamma_{0}\right), \ldots,\left(\alpha_{k}, \beta_{k}, \Gamma_{k}\right)\right.$ is the set of all constraints of P, written in non-decreasing order. We set $l_{1}=x_{1} \cdots x_{\alpha_{0}}, l_{2}=y_{1} \cdots y_{\beta_{0}}$, $u_{i}=x_{\alpha_{i-1}+1} \cdots x_{\alpha_{i}}, v_{i}=y_{\beta_{i-1}+1} \cdots y_{\beta_{i}}, r_{1}=x_{\alpha_{k}+1} \cdots x_{m}, r_{2}=y_{\beta_{k}+1} \cdots y_{n}$, for $i=1, \ldots, k$; and overlaps

$$
s_{j}= \begin{cases}\left(p_{1}^{-1} l_{1} u_{1} \cdots u_{j}\right)^{-1}\left(p_{2}^{-1} l_{2} v_{1} \cdots v_{j}\right) & \text { if } \vdash \preceq\left(\alpha_{j}, l\right) \preceq\left(\beta_{j}, r\right) \preceq \dashv, \\ \left(p_{2}^{-1} l_{2} v_{1} \cdots v_{j}\right)^{-1}\left(p_{1}^{-1} l_{1} u_{1} \cdots u_{j}\right) & \text { if } \vdash \preceq\left(\beta_{j}, r\right) \preceq\left(\alpha_{j}, l\right) \preceq \dashv,\end{cases}
$$

for $j=0, \ldots, k$. Now, equalities (2) can be rewritten as

$$
\begin{equation*}
p_{1} w q_{1}=l_{1} u_{1} \cdots u_{k} r_{1} \quad \text { and } \quad p_{2} w q_{2}=l_{2} v_{1} \cdots v_{k} r_{2} \tag{3}
\end{equation*}
$$

It follows from the construction, that if $\left(\alpha_{i-1}, \beta_{i-1}, \Gamma_{i-1}\right)$ and $\left(\alpha_{i}, \beta_{i}, \Gamma_{i}\right)$ are inner constraints, i. e., the pair $\left(u_{i}, v_{i}\right)$ is inside w, then u_{i} and v_{i} overlap, that is $f_{\alpha_{i}} \geq g_{\beta_{i-1}}$ and $g_{\beta_{i}} \geq f_{\alpha_{i-1}}$.

\[

\]

Finally we are ready for the main definition. We depict the constraints in C as a formula

$$
\begin{equation*}
\circ_{0} \rho_{1} \circ_{1} \cdots \circ_{k-1} \rho_{k} \circ_{k} \tag{4}
\end{equation*}
$$

which we call a representation formula of double-interpretation. In this formula the symbols \circ_{i} are operators and ρ_{j} are terms defined as follows. Operator \circ_{i} equals one of the following: + or $+s_{i}$, if s_{i} is not empty $(\{\prec, \succ\} \cap \Gamma \neq \emptyset) ; *$ or $* s_{i}$, if s_{i} might be empty $\left(\{\prec, \sim, \succ\} \cap \Gamma=\emptyset\right.$); or empty (left out), if s_{i} is known to be empty $(\sim \in \Gamma)$. Moreover, operators + and $*$ are replaced with \oplus and \circledast, respectively, if $\left(\alpha_{i}, \beta_{i}, \Gamma_{i}\right)$ is an outer constraint. Next, we define the terms ρ_{j}. If both $\left(\alpha_{j-1}, \beta_{j-1}, \Gamma_{j-1}\right)$ and ($\alpha_{j}, \beta_{j}, \Gamma_{j}$) are negative (resp. positive), then

$$
\rho_{j}=\frac{\uparrow u_{j} \uparrow}{\downarrow v_{j} \downarrow} \quad\left(\operatorname{resp} \cdot \frac{\uparrow u_{j} \uparrow}{\downarrow v_{j} \downarrow}\right)
$$

If $\left(\alpha_{j-1}, \beta_{j-1}, \Gamma_{j-1}\right)$ is positive and $\left(\alpha_{j}, \beta_{j}, \Gamma_{j}\right)$ is negative (resp. $\left(\alpha_{j-1}, \beta_{j-1}, \Gamma_{j-1}\right)$ is negative and ($\alpha_{j}, \beta_{j}, \Gamma_{j}$) is positive), then

$$
\rho_{j}=\frac{\uparrow u_{j} \uparrow}{\downarrow v_{j} \downarrow} \quad\left(\operatorname{resp} . \frac{\uparrow u_{j} \uparrow}{\downarrow v_{j} \downarrow}\right) .
$$

If $\left(\alpha_{j-1}, \beta_{j-1}, \Gamma_{j-1}\right)\left(\operatorname{resp} .\left(\alpha_{j}, \beta_{j}, \Gamma_{j}\right)\right)$ is even, then

$$
\rho_{j}=\frac{\uparrow u_{j} \uparrow}{\downarrow v_{j} \downarrow} \quad \text { or } \quad \frac{\uparrow u_{j} \uparrow}{\downarrow v_{j} \downarrow} \quad\left(\text { resp. } \frac{\uparrow u_{j} \uparrow}{\downarrow v_{j} \downarrow} \quad \text { or } \frac{\uparrow u_{j} \uparrow}{\downarrow v_{j} \downarrow}\right)
$$

depending on whether $\left(\alpha_{j}, \beta_{j}, \Gamma_{j}\right)$ (resp. $\left.\left(\alpha_{j-1}, \beta_{j-1}, \Gamma_{j-1}\right)\right)$ is negative or positive. To conclude the definition, the end markers $\uparrow \ldots \uparrow$ of the upper part of the term represent square brackets equal to [...], if u_{j} is known to be nonempty;]...[, if u_{j} might also be empty. Moreover, u_{j} is omitted and brackets written near each other (\mathbb{I}) if u_{j} is known to be empty. The lower part $\downarrow \ldots \downarrow$ is set similarly with respect to v_{j}.

The operators $+s_{i}$ or $* s_{i}$ are used in the case we need to explicitly denote the overlap s_{i}. If all the constraints are inner, then the formula actually represents a double-factorization. If any of the words l_{i} or r_{i} is nonempty, then the representation is only partial, that is, it represents some middle part of the two interpretations or factorizations.

Observe that a pair of interpretations of a word can have several different representation formulas. Also many pairs of interpretations of words can have the same representation formula. Usually we only use the representation formulas without explicitly writing down the two interpretations, the set of factor points or the set of constraints.

To better illustrate the intuition behind the definition, an example of a five step transformation from a traditional tile picture of words to representation formula is given next.

Step 1. Assume that we have an equality

$$
l_{1} u_{1} u_{2} u_{3} r_{1}=l_{2} v_{1} v_{2} v_{3} r_{2}
$$

represented as a picture

u_{1}		u_{2}	u_{3}	
v_{1}	v_{2}	v_{3}		

where we already excluded the words l_{i} and r_{i}. This picture tells us, for example, that v_{1} is a factor of u_{1} and that u_{1} overlaps with v_{2}. It does not tell us, however, whether v_{1} is or can be empty or not or whether the overlap word of u_{1} and v_{2} is empty, i.e., whether u_{1} and v_{2} are only neighbouring each other.
Step 2. As a second step, we rip mercilessly the previous picture into three separate blocks.

Step 3. Next we transform the blocks into terms of representation formula.

We can now read, that u_{2} is empty (it is, in fact, left out), v_{3} might be empty and all the rest of the words are nonempty.
Step 4. This time we add the operators before, in between and after the terms.

$$
+\frac{\left[u_{1}\right]}{\left[v_{1}\right]} * \frac{][}{\left[v_{2}\right]}+\frac{\left[u_{3}\right]}{] v_{3}[} *
$$

Again, we have also added new information. The first + implies that the starting point of v_{1} is after the starting point of u_{1}. The first $*$ indicates that u_{1} and v_{2} do not have to overlap. They could be only neighbours. The second + , however, tells us that v_{2} and u_{3} do properly overlap. The second $*$ informs us, that it is possible that u_{3} and v_{3} end at the same position.
Step 5. As a last step, we add the overlap words to the operator symbols, but only in between the terms this time.

$$
+\frac{\left[u_{1}\right]}{\left[v_{1}\right]} * s_{1} \frac{][}{\left[v_{2}\right]}+s_{2} \frac{\left[u_{3}\right]}{] v_{3}[} *
$$

Here s_{1} might be empty, but s_{2} is not empty. We could have introduced the overlap words for the first and the last operator as well, but simply choosed not to do so here. It is often the case that the first and the last overlap word do not have much significance.

In the first example the formula (1) could represent a double-factorization $x_{1} x_{2} x_{3}=y_{1} y_{2}$, with $x_{2}=y_{1}=y_{2}=v$. The set of factor points could be $\{(0, r),(1, l),(1, r),(2, l),(2, r)\}$. The set of constraints could then be $\{(1,0,\{\succ, \succeq\}),(1,1,\{\prec, \preceq\}),(2,1,\{\succ, \succeq\}),(2,2,\{\prec, \preceq\})\}$.

References

[1] C. Choffrut, J. Karhumäki, Combinatorics on Words in: G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages 1, Chapter 6, 329-438, Springer 1997.
[2] E. Czeizler, Š. Holub, J. Karhumäki, M. Laine, Intricacies of simple word equations: an example, International Journal of Foundations of Computer Science, World Scientific, submitted 2007.
[3] S. Holub, Binary equality sets are generated by two words, Journal of Algebra, 259, 1-42, 2003.
[4] M. Lothaire, Combinatorics on words, Addison-Wesley, 1983.

