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Abstract. Usually development of modern software is tackled from several dif-
ferent viewpoints and in a number of iterations. While specifying various as-
pects and abstraction levels of the system under construction, we create a set of
different models, which should be inter- and intra-consistent. Currently UML is
widely used for modeling software-intensive systems. To handle consistency
better, UML’s built-in extension mechanism, profile, can be used. In this paper
we present a specification of a profile for modeling distributed communication
systems and protocols. We identify the general patterns of models created at
different stages of Lyra — a rigorous, service-oriented and model-based method
for developing industrial telecommunication systems and communicating pro-
tocols. The proposed profile with consistency constraints is formalized in the B
Method. Formalization in B helps us to ensure intra- and inter-consistency of
models created at various phases of Lyra development. Hence it potentially in-
creases our confidence in correctness of developed software.

1 Introduction

Recently various model-driven approaches have emerged to support more architec-
ture and design-centric software development. Modeling typically starts from abstract,
high-level models that are refined into the detailed design models in successive de-
velopment stages. The variety of models, both in terms of view points and levels of
abstraction, require techniques for managing model consistency. On the one hand, we
need to ensure intra-consistency of the models, i.e., consistency among concepts
specifying different aspects of the system structure and behaviour on the same devel-
opment stage. On the other hand, we should establish inter-consistency of models,



i.e., demonstrate consistency among modeling concepts from the different develop-
ment stages.

An acute problem in modeling with UML is to validate design models with respect
to architectural rules. In UML2 [1], the architectural rules can be defined in a system-
atic way using built-in light-weight extension mechanism called profiles. The profiles
can help the software designers to tackle this problem. Moreover, with the support of
a proper tool, the design of models can be automatically checked against the profiles.
UML profiles can thus provide a solid basis for increasing the level of automation of
software engineering.

In this paper we introduce a specification of a UML2 profile, called Lyra profile.
Lyra [2] is a model-driven and component-based design method for the development
of communicating systems and communication protocols. It consists of four consecu-
tive development phases that support systematic refinement of the design models. The
models constructed define externally observable behaviour of system-level services.
Lyra has been developed at Nokia Research Center and applied in large-scale UML2-
based industrial software development projects.

We identify the general patterns of UML2 models created at different stages of
Lyra method. We define intra- and inter-consistency rules for them. We present an
approach to ensuring intra- and inter-consistency of Lyra models via specification and
refinement in the B method [3].

The paper is structured as follows: in Section 2 we describe the Lyra design
method and give a short introduction to UML2 metamodeling and Lyra profiling
principles. In Section 3 we present the Lyra profile and give its graphical representa-
tion. In Section 4 we describe an approach to ensure intra- and inter-consistency in
Lyra by formal specification and refinement in the B Method. In Section 5 we discuss
the proposed approach and outline the future work.

2 The Lyra Method and Lyra Profile in UML2

2.1 Overview of Lyra

Lyra [2, 4] is a service-oriented and model-based design method for the develop-
ment of distributed communicating systems. It has been developed in Nokia Research
Center by integrating the best practices and design patterns established in the domain.
It has been successfully applied in several large-scale industrial system development
projects.

Lyra has four main phases: Service Specification, Service Decomposition, Service
Distribution and Service Implementation. The Service Specification phase focuses on
defining the services provided by the system and the different types of users of these
services. In this phase the externally observable behaviour of the system level services
on the corresponding logical user interfaces is defined. In the Service Decomposition
phase the abstract model produced at the previous stage is decomposed in a stepwise
and top-down fashion into a set of service components and logical interfaces between
them, resulting in the logical architecture of the system level services. In Service Dis-
tribution phase the logical architecture of services is distributed over a given platform



architecture. In Service Implementation phase the structural elements are adjusted and
integrated to the target environment, resulting in a model, which can be used, e.g., as
a source for automatic code generation.

The example of Lyra development can be found in [5, 6].

2.2 UML metamodeling and profiles

The latest UML version 2.0 introduces major changes to the version 1.5. The most
significant structural change is the division of the specification in Infrastructure and
Superstructure specifications, which respectively define the foundation language con-
structs and the user-level constructs required for UML2. UML2 Infrastructure is as-
sumed to be extensively reused by various metamodel definitions. For instance, Meta-
Object Facility (MOF) reuses it to provide the ability to model metamodels and
UML2 Superstructure reuses it to define UML metamodel.

To enable flexible reuse, UML2 infrastructure elements are structured in various
packages. When reusing the infrastructure, the packages included in the metamodel
should be clearly identified. These packages could be imported as such or via spe-
cialization. For instance, UML::Classes::Kernel package imports all the Infrastruc-
ture::Core subpackages and extends some of their classes via specialization [1]. Such
extensions should naturally be clearly defined. The extensions can also use the same
name as the extended class, as long as they have different namespace, namely, they
are placed in different packages. For instance, UML2 Superstructure introduces the
class Class from Communications package that generalizes the class Class from Ker-
nel package and class BehavioredClassifier from BasicBehaviors package. Class
(from Communications) is a class that can be designated as active, when each of its
instances have their own thread, or passive, when each of its instances execute in the
context of some other object. The extension mechanism used means that the unique
name of a metamodel element (a class) consists of the name of the element itself and
the package it belongs to (e.g., “Class (from Communications)”).

UML2 Superstructure defines the UML metamodel itself, (re)using the Infrastruc-
ture specification. Namely, UML2 Superstructure defines the user level constructs re-
quired for UML2. The two complementary specifications, Infrastructure and Super-
structure, constitute a complete specification for the UML2 modeling language [1].

As in UML 1.x, profiles are the built-in light-weight extension mechanism of
UML2 standard. Profiles can be used to extend a MOF-based metamodel, e.g., UML
metamodel, for a specific context, domain or purpose. Profiles are only allowed to
contain tag definitions, stereotypes, constraints and data types [1, 7]. In UML2, prop-
erties can be attached to the introduced stereotypes. They are marked as attributes in-
side a class representing a new stereotype. The profile mechanism is defined by Pro-
file package in UML2 Infrastructure.

The profile mechanism is not a first-class extension mechanism of UML and thus
does not allow modifications of existing metamodels, as the specification states [8].
This means that the new stereotypes introduced, meta-attributes used, and constraints
given cannot contradict with the reference metamodel; it is impossible to take away
any of the constraints that apply to a metamodel, but it is possible to add new con-
straints that are specific to the profile. In short, a reference metamodel is considered



always as a “read only” specification. This implies that the specialized semantics is
assumed to not contradict with the semantics of the reference metamodel. This restric-
tion of using UML profile mechanism guarantees, e.g., that any CASE-tools compli-
ant with UML2 metamodel can be used for constructing models conformant with a
UML2 metamodel based profile.

As a part of a UML2 profile, it is not allowed to have an association between two
stereotypes or between a stereotype and a metaclass, unless they are subsets of exist-
ing associations in the reference metamodel [1]. Being a subset of an association in a
reference metamodel means, according to the above-mentioned profiling principles,
that the introduced association can be directly mapped with an association of the same
type in the reference metamodel and, e.g., the multiplicity ranges must fall in the
range of the corresponding multiplicities of the association in the reference meta-
model. Such associations provide a convenient and intuitive way to not only define
but also model restrictions and constraint defined for the profile. Further, such asso-
ciations could also be expressed using OCL, which are allowed in UML profiles. In
fact, UML2 Infrastructure proposes two methods to achieve the effect of new
(meta)associations: (1) adding new constraints within a profile that specialize the us-
age of some associations of the reference metamodel, or (2) extending the Depend-
ency metaclass by a stereotype and defining specific constraints on this stereotype.

Various UML profiles have been recently introduced for different purposes. For in-
stance, OMG proposes UML profiles for CORBA [9], for schedulability, time and
performance [10], for modeling quality of service and fault tolerance characteristics
and mechanisms [11] and for Enterprise Distributed Object Computing (EDOC) [12].

2.3 Lyra profiling principles

The construction of Lyra profile was motivated by the earlier work by Selonen and
Xu [13, 14] on defining a profile (more precisely, a profile hierarchy) for capturing
architectural rules and constraints relevant for a particular product line platform. In
[13, 14], Selonen and Xu introduce a concept of an architectural profile, which relies
on UML 1.5 profile mechanism. Architectural profiles are extended UML profiles
specialized for describing architectural constraints and rules for a given domain [14].
In [15] the architectural profiles are used to support maintenance of a large-scale
product platform architecture and real-life product-line products built on top of this
platform.

Since UML 1.5 profiles prevent the designer from explicitly constraining the inher-
ited meta-associations among user-defined stereotypes, Selonen and Xu use extended
profiles to address this shortcoming. Extended profiles contain two parts: a standard
UML metamodel part showing the subset of the metamodel that is being extended,
and an extension part showing the stereotypes and the inherited meta-associations and
other constraints. The extension part describes the allowed relationships between the
architectural concepts: the classifiers, the interfaces and the dependencies and realiza-
tion relationships between them. The actual architecture model validated against the
profile must satisfy the constraints implied by the profile, i.e., it is not allowed to have
other structures except the ones explicitly described in the set of profiles. Selonen and
Xu further characterize in [13, 14] how the extension part can be normalized into a
standard UML profile using OCL. This normalization mechanism resembles the two



above-mentioned proposed ways to achieve the effect of new (meta)associations, pre-
sented in UML2 Infrastructure specification. Namely, the dependencies used in the
extension part of an architectural profile represent visualizations of the constraints
that could also be expressed, e.g., using OCL. Such visualizations are easy for the
software architect to read and understand. In the introduction of Lyra profile (section
3), we use corresponding visualizations as used in architectural profiles.

3 The Lyra Profile

In this chapter the main concepts introduced and used in the Lyra design flow will
be summarized in form of the Lyra profile. The concepts in the Lyra profile are do-
main specific and independent of the languages and tools used in modeling.

The Lyra profile presents a basic reference model against which the correctness
and completeness of the design models can be checked. Correspondingly, information
in the profile can be used in automating the design flow by automatic model template
generation. To allow consistency checking, consistency rules for both structure and
behaviour will be defined and described in the enhanced Lyra profile as constraints.
This is the work in progress in the Rodin EU project [16]. Here we will present the
basic profile without these extensions.

The profile can also be used in the development of automated model transforma-
tions for various purposes. For instance, an abstracted verification or testing including
only the relevant aspects with respect to chosen properties (on a set of functionalities
and interfaces) could be performed based on a design model. The Lyra profile can
also be used as a starting point for profiles of different languages used in the system
development process.

The Lyra profile has been described using UML2 language. However, this does not
make the profile UML2 specific. UML2 is used as a description method and to bring
in the basic concepts. This allows us to avoid unnecessary redefinitions, which would
focus the presentation incorrectly and obscure the actual purpose. For the sake of clar-
ity, we use for associations the shorthand notation introduced in [14] and illustrated
by an example in Fig. 1.

«metaclass»
Classi

sownedPort | <metaciass
wnedPor ace

f

stereotype» stereotypex
SystemC +ounedPort AccessPoint

Fig. 1. Shorthand notation for associations



3.1 Structure

System Component - is a structural model element, which encapsulates a logical, in-
dependent piece of system specification (and ultimately implementation). A system
component may be decomposed into sub-system components, which are system com-
ponents themselves and may be decomposed further. A SystemComponent can be de-
veloped in isolation and later integrated to be a part of a larger system. SystemCom-
ponent extends UML2 class EncapsulatedClassifier (from Ports), which extends
StructuredClassifier (from InternalStructures). StructuredClassifier extends a classi-
fier with the capability to have internal structure. EncapsulatedClassifier extends a
classifier with the ability to own ports. SystemComponent may own several Access-
Points, through which it interacts with the environment. SystemComponent may own
several ServiceComponents, which encapsulate its behavioral specifications.

ServiceComponent - is a logical model element, which encapsulates a set of behav-
ioral specifications. Its total behaviour consists of ServiceBehavior and ServiceCom-
ponentBehavior. ServiceBehavior encapsulates the behavioral specifications related to
the provided service. ServiceComponentBehavior encapsulates the behaviour related
to implementation specific functionalities. ServiceComponent implements and uses
the services characterized by the Inferfaces it is related to. The services are provided
and used through the owned AccessPoints. ServiceComponent extends the UML2 Be-
havioredClassifier (from BasicBehaviors). In UML 1.4 there was no separate meta-
class for classifiers with behaviour.

Constraints:

[1] An interface implemented by a ServiceComponent may not be used by the

same ServiceComponent.

3.2 AccessPoints

AccessPoint - is a point of communication. An association with role provided refer-
ences the interfaces specifying the set of behavioral features that the owning System-
Component offers as its services to the environment at this AccessPoint. Correspond-
ingly, the association with role required references the interfaces specifying the set of
behavioral features that the owning SystemComponent expects to be provided by its
environment. AccessPoint is an abstract concept, which cannot be instantiated as
such, but through its generalizations SAP or PeerAP. The base class of AccessPoint is
Port of UML2,

SAP (Service Access Point) - is a communication point between the system and its
environment. Through a SAP a system may either provide its services to external cli-
ents or use the services provided by external entities. SAP is an abstract concept,
which cannot be instantiated as such, but through its generalizations, i.e., PSAP or
USAP. SAP is a generalization of AccessPoint.

Constraints:

[2] SAP is instantiated either as PSAP or USAP.

PSAP (Provided Service Access Point) - is a communication point between the sys-
tem and its users. Through PSAP a system provides its services. PSAP encapsulates



communication related to providing a single service or a set of services logically
grouped together. PSAP is a generalization of SAP.

Attributes:

isService: true - PSAP is used to publish a service or a set of services to the envi-
ronment. Service is implemented by the service component the PSAP is attached to.

USAP (Used Service Access Point) - is a communication point between the system
and external service providers. USAP encapsulates communication related to using a
single service or a set of services logically grouped together. Grouping can be done,
e.g., according to communicating peer entity or type of the service used through
USAP. USAP is a generalization of SAP.

Attributes:

isService: false - USAP is used to obtain services provided by other entities, al-
lowing it to implement its own services.

PeerAP (Peer Access Point) - is a communication point between a set of distributed
model elements. Distributed service components interact through PeerAPs to provide
a uniform service (or a set of them) in distributed system architecture. PeerAP is a
generalization of AccessPoint.

Attributes:

isService: false - PeerAP is used for communication between distributed service
components and is thus part of the internal implementation of a service in a distrib-
uted system.

3.3 Behaviour

ServiceComponentBehavior - is invoked when an instance of the owning Service-
Component is created. ServiceComponentBehavior is not part of the service logics,
but merely encapsulates all internal implementation-specific functionalities, like dy-
namic process management and routing of incoming messages. ServiceComponent-
Behavior extends the UML2 Behavior.

ServiceBehavior - is an abstract behavior specification owned by a ServiceCompo-
nent. Tt represents the composition and the supertype of all behavioral specifications
constituting the actual service logics. ServiceBehavior is defined in the context of a
ServiceComponent, so it may refer to the features of the owning ServiceComponent.
An invoked behavior may invoke other behaviors specified in the same context. This
defines how the behavioral specifications interact. As an abstract concept, ServiceBe-
havior cannot be instantiated as such but through its generalizations InternalBehavior
and AccessPointCommunication. These are the main categories, or types, of Service-
Behavior and correspond to notion of internal and externally observable behavior.
ServiceBehavior extends the UML2 Behavior.

InternalBehavior - is a generalization and one of the main types of ServiceBehavior.
As an abstract concept it can be instantiated only through its generalizations.

ExecutionControl - is of type InternalBehavior and encapsulates behavioral specifi-
cation defining an execution flow at a certain abstraction level. According to that the
other behavioral specifications of a ServiceComponent are invoked. It may not con-



tain other events or actions than exitPoints (returned by the invoked behaviors) as
preconditions for transitions preceding the execution flow.

InternalComputation - is part of the internal behavior, not visible to the environment
of the owning ServiceComponent or SystemComponent. It is the other main type of
InternalBehavior and encapsulates the behavioral specifications, which are not of type
ExecutionControl. The events and actions in a behavioral specification of this type
may not be directly related to the interfaces of the owning ServiceComponent.

AccessPointCommunication - is a generalization and the other main type of Ser-
viceBehavior. It corresponds to notion of externally observable behavior. Behavioral
specifications of type AccessPointCommunication specify the actual implementations
and use of the interfaces of the owning ServiceComponent. Therefore, the behavioral
features of the ServiceComponent, which are related to its interfaces, are referred only
in behavioral specifications of this type. AccessPointCommunication extends UML2
StateMachine metaclass. As an abstract concept it can be instantiated only through its
generalizations.

SAPCommunication - is a state machine type for behavioral specifications describ-
ing communication, which is related to provided or used services. SAPCommunica-
tion is part of the externally observable behavior of ServiceComponent and System-
Component. As an abstract concept cannot be instantiated as such, but through its
generalizations PSAPCommunication and USAPCommunication.

PeerCommunication - is a state machine type for behavioral specifications describ-
ing communication between peer entities, which are part of distributed implementa-
tion of a service. PeerCommunication allows keeping the distribution, which is part of
the implementation, invisible to the users. In distribution the behavior of a Service-
Component visible to its users should be preserved as specified initially, i.e., before
the distribution. PeerCommunication is part of the externally observable behavior,
since this communication takes place on PeerAPs of a SystemComponent, which in-
stantiate external logical interfaces. For a ServiceComponent it can be considered as a
part of the internal behavior, since it is part of the service implementation in a given
network architecture.

PSAPCommunication - type of behavioral specifications, or state machines, specify
communication with the external users of the provided services. Events and actions in
a state machine of this type are related to the interfaces on the corresponding PSAPs.
These interfaces have implement relationship to the owning ServiceComponent.
PSAPCommunication state machine has peer-state machines in the external entities
using these services. These peer-state machines are of type USAPCommunication.

USAPCommunication - type of behavioral specifications, or state machines, specify
communication with the external providers of required services. Events and actions in
a state machine of this type are related to the interfaces on the corresponding USAPs.
These interfaces have use relationship to the owning ServiceComponent. USAP-
Communication state machine has peer-state machines in the external entities provid-
ing the requested services. These peer-state machines are of type PSAPCommunica-
tion.



3.4 Extensions

LyraUseCase - is a functional model element describing the system functionality. Tt
extends UML2 class UseCase (from UseCases) which extends BehavioredClassifier
(from BasicBehaviors) with the capability to own use cases. Realization relationship
between the supplier (LyraUseCase) and the client (SystemComponent) defines how
the model elements at different levels of abstraction are related to each other. Sys-
temComponent realizes a LyraUseCase.

LyraActor - is an external entity that interacts with the system. It extends UML2
class Actor (from UseCases), which is extending Classifier (from UseCases) with the
capability to own use cases.

The summary of the Lyra profile is given in Fig. 2.

4 Ensuring consistency using B Method

4.1 The B Method — background

The B Method [3] (further referred to as B) is an approach for the industrial develop-
ment of highly dependable software. The method has been successfully used in the
development of several complex real-life applications [17]. The tool support available
for B provides us with the assistance for the entire development process. For instance,
Atelier B [18], one of the tools supporting the B Method, has facilities for automatic
verification and code generation as well as documentation, project management and
prototyping. The high degree of automation in verifying correctness improves scal-
ability of B, speeds up development and, also, requires less mathematical training
from the users.

The development methodology adopted by B is based on stepwise refinement
[19]. While developing a system by refinement, we start from an abstract formal
specification and transform it into an implementable program by a number of correct-
ness preserving steps, called refinements. A formal specification is a mathematical
model of the required behaviour of a (part of) system.

In B a specification is represented by a set of modules, called Abstract Machines.
An abstract machine encapsulates state and operations of the specification and as a
concept is similar to a module or a package.

Each machine is uniquely identified by its name. The state variables of the machine
are declared in the VARIABLES clause and initialized in the INITIALISATION
clause. The variables in B are strongly typed by constraining predicates of the
INVARIANT clause. All types in B are represented by non-empty sets.

The operations of the machine are defined in the OPERATIONS clause. B state-
ments that we are using to describe a state change in operations have the following
syntax:
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Fig. 2. Summary of the Lyra Profile
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The first three constructs — assignment, conditional statement and sequential com-
position (used only in refinements) have the standard meaning. The remaining con-
structs allow us to model nondeterministic or parallel behaviour in a specification.
Usually they are not implementable so they have to be refined (replaced) with execu-
table constructs at some point of program development. The detailed description of
the B statements can be found elsewhere [3].

Often the operations in B are described as the preconditioned operation PRE cond
THEN body END. Here cond is a state predicate, and body is a B statement. If cond
is satisfied, the behaviour of the operation corresponds to the execution of its body.
However, when an attempt to execute it from a state where cond is false is under-
taken the operation leads to a crash (i.e., unpredictable or even non-terminating be-
haviour) of the system.

The B method provides us with mechanisms for structuring the system architec-
ture by modularization. A module is described as a machine. The modules can be
composed by means of several mechanisms providing different forms of encapsula-
tion. For instance, if the machine C INCLUDES the machine D then all variables and
operations of D are visible in C. However, to guarantee internal consistency (and
hence independent verification and reuse) of D, the machine C can change the vari-
ables of D only via the operations of D. In addition, the invariant properties of D are
included into the invariant of C.

Next we present our approach to ensuring model consistency via specifying model-
ing concepts and consistency rules in B.

4.2 Ensuring intra-consistency of Lyra models in B

To describe our approach to ensuring consistency between models by formalizing
them in B we first focus on addressing intra-consistency rules. As described above, at
each development stage of Lyra a fixed set of UML models is produced. For example,
the models produced in Service Specification phase are: Domain Model (presented
using UML2 use case diagram), Communication Context models (UML2 class dia-
grams), PSAPCommunication model (UML?2 state diagrams) and System Configura-
tion model (UML2 composite structure diagram) [4, 5, 6].

To ensure intra-consistency between these models we should verify that the models
satisfy model presentation rules and that they are not contradictory with each other.
This task is two-fold. On the one hand, for each individual model we should define
model-presentation rules, i.e., the constraints expressing how to define each model
element and model itself properly. On the other hand, we should define constraints
postulating consistency rules between the models and their elements on each devel-
opment stage. Fig. 4 presents an excerpt from the definition of these rules for Domain
Model and Communication Context model at Service Specification phase. Domain
Model and Communication Context model present essentially the same information:
Domain Model is considered as an informal description in Lyra, which is used to draft
the formal specification described in a Communication Context model.

In our approach to formal verification of intra-consistency, each development stage
is represented as a corresponding machine of the general form given in Fig. 3.



The variables of the machine define the corresponding models and their elements.
In the invariant clause we list model presentation and intra-consistency rules as predi-
cates over the variables of the machine. Each operation specifies the creation of the
model with the enforced consistency rules. In Fig. 5 we present an excerpt from a for-
mal specification of intra-consistency rules between Domain Model and Communica-
tion Context model at Service Specification phase.

MACHINE INTRACONSISTENCY_STAGE

VARIABLES

Names of models and their elements
INVARIANT

Model presentation rules &

Consistency rules for elements and models
OPERATIONS
CREATE_MODEL A =
PRE conditions for creating MODEL_A
THEN create a model by proper instantiation of its elements

while ensuring model presentation and consistency

END;
CREATE_MODEL B = ...

END

Fig. 3. General form of the intra-consistency rules specification

Domain Model and Communication Context are represented as the corresponding
variables DomainModel and CommContext of the machine Intraconsistency_SS.
DomainModel is composed of Actor, UseCase, System and Association elements
which in their turn are also specified as the variables. The elements of CommCon-
text are defined in the similar way. Observe that the variables of the machine form a
hierarchical data structure. Such a structure allows us to define the required additional
properties of elements, e.g., their attributes.

In the INVARIANT of the machine we define naming conventions and postulate
that each model and its elements are strictly identified by their unique identifiers
(UNIQUE_ID). Moreover, we also express constraints associated with each modeling
element. We translate each constraint described in natural language in Fig. 4 into B.

Elements of Constraints
Domain Model
Actor {1} The actor has the name.
Use case {2} The use case should have a name (the name of the service).
Association {3} Associates the actor with a concrete use case.
System {4} Gives the name of the system.
Elements of

Communication Context Constraints

{5} One active class is created for the system which is defined in the domain model.

{6} The name of system is the name of the active class.

Active class {7} For each use case in the domain model an active class is defined.

{8} The name of the class is the same as the name of the corresponding use case.

{9} There is only ONE active class defined for each use case.

{10} For each external actor in the domain model one external class is created.

{11} The name of the actor in the domain model becomes the name of the external class.

External class

Fig. 4. Examples of intra-consistency rules




MACHINE Intraconsistency_SS

SETS NAMES
CONSTANTS UNIQUE_ID, cc
PROPERTIES UNIQUE_ID <: NAT & cc:NAMES
VARIABLES
/* Models */

DomainModel, CommContext, <other diagrams in the model>

/* Elements of the DomainModel */
Actor, Actor_Name, UseCase, UseCase_Name, Association, Association_Source, Association_Target, System, System_Name,

/* Elements of the CommContext */
ActiveClass, ActiveClass_Name, ExternalClass, ExternalClass_Name, PSAP_Port,PSAP_Port_Name, USAP_Port,USAP_Port_Name,
Interface_IN,Interface_IN_Name, Interface_OUT, Interface_OUT_Name

< Elements of the other diagrams in the model>
INVARIANT
DomainMode| <: UNIQUE_ID & CommContext <: UNIQUE_ID & StateDiagram <: UNIQUE_ID &

/* Elements of the DomainModel */

Actor : {DomainModel} <-> UNIQUE_ID &

/* Actor attributes */ Actor_Name : ran(Actor) --> NAMES &

/* Constraint [1] */ I xx. (xx : ran(Actor) => Actor_Name(xx) /=cc ) &
UseCase : {DomainModel} <-> UNIQUE_ID &

/* UseCase attributes */ UseCase_Name : ran(UseCase) --> NAMES &

/* Constraint [2] */ I xx. (xx : ran(UseCase) => UseCase_Name(xx) /= cc ) &

Association : {DomainModel} <-> UNIQUE_ID &
/* Association attributes */  Association_Source : ran(Association) --> UNIQUE_ID &
Association_Target : ran(Association) --> UNIQUE_ID &
/* Constraint [3] */
! zz. (zz : ran(Association) => Association_Source(zz) : ran(Actor) & Association_Target(zz) : ran(UseCase) ) &

System : {DomainModel} <-> UNIQUE_ID &
/* System attributes */ System_Name : ran(System) --> NAMES &
/* Constraint [4] */ I xx. (xx : ran(System) => System_Name(xx) /=cc ) &

/* Elements of the CommContext */

ActiveClass : {CommContext} <-> UNIQUE_ID &
/* ActiveClass attributes */ ActiveClass_Name : ran(ActiveClass) --> NAMES &
/* Constraint [5,6] */
I xx.(xx:ran(System) & ActiveClass/={}=> #yy.(yy:ran(ActiveClass) & ActiveClass_Name(yy)=System_Name(xx))) &
/* Constraint [7,8] */
I xx.(xx:ran(UseCase) & ActiveClass/={}=>#yy.(yy:ran(ActiveClass) & ActiveClass_Name(yy)=UseCase_Name(xx))) &
/* Constraint [9] */
I (xx,yy1,yy2). (xx : ran(UseCase) & yy1 : ran(ActiveClass) &
yy2 : ran(ActiveClass) & UseCase_Name(xx) = ActiveClass_Name(yyl) =>
UseCase_Name(xx) /= ActiveClass_Name(yy2) ) &

ExternalClass : {CommContext} <-> UNIQUE_ID &
/* ExternalClass attributes */ ExternalClass_Name : ran(ExternalClass) --> NAMES &
/* Constraint [10, 11] */
Ixx.(xx:ran{Actor) & ExternalClass/={}=>#yy.(yy:ran(ExternalClass) & ExternalClass_Name(yy)=Actor_Name(xx))) &

< Invariants for the other model elements >

INITIALISATION
DomainModel :: POW(UNIQUE_ID) || CommContext :: POW(UNIQUE_ID) || StateDiagram :: POW(UNIQUE_ID) ||
Actor := {} || Actor_Name : = {} || UseCase := {} || UseCase_Name := {} ||
Association := {} || Association_Source := {} || Association_Target := {} ||
System := {} || System_Name := {} ||
<Initialization of the other modeling elements>

OPERATIONS
CreateDomainModel =
PRE
DomainModel={}
THEN
Actor :: {{DomainModel}*UNIQUE_ID} || Actor_Name :: ran(Actor) --> ( NAMES - {cc} ) ||
UseCase :: {{DomainModel}*UNIQUE_ID} || UseCase_Name :: ran(UseCase) --> ( NAMES - {cc} ) ||
Association :: {{DomainModel}*UNIQUE_ID} ||
Association_Source :: ran(Association) --> ran(Actor) ||
Association_Target :: ran(Association) --> ran(UseCase) ||
System :: {{DomainModel}*UNIQUE_ID} || System_Name :: ran(System) --> ( NAMES - {cc} )
END;
CreateCommContext =
PRE
DomainModel/={} & CommContext={}
THEN

<Iterate for the number of use cases in the DomainModel>
<Generate some unique identifier NN> ||
/* create an active class */
ActiveClass : = ActiveClass \/ ({CommContext}|-> NN) ||
<Assign the name of the use case to the ActiveClass_Name>
<End of iteration> ||
<Create other elements of the CommContext following the rules for the translation given in the list of constraints>

ND;
< Operations for creating other diagrams in the model>
END

Fig. 5. Excerpt from specifying consistency rules in the
Service Specification phase




For instance, the following conjunct of the invariant:

| Ixx.(xx:ran(Actor)=>Actor_Name(xx)/=cc ) |
expresses a simple presentation rule for Actor element (constrain {1} in Fig. 4). The
more complex constraint {3} which formulates the role of an Association element in
the DomainModel is expressed as follows:

1zz.(zz:ran(Association)=>Association_Source(zz):ran(Actor) &
Association_Target(zz):ran(UseCase))

By ensuring that the source end of an association is an Actor and the target end of
the same association is a UseCase, we identify the external service provider in Lyra
design flow. Similarly, we distinguish the service user by ensuring that the source end
of an association is a UseCase while the target end is an Actor.

Observe that the following conjunct:
|!xx.(xx:ran(UseCase)=>#yy.(yy:ran(ActiveCIass)&ActiveCIasstame(yy)=UseCasefName(xx))) |
defines consistency rule between elements of Domain Model and Communication
Context (constraint {7} in Fig. 4).

Moreover, this rule can be restricted in such a way that the number of associated

elements is fixed and limited (constraint {9}):

1(xx,yy1,yy2).(xx:ran(UseCase) & yyl:ran(ActiveClass) & yy2:ran(ActiveClass) &
UseCase_Name(xx)=ActiveClass_Name(yyl)=>UseCase_Name(xx)/=ActiveClass_Name(yy2))

The operations CreateDomainModel and CreateCommContext specify creating
the models at the Service Specification phase. They assign values to the correspond-
ing modeling elements and their attributes. Observe that to enforce consistency we
permit to call the operation CreateCommContext only after the Domain Model has
been created, i.e., DomainModel/={7}, as expressed in the precondition of the opera-
tion CreateCommContext.

To verify intra-consistency rules we should prove correctness of the defined ab-
stract machine. To achieve this we use an automatic tool support available for the B
Method — AtelierB tool [18]. AtelierB generates the required proof obligations and at-
tempts to discards them automatically. In some cases it requires user’s assistance for
doing this. Upon discarding all proof obligations the verification process completes.

4.3 Achieving inter-consistency of Lyra design flow via refinement in B

Our approach to consistency verification would be incomplete without addressing
verification of inter-consistency, i.e., ensuring that models at different development
stages are not contradictory. In this paper we propose refinement as a technique for
establishing model inter-consistency.

Refinement [19] is a technique to incorporate implementation details into a specifi-
cation. A general form of refinement is data refinement, which allows us to change
the state space of a machine, e.g., to choose new variables (of possibly different data
types) to model the specified behaviour. While replacing abstract data structures with
the refined ones, we should define the /inking invariant which explicitly defines the
connection between the newly introduced variables and the variables that they re-
place. It constitutes a part of the invariant of the refined specification.

Observe that at each development stage of Lyra the rules of intra-consistency re-
main unchanged. Hence at each stage we can specify the intra-consistency rules by



the corresponding instantiation of the machine Intraconsistency_SS. Then the re-
sultant machines — Intraconsistency_SDe and Intraconsistency_SDi would de-
fine the rules of intra-consistency at the Service Decomposition and Service Distribu-
tion phases correspondingly.

A specific form of data refinement is superposition refinement [19]. Superposition
refinement introduces new variables while leaving the exiting data structure unaf-
fected. Observe that the general ideas of superposition refinement and model trans-
formation during the Lyra development process coincide. Indeed, each development
stage introduces a new set of models, while the models created at the previous stage
remain unchanged. The linking invariant expresses relation between the existing and
newly introduced models. Therefore, by defining inter-consistency rules as the linking
invariant and establishing refinement, we verify inter-consistency of models from dif-
ferent development stages. This process is graphically represented in Fig. 6.

| Intraconsistency_SS |

REFINEMENT l

INCLUDES

| Interc i _SS-SDe I kl Intrac i y_SDe |

"l

REFINEMENT l

INCLUDES
Interconsistency_SDe-SDi I—.| Intraconsistency_SDi |

Fig. 6. Handling inter-consistency in Lyra via B refinement

We start from the Intraconsistency SS machine which specifies intra-
consistency rules at the first Lyra phase. We refine this machine by the machine In-
terconsistency_SS-SDe, which includes the machine Intraconsistency_SDe. The
machine Intraconsistency_SDe defines intra-consistency rules for the Service De-
composition phase. On the other hand, the invariant of Interconsistency_SS-SDe
defines the linking invariant which contains the inter-consistency rules for models on
Service Specification and Service Decomposition phases. The Service Distribution
phase is handled in the same way. Due to a lack of space we omit a detailed represen-
tation of formal specifications obtained at the refinement process.

In this section we have demonstrated how formal specification and refinement
process can assist in formal verification of intra- and inter- model consistency.

5 Conclusion

In this paper we made two major technical contributions. First, we defined the
Lyra profile — a profile for architecture-centric development of distributed communi-
cating systems and communication protocols. The profile has been derived as a result
of a number of large industrial developments conducted according to the Lyra meth-
odology within Nokia Research Center. We defined the basic modeling concepts and
established relationships between them. Secondly, we proposed a formal approach to
establishing intra- and inter-consistency between Lyra models at different develop-
ment stages. We demonstrated how to formally express and verify the consistency



rules in the process of specification and refinement in the B Method. The proposed
approach establishes a basis for automating the Lyra design flow.

We discussed the related work in Section 2 while presenting the major profiling
principles. The major novelty of the proposed approach is that it not only defines a
profile supporting the entire development process of communicating systems and
communication protocols but also smoothly integrates formal verification for ensuring
model consistency.

As a future work we are planning to further strengthen the proposed approach to
automate Lyra-based development of system correct by construction.
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