
Sparse Networks: balance of

processing and communication

Ville Leppänen and Martti Penttonen

Department of Computer Science
University of Turku

Lemminkäisenkatu 14a, 20520 Turku, Finland
Department of Computer Science,

University of Kuopio
P.O.Box 1627, 70211 Kuopio, Finland

E-mail: Ville.Leppanen@utu.fi, penttone@cs.uku.fi

Abstract

We discuss the problematics of efficient, general purpose parallel

computation. Parallel processing is meaningful only if latencies in

data access and interprocessor communication are managed. Laten-

cies can be compensated by slackness. This requires highly parallel

algorithms, and sufficient communication bandwidth. We present

a simple criterion for the need of bandwidth, or reversely, for the

amount of processors a network can serve. This leads to the con-

cept of sparse network. We show that sparse tori provide a basis

for efficient parallel computation.

1 Introduction

In this article we study the need of communication in parallel comput-
ing and investigate methods to achieve a balance between processing and
communication so that computation is fast and the use of hardware re-
sources is efficient. We point out the importance of sparseness of networks
in this game.

Until recent years the performance of processors has exponentially
grown by shortening the clock cycle and using more sophisticated proces-
sor architectures. Also the packing density of the memory has grown [4].

1

Quite recently, however, something has changed. Shortening the clock
cycle and increasing the packing density is no more as cost effective if
possible, and heatening has become a problem. In this situation, proces-
sor industry has started to look for other paths. Additional performance
is not searched by speeding up a single processor but by multiplying pro-
cessing units. Multicore processor is the keyword of this development.

Multiple processors alone do not multiply processing power. Proces-
sors must be able to cooperate and the communication of the processors
must be fluent enough. Even more important, we must be able to program
our problems in such a way that programs can be automatically trans-
formed to efficient execution by processors. This includes the following
challenges:

1. algorithmic difficulty

2. compilation of programs for efficient execution in network

3. performance of the network connecting the processors and memories

4. balance of processor load

Some of these challenges have at least a theoretical solution, some oth-
ers are less obvious. There is a developed theory of parallel algorithmics,
even if it is not very well known to the main stream computer scientists
[3]. The challenge of automatic compilation and efficient execution are
much harder than in the case of sequential computation, because there
are so many things to take into account at the same time: multiple pro-
cessors, properties of the network etc. In lack of general solution, these
nasty problems are left as the responsibility of the poor programmer. The
focus of this article is the balance of network capacity and the processing
power. We assume that the balance between the processors is solved at
higher levels, algorithmics and compilation.

2 Latency and slackness

In general, a good strategy to finish a job faster is to add work force. In
computer, processors are the work force. However, more work force means
more administration and communication. Unless computation cannot be

2

split to completely independent subcomputations, processors need to send
data to each others, see Fig. 2. A computation cannot continue, before
the necessary data are available for the processor. This is called latency.

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Memindependent

computations latency

Figure 1: (a) sequential computations (b) parallel computation

Latencies in networks are unavoidable. When the number of processors
grows, the network grows, and the latency grows. Fortunately, latency can
be compensated, assuming that there is enough parallelism and enough
bandwidth available.

Assume that a parallel algorithm can efficiently use sp “virtual” pro-
cessors, where p is the number of “physical” processors and s is a multiplier
called slackness [5]. Share the virtual processors to physical processors so
that each physical processor gets s virtual processors (or processes) it is
responsible for. The physical processor runs the s processes in turn, so
that there is an interval of s time units between two successive steps of
the virtual processor. This time can be used for communication. Thus
slackness can be used to cover the latency.

3 Need of bandwidth

The slackness works assuming the communication network allows to re-
trieve the required by s processes in O(s) units of time. As all processors

3

are running at the same time, there is a high need of bandwidth in the
network.

Let us take a closer look at the situation in Fig. 2 (b). Assume that
the computation can exploit all processors but we cannot assume locality.
Hence, any processor may need to communicate with any other processor
at any moment. In real world we must accept that it needs some time and
physical resource to get data from another processor. In 3-dimensional
world the distances of the processors grow with factor Ω(3

√
p), where p

is the number of processors [6]. When clock cycle is of the order of 1
GHz, physical distances matter. Also it is not realistic to assume that
unbounded number p of processors be pairwise connected. Some inter-
mediate nodes are needed. Let φ denote the time needed by the data
access. It may be the maximum number of node-to-node hops in the net-
work (i.e. the diameter of the network) or some other network dependent
delay. Furthermore, assume that every k’th step of computation needs
communication with another processor. Under these assumptions, we get
the condition

pφ/k ≤ C (1)

for the necessary total network capacity C. C depends on the topology and
the technology of the network; typically it is something like the number
of connecting wires in the network. If (1) is not fulfilled, slackness does
not help to cover the latency.

Network capacity condition (1) leads us to the discussion, what kind
of network is required, or how many processors a network can serve.

4 Dense and sparse networks

We call a processor network sparse (or sparsely populated) if only a frac-
tion of nodes are processors. Nodes that are not processors, are called
routers. An example of dense and sparse network is found in Fig. 4.

Sparse networks are interesting because of the bandwidth capacity
condition (1). Processors are not useful unless the network can transport
data needed by the computation.

We will take a closer look at meshes and tori. Meshes are interesting
networks, because they have a simple, regular, scalable structure, and
they can be built in 3-dimensional world with wires of constant length.

4

(a) (b)

Figure 2: (a) Dense butterfly (b) Sparse butterfly. Squares are processors
and disks are routers.

The nodes of a d-dimensional (dense) mesh M(n, d) are d-tuples (x1, . . . , xd),
where 0 ≤ xi < n. A node (x1, . . . , xi, . . . , xd) is connected to (x1, . . . , xi+
1, . . . , xd), if xi < n − 1. A torus T (n, d) is like mesh, but in addition
(x1, . . . , n − 1, . . . , xd) is connected with (x1, . . . , 0, . . . , xd).

In a sparse mesh (or torus), only nodes fulfilling

x1 + . . . + xd ≡ 0 mod n

are processors, other nodes are routers. For examples, see Figure 4

Let us apply the bandwidth condition (1) to the s-sided mesh M(s, 2),
where all s2 nodes are processors, i.e. p = s2. The diameter of the network
is φ = 2s − 2 ≈ 2s. If every step of computation needs communication,
then k = 1. Hence the left hand side of (1) is about 2s3. The out-degree
of every node is 2, thus C = 2s2. Hence condition (1) is not fulfilled.
There is not enough bandwidth for so many processors.

Now, consider the case of the sparse mesh SM(s, 2), where φ = s,
p = s, and the number of nodes is s2. In this case, for k = 1 the left hand
side of 1 is about s2, while the right hand side remains the same 2s2 as
in dense mesh. Thus (1) holds.

This pair of examples shows us that if processors are packed densely,
the need of communication may be too high for the bandwidth of the
network. It is better to replace a large part of processors by routers and

5

z=0 z=1 z=2 z=3

(d)

(b)

(c)

(a)

Figure 3: Mesh (a) M(6, 2), and sparse meshes (b) SM(6, 2), (c) SM(4, 3),
(d) SM(2, 4)

in this way balance the processing power and communication bandwidth.
Fortunately this kind routers are very simple components in comparison
with processors.

If an application is not extremely intensive in communication, increas-
ing k may help to fulfil (1). Also if communication can be made more
local, φ gets smaller and even a dense network may work.

6

5 Running parallel programs on ST (n, d)

Bandwidth condition (1) is a necessary condition for fast enough com-
munication, it is not a guarantee. For each network we must verify that
that network can route s messages per processor in O(s) time. In this
section we shall show that it is possible to efficiently route messages and
run parallel programs in ST (n, d).

First, consider ST (n, 2), where routers are as in Fig. 5 [1]. The routing
is very simple, indeed, by the following rules:

1. Routers are in the crossing state at time moments 0, n, 2n, . . . , and
in the direct state else

2. At moment t, processor (x, n−x) sends a packet along x-axis to the
processor (x + n − t, t − x) if it has one to be sent

direct state crossing state

Figure 4: Two states of the router

The point of this algorithm is that packets do not collide and thus each
sending is successful. Also, at every moment, another packet can be sent
along the y-axis. If randomized hashing is used for memory mapping,
packets are sent evenly, and with high probability, in time n logn each
processor will generate Θ(log n) packets to be sent for each of the proces-
sors. They can be routed in Θ(log n) time by the above described routing
algorithm.

Routing in ST (n, 2) generalizes to higher dimensions. One may ask, if
ST (n, d) for d > 3 is useful in 3-dimensional world. In theory, the advan-
tage of higher d is that the number of processors grows with nd−1 while

7

diameter of the network grows with n(d − 1). For example, ST (n, 3) has
n2 processors and interprocessor distances are n or 2n. A new difficulty
in comparison with ST (n, 2) is that interprocessor distance is no more
constant.

For example, consider ST (3, 4). The processor-to-processor distance
is 0, 3, or 6. Processor-to-processor paths can be described with path
patterns, which are d-tuples telling how big is the shift in each dimension.
In ST (3, 4) the path patterns of all processor-to-processor paths are.

0000,

0012, 2001, 1200 0120

0021, 1002, 2100, 0210,

0102, 2010, 0201, 1020,

0111, 1011, 1101, 1110,

0222, 2022, 2202, 2220,

1212, 2121,

1221, 1122, 2112, 2211,

In this case, there is one pattern (i.e. packet) for distance 0, 16 patterns
for distance 3 and 10 patterns for distance 6, altogethern 27 = 33 patterns,
so all processor-to-processor paths are listed.

In our example, we grouped the pattern paths in a special way: Pat-
terns that are permutations of each others are grouped together (on one
line). This leads to the following grouping strategy. Consider the pattern
group 1221, 1122, 2112, 2211 for example. If we start sending 1221 along
dimension 1, 1122 along dimension 2, 2112 along dimension 3 and 2211
along dimension 4, packets turn at the same time. Due to permutation
property, on all paths in a group, the turnings occur at the same time, to
the cyclically higher dimension. Therefore these packets do not collide.
Hence, we can focus on routing one representative in each group.

By previous observation, the routing task reduces to routing 0000,
0012, 0021, 0102, 0111, 0222, 1212, 1221. Obviously, we can forget 0000,
because it is a packet to the processor itself. By the greedy principle,
farthest going packets first, we come to the schedule of Figure 5. In this
case, all 27 packets could be sent in 12 time units.

It was proved in [2] that the above described routing algorithm routes
packets in time less than p/2 assuming each processor has p packets ad-

8

0 1 2 3 4 5 6 7 8 9 10 11 12

1212 21210

1

2

3

4

5

6

7

8

9

000010

time packet

1221 1122 2112 2211

0222 2022 2202 2220

0111 1011 1101 1110

0102 2010 0201 1020

0021 1002 2100 0210

0012 2001 1200 0120

Figure 5: Schedule for ST (3, 4). In each group we show the first packet.
Note that at moments 3, 4, and 5 a new packet cannot be sent because
previous packets are still using the link. By picture, all 27 packets have
arrived at targets by time moment 12. Hence, the time cost per packet is
12/27.

dressed to different processors. Hence, if processors have Ω(p log p) pack-
ets, with high probability routing cost per packet is 1/2.

6 Conclusions

In this survey we demonstrated that time demanding computational prob-
lems can be resource efficiently computed if there is a parallel algorithm
providing sufficient parallel slackness. However, slackness only helps, if
the network provides enough bandwidth. The processing power and band-
width can be balanced by using sparse networks. We saw that sparse
meshes and sparse tori are suitable topologies for parallel computers. The
concepts of latency - slackness - bandwidth - sparseness are universal and
apply to different technologies. With them it is possible to balance the
processing power with communication, which is the key for resource effi-
cient computation.

9

References

[1] R. Honkanen. Nearly-All-Optical Routing in Sparse Optical Tori. In
Proc. 5th Int. Conf. on Parallel Computing in Electrical Engineering,
PARELEC 2006: 251-256, IEEE Computer Society, 2006.

[2] R. Honkanen, V. Leppänen, M. Penttonen. Address-free all-to-all
routing in sparse torus. In Proc. Int. Conf. on Parallel Computing
Technologies, PACT’2007, LNCS 4671:200-205.

[3] J. Jájá. em An Introduction to Parallel Algorithms. Addison-Wesley,
1992.

[4] G.E. Moore. Cramming more components onto integrated circuits
Electronics 38(8), 1965.

[5] L.G. Valiant. General Purpose Parallel Architectures. In Algorithms
and Complexity, Handbook of Theoretical Computer Science, vol-
ume A, pages 943–971, 1990.

[6] P.M.B. Vitányi. Locality, Communication, and Interconnect Length
in Multicomputers. SIAM Journal on Computing, 17(4):659 – 672,
August 1988.

10

