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DMT Optimal Code Constructions for Multiuser
MIMO Channel

Hsiao-feng Francis Lu and Camilla Hollanti

I. DMT OPTIMAL CODES FOR GENERAL K USERS

In the previous work we have proposed a systematic code
construction for the multiuser MIMO coded system that is
DMT optimal for the case of K = 2 users. The code does not
require cooperation between the users, and each user encodes
his own information by an identical encoder except for a sign
change at the second block transmission of the second user.
Such sign change, however, complicates the DMT optimal
code construction in the general K user case. On the other
hand, it is in fact possible to avoid the sign change. In this
paper we will present a general systematic construction for K
users, K ≥ 2, that does not require such change and is hence
much simpler in encoder implementation.

A. DMT Optimal Code Constructions for General K and nt
Assume that there are K users in the multiuser MIMO

system. Each user has a transmitter consisting of nt antennas
and transmits information at multiplexing gain r. Given K, let
Ko be the smallest odd integer such that Ko ≥ K, i.e.

Ko =
{
K + 1, if K even,
K, if K odd (1)

Let Ko = F(ηo) be the number field that is a cyclic Galois
extension of F = Q( ı ) with degree Ko, and that satisfies
Ko ∩ L = F, where L = F(θ) and [L : F] = nt. Let
τo be the generator of Gal(Ko/F) with order Ko, and let
Eo = KoL = F(ηo, θ). See Fig. 1 for the relation between
the required number fields. Let Do =

(
Eo/Ko, σ, ζ = γ

γ∗

)
be

a cyclic division algebra,

Do = Eo ⊕ zEo ⊕ · · · ⊕ znt−1Eo, (2)

with
zx = σ(x)z (3)

for x ∈ Do, where z is an indeterminate satisfying znt = ζ ∈
F, and γ ∈ OF is some suitable nonnorm element. Notice that
‖ζ‖ = 1 and that ζ is unimodular. By γ∗ we mean the complex
conjugate of γ and OF is the ring of algebraic integers in field
F. It has been shown [1] that with such unimodular ζ, Do is
always a cyclic division algebra.

Remark 1: While in the above we have set the nonnorm
element ζ to be of form ζ = γ

γ∗ such that ζ is unimodular, it
might be possible in some cases that ζ ∈ {± ı ,−1} is also a
legitimate nonnorm and is already unimodular. For such cases,
the discussion below can be easily modified and the DMT
optimality of the constructions remains to hold. Therefore, for
simplicity, here we will focus only on the case of ζ = γ

γ∗ .
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Fig. 1. Field extensions required by the proposed code constructions.

Remark 2: Here we note that by construction the Galois
groups of the numbers fields are

Gal(Eo/Ko) = 〈σ〉
Gal(Eo/L) = 〈τo〉
Gal(Eo/F) = 〈τo, σ〉 = 〈τo〉 × 〈σ〉

where in the last line the 〈τo〉×〈σ〉 denotes the direct product
of groups generated by τo and σ, respectively.

Let ψo : Do →Mnt(Eo) be the left-regular map that maps
elements in Do into nt × nt matrices with entries in Eo.

Given multiplexing gain r, let A(SNR) be the base-alphabet
defined as below

A(SNR) =
{
a+ b ı : −SNR

r
2nt ≤ a, b ≤ SNR

r
2nt ,

a, b odd

}
;

(4)
then the corresponding information set is given by

Ao(SNR) =

{
nt−1∑
i=0

zi
Kont−1∑
k=0

xi,kek : xi,k ∈ A(SNR)

}
,

(5)
where {e0, · · · , eKont−1} is an integral basis of Eo/F.

Having set the above, the information encoding of each
user’s data stream will proceed as follows. Given the multi-
plexing gain r, the ith user first divides its binary data steams
into blocks of rKo log2 SNR bits, and then each block of
binary bits by using the integral basis {e0, · · · , eKont−1} and
the sets A(SNR) and Ao(SNR) defined above can be mapped
to some symbol xi ∈ Ao(SNR) in an one-one fashion. Notice
that each user encodes his/her information independently.

Given xi ∈ Ao(SNR) , the information symbol to be
transmitted by the ith user, the corresponding (nt × Kont)
signal matrix Si that is actually sent out through the user i’s
transmit antenna array is given by

Si = κ
[
Xi τo (Xi) · · · τKo−1

o (Xi)
]
, (6)
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where Xi = ψo(xi) and where

κ2 .= SNR1− r
nt

is the normalizing constant such that the average signal-
to-noise power ratio is SNR. The transmission takes ntKo

channel uses to complete. It should be noted that in this paper
we assume the channel is a Rayleigh block fading channel that
is fixed for ntKo channel uses. The notations of exponential
equality .= and inequalities ≥̇ and ≤̇ are defined in [7].

The overall space-time code for K users is given by

So =


S = κ

 X0 · · · τKo−1
o (X0)

...
. . .

...
XK−1 · · · τKo−1

o (XK−1)

 :

Xi = ψ(xi), xi ∈ Ao(SNR)


,

(7)
For the purpose of code performance analysis that comes later
we set Co = 1

κSo, i.e.

Co =


C =

 X0 · · · τKo−1
o (X0)

...
. . .

...
XK−1 · · · τKo−1

o (XK−1)

 :

Xi = ψ(xi), xi ∈ Ao(SNR)


.

(8)
Given the transmitted information symbol xk ∈ Ao(SNR)

and the channel matrix Hk of the ith user, the jth block
received signal matrix at the received end is

Yj =
K−1∑
k=0

Hkκτ
j
o (Xk) +W, j = 0, 1, · · · ,Ko − 1, (9)

where Xk = ψo(xk) and where W is the noise matrix whose
entries are i.i.d. CN (0, 1) random variables. In other words,
we have[

Y0 · · · YKo−1

]
=
[
H0 · · · HK−1

]
S +W,

(10)
where S ∈ So is defined in (7).

To simplify the analysis of the code performance, below we
define the extended version of codes So and Co.

C̄o =


C̄ =

 X0 · · · τKo−1
o (X0)

...
. . .

...
XKo−1 · · · τKo−1

o (XKo−1)

 :

Xi = ψ(xi), xi ∈ Ao(SNR)


,

(11)
S̄o =

{
S̄ = κC̄ : C̄ ∈ C̄o

}
(12)

It is clear that both S̄o and C̄o are sets of square matrices
having size (Kont ×Kont). In particular, we have S̄o = So
and C̄o = Co if K odd. Furthermore, given the overall signal
matrix S ∈ So, let S̄ ∈ S̄o be any signal matrix whose first
Knt rows equals S. Then we can rewrite the received signal
matrix given in (10) as[

Y0 · · · YKo−1

]
=
[
H0 · · · HKo−1

]
S̄ +W,

(13)

where

HKo−1 =
{
HK−1, if K odd,

0, if K even. (14)

As (10) and (13) are equivalent, below we will work only with
the extended codes S̄o and C̄o, rather than So and Co.

Lemma 1: For any C̄ ∈ C̄o[
(γ∗)Ko(nt−1) det(C̄)

]
∈ Z[ ı ]. (15)

Proof: We first claim τo(det(C̄)) = det(C̄). To see this,
note that

τo(det(C̄))

= det

 τo(X0) · · · τKo
o (X0)

...
. . .

...
τo(XKo−1) · · · τKo

o (XKo−1)


= det

 τo(X0) · · · X0

...
. . .

...
τo(XKo−1) · · · XKo−1


= (−1)nt(Ko−1) det(C̄) = det(C̄)

where the last equality follows from the fact Ko − 1 is
even; hence the claim is proved. Next, we need to show
σ(det(C̄)) = det(C̄). To this end, define

Z = ψo(z), (16)

where z is the indeterminate of Do defined in (2). By opera-
tions in Do, it is clear that σ(X) = ZXZ−1 since zx = σ(x)z
for x ∈ Do. Now we have

σ(det(C̄))

=

∣∣∣∣∣∣∣
ZX0Z

−1 · · · τKo−1
o (ZX0Z

−1)
...

. . .
...

ZXKo−1Z
−1 · · · τKo−1

o (ZXKo−1Z
−1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ZX0Z

−1 · · · ZτKo−1
o (X0)Z−1

...
. . .

...
ZXKo−1Z

−1 · · · ZτKo−1
o (XKo−1)Z−1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
Z

. . .
Z

∣∣∣∣∣∣∣×∣∣∣∣∣∣∣
X0 · · · τKo−1

o (X0)
...

. . .
...

XKo−1 · · · τKo−1
o (XKo−1)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Z−1

. . .
Z−1

∣∣∣∣∣∣∣
= det(C̄)

where we have used the fact that τo(Z) = Z since 0 6= ζ ∈ F
by construction. Thus, as det(C̄) is fixed by both τo and σ,
we see det(C̄) ∈ Q( ı ).
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Finally note that the matrix

τ jo (Xi)


1

γ∗

. . .
γ∗


has entries in OEo

for all i = 0, 1, · · · ,Ko − 1 and j =
0, 1, · · · , nt − 1, hence we have[

(γ∗)Ko(nt−1) det(C̄)
]
∈ OEo

.

OEo is the ring of algebraic integers in number field Eo.
Therefore, we conclude that[

(γ∗)Ko(nt−1) det(C̄)
]
∈ OEo

∩Q( ı ) = Z[ ı ]

and this completes the proof.
Lemma 2: Let

C =

 ct0
...

ctKo−1

 =

 x0 · · · τKo−1
o (x0)

...
. . .

...
xKo−1 · · · τKo−1

o (xKo−1)


and

C̄ =

 X0 · · · τKo−1
o (X0)

...
. . .

...
XKo−1 · · · τKo−1

o (XKo−1)


with Xi = ψo(xi). Let m be the maximal number such that
the set {cti1 , · · · , c

t
im
} is linearly independent as a left Do

module, where {i1, · · · , im} ⊆ {0, 1, · · · ,Ko − 1}; then

rank(C̄) = mnt (17)

where the rank is measured in C.
Proof: To find out the rank of the matrix C̄, we follow

Gaussian elimination method using elementary row operations.
In particular, it should be noted that the same row operations
can be carried out in C whose entries are in the cyclic division
algebra Do, with some extra care as the multiplications in
Do are non-commutative. Further, we note that elementary
row operations on C are equivalent to the block elementary
row operations on C̄. Specifically, say P is an (Ko × Ko)
elementary matrix with entries in Do; then it is clear that

Ψo (PC) = Ψo(P )C̄,

where Ψo is the natural extension of ψo to the (Ko × Ko)
matrix algebra MKo

(Do) over Do, i.e.

Ψo(P ) = [ψo(Pi,j)] . (18)

Now it follows from hypothesis that {cti1 , · · · , c
t
im
} is the

maximal subset of the rows of C that are linearly independent
over Do; there are m leading ones in the row-reduced matrix
of C. Equivalently, this reduces the matrix C̄ into a matrix
whose main diagonal consists of m identity matrices of size
(nt × nt), after permuting the columns. This completes the
proof.

The above lemma shows that the overall code matrix C̄ ∈ Co
does not always have full rank Kont, and when that happens

the resulting rank is always a multiple of nt. On the other
hand, when C̄ is singular, det(C̄) = 0 and we can show a
weaker version of Lemma 1.

Lemma 3: Let C be defined as in Lemma 2 and assume
that {xti1 , · · · , x

t
im
} is the maximal subset of rows of C that

are linearly independent as a left Do module. Define

Cs =

 xti1
...

xtim

 and C̄s = Ψo (Cs) (19)

i.e. C̄s is the submatrix of C̄ consisting of mnt rows, where
Ψo(·) is defined in (18). Then

1 <
[
‖γ‖2mnt · det

(
C̄sC̄

†
s

)]
∈ Z. (20)

Proof: The part of 0 <
[
‖γ‖2mnt · det

(
C̄sC̄

†
s

)]
follows

from Lemma 2 since the matrix C̄s has full row rank mnt.
Next we will verify that det

(
C̄sC̄

†
s

)
is fixed under the

automorphisms τo and σ. For τo, it can be seen from the proof
of Lemma 1 that

τo
(
det
(
C̄sC̄

†
s

))
= det

(
τo
(
C̄s
) [
τ0
(
C̄s
)]†)

and

τo(C̄s)

= det

 τo(Xi1) · · · τKo
o (Xi1)

...
. . .

...
τo(Xim−1) · · · τKo

o (Xim−1)


= C̄sP

for some column permutation matrix P of size (Kont×Kont).
Now it follows that

det
(
τo
(
C̄s
)
τ0
(
C̄s
)†) = det

(
C̄sPP

†C̄†s
)

= det
(
C̄sC̄

†
s

)
as PP † = IKont , and we have proved det

(
C̄sC̄

†
s

)
is fixed

under τo.
For σ, again recall from the proof of Lemma 1 that

σ
(
det
(
C̄sC̄

†
s

))
= det

(
σ
(
C̄s
) [
σ
(
C̄s
)]†)

and that

σ(C̄s)

=

 ZXi1Z
−1 · · · ZτKo−1

o (Xi1)Z−1

...
. . .

...
ZXimZ

−1 · · · ZτKo−1
o (Xim)Z−1


=

 Z
. . .

Z

 C̄s
 Z−1

. . .
Z−1

 ,
where

Z = ψo(z) =


0 0 0 · · · ζ
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 0

 . (21)
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From the above it is clear that ZZ† = Int
since ζζ∗ = 1 by

construction, and Z−1
(
Z−1

)† = Int
. Thus, we see

σ(C̄s)
[
σ(C̄s)

]† = diag(Z, · · · , Z) C̄s C̄†s diag(Z†, · · · , Z†)

and hence σ det(C̄sC̄†s) = det(C̄sC̄†s). So far, we have proved
that det(C̄sC̄†s) is fixed by both τo and σ, and this means that
det(C̄sC̄†s) ∈ Q∩R = Q. Finally, the proof is complete after
noting that γ∗C̄s has entries in OEo

.
Theorem 4: Given the multiplexing gain r, the proposed

code So defined in (7) achieves the DMT

d(r) = min
1≤k≤K

d∗knt,nr
(kr) (22)

over quasi-static Rayleigh fading channel with coherence time
T ≥ Kont. Thus, So is DMT optimal.

Proof: The proof is relegated to Section II.

II. PROOF OF THEOREM 4

Here we only prove the case of K odd, and the case of K
even can be proved by a similar argument. We will discuss
the case of even K in a remark following the proof.

For any C̄ 6= C̄ ′ ∈ C̄o with

C̄ =

 ψo(x0) · · · τKo−1
o (ψo(x0))

...
. . .

...
ψo(xKo−1) · · · τKo−1

o (ψo(xKo−1))


and

C̄ ′ =

 ψo(x′0) · · · τKo−1
o (ψo(x′0))

...
. . .

...
ψo(x′Ko−1) · · · τKo−1

o

(
ψo(x′Ko−1)

)


let S̄ = κC̄, S̄′ = κC̄ ′, and let H = [H0 · · ·HKo−1], where
Hi is the (nr × nt) channel matrix associated with the ith
user.

A. Lower Bounds on the Minimum Distances of Received
Signal Matrices

Given the channel matrix H , below we provide a lower
bound on the squared Euclidean distance between HS̄ and
HS̄′, i.e.

d2
E

(
S̄, S̄′

)
=

∥∥∥∥∥∥∥H
(
S̄ − S̄′

)︸ ︷︷ ︸
:=∆S̄

∥∥∥∥∥∥∥
2

F

(23)

where by ‖A‖F we mean the Frobenius (or `2-) norm of matrix
A. We distinguish the following two cases.

1) x` 6= x′` for ` ∈ {i1, · · · , im} and x` = x′` oth-
erwise. Further we assume rank(C̄ − C̄ ′) = mnt:
In other words, here we consider the case when out
of Ko x`’s, m of them are distinct and the m rows[
(x` − x′`) · · · τKo−1

o (x` − x′`)
]

formed by such x`’s are
all linearly independent as a left Do module over Do.
In this case, let C̄s and C̄ ′s be defined as in (19) and let

Hs = [Hi1 · · ·Him ]

be the equivalent (nr ×mnt) channel matrix; then we
have

d2
E(S̄, S̄′) =

∥∥κHs

(
C̄s − C̄ ′s

)∥∥2

F

Let λ(m)
1,1 ≤ · · · ≤ λ

(m)
1,Qm

be the set of ordered nonzero
eigenvalues of HsH

†
s where Qm = min{mnt, nr} and

let `1,1 ≥ · · · ≥ `1,mnt
> 0 be the ordered nonzero

eigenvalues of
(
C̄s − C̄ ′s

) (
C̄s − C̄ ′s

)†
. Then we have

d2
E(S̄, S̄′) ≥ κ2

Qm∑
i=1

λ
(m)
1,i `1,mnt−Qm+i, (24)

where it should be noted that
mnt∏
i=1

`1,i ≥
1

‖γ‖2mnt

.= 1. (25)

The first inequality follows from Lemma 3 and the
second exponential equality is because γ is fixed and
is independent of SNR.
By repeatedly using the arithmetic mean-geometric
mean inequality and (25) as in [2], [3] given k, k =
1, 2, · · · , Qm, we have

d2
E(S̄, S̄′) (26)

≥ κ2

Qm∑
i=Qm−k+1

λ
(m)
1,i `1,mnt−Qm+i

≥̇ κ2

 Qm∏
i=Qm−k+1

λ
(m)
1,i

 1
k

×

 Qm∏
i=Qm−k+1

`1,mnt−Qm+i

 1
k

≥̇ κ2

 Qm∏
i=Qm−k+1

λ
(m)
1,i

 1
k [mnt−k∏

i=1

`1,i

]− 1
k

(27)

≥̇ κ2

 Qm∏
i=Qm−k+1

λ
(m)
1,i

 1
k [mnt−k∑

i=1

`1,i

]−mnt−k
k

≥̇ κ2

 Qm∏
i=Qm−k+1

λ
(m)
1,i

 1
k ∥∥C̄s − C̄ ′s∥∥−mnt−k

k

F

≥̇ SNR1− r
nt

 Qm∏
i=Qm−k+1

λ
(m)
1,i

 1
k

SNR−
r

nt

mnt−k
k

:= SNRδ
(m)
1,k (α

(m)
1 ) (28)

where (27) follows from (25) and where in (28) we have
set

λ
(m)
1,i = SNR−α

(m)
1,i ,

α
(m)
1 =

[
α

(m)
1,1 · · ·α

(m)
1,Qm

]t
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Hence

δ
(m)
1,k (α(m)

1 ) :=
1
k

 Qm∑
i=Qm−k+1

(
1− α(m)

1,i

)− rm

k
.

(29)
2) The second case is when x` 6= x′` for ` ∈ {i1, · · · , im}

and xi = x′i otherwise. But rank
(
C̄ − C̄ ′

)
< mnt:

In other words, the m nonzero rows formed by[
(x` − x′`) · · · τKo−1

o (x` − x′`)
]

are not linearly inde-
pendent over Do. From Lemma 2 we can assume
without loss of generality that rank

(
C̄ − C̄ ′

)
= nnt

and that{[
(x` − x′`) · · · τKo−1

o (x` − x′`)
]

: ` = i1, · · · , in
}

are linearly independent for some n < m. Clearly n > 1
since ψo is an injection.
Now let dx` := x`−x′` and let C̄s and C̄ ′s be defined as
(19) of Lemma 3 with respect to the set {i1, · · · , im}.
Set ∆C̄s = C̄s − C̄ ′s and ∆X` = ψo(x` − x′`). Lemma
2 in turn implies that

∆C̄s =



Int

. . .
Int

Pin+1,1 · · · Pin+1,n

...
...

...
Pim,1 · · · Pim,n


∆X (30)

where

∆X :=

 ∆Xi1 · · · τKo−1
o (∆Xi1)

...
. . .

...
∆Xin · · · τKo−1

o (∆Xin)

 (31)

Let
Hs =

[
Hi1 · · · Him

]
be the equivalent channel matrix; then the difference of
the noise-free received signal matrices is given by

κHs∆C̄s = κHeq ∆X (32)

where Heq =
[
H̃1 · · · H̃n

]
is an alternative channel

equivalent matrix and

H̃` := Hi` +
m∑

k=n+1

HikPik,` (33)

for ` = 1, · · · , n.
Let λ(m,n)

2,1 ≤ · · · ≤ λ(m,n)
2,Qn

be the set of ordered nonzero
eigenvalues of HeqH†eq where Qn = min{nnt, nr} and
let `2,1 ≥ · · · ≥ `2,nnt

> 0 be the ordered nonzero
eigenvalues of ∆X∆X†. Notice that

nnt∏
i=1

`2,i = det
(
∆X∆X†

)
≥ 1
‖γ‖2nnt

.= 1

from Lemma 3. Arguing similarly as the first case shows
that

d2
E(S̄, S̄′) ≥ SNRδ

(m,n)
2,k (α

(m,n)
2 ) (34)

where

λ
(m,n)
2,i := SNR−α

(m,n)
2,i , (35)

α
(m,n)
2 =

[
α

(m,n)
2,1 · · ·α(m,n)

2,Qn

]t
, (36)

and

δ
(m,n)
2,k (α(m,n)

2 ) :=
1
k

 Qn∑
i=Qn−k+1

(
1− α(m,n)

2,i

)− rn

k
.

(37)
Summarizing from the above we obtain a general lower bound
on d2

E(S̄, S̄′),

d2
E(S̄, S̄′)

≥ min
S̄ 6=S̄′

d2
E(S̄, S̄′)

≥ min

{
min
m

max
k

SNRδ
(m)
1,k (α

(m)
1 ),

min
m,n

max
k

SNRδ
(m,n)
2,k (α

(m,n)
2 )

}
:= d2

E,min := SNRδmin . (38)

It should be noted that d2
E,min is a random variable, and is

a function of the random matrix H = [H0, · · · , HKo−1].
Furthermore, d2

E,min plays the role of minimum Euclidean
distance among all noise-free received signal matrices. In
other words, it resembles the minimum Hamming distance in
conventional nonlinear error correcting codes over finite fields.

B. Upper Bounds of Codeword Error Probability

Having obtained the squared minimum Euclidean distance
d2
E,min among all possible noise-free received signal matrices,

below we proceed to analyze the error performance of the
proposed construction. The analysis makes use of the sphere
bounding technique proposed in [2], [3]. The codeword error
probability at multiplexing gain r given channel matrix H can
be upper bounded by

Pcwe (r|H)

≤ Pr

{
‖W‖2F ≥

d2
E,min

4

}

= exp

(
−
d2
E,min

4

)
Konrnt−1∑

j=0

(d2
E,min)j

j!
,

(39)

and it should be noted that the RHS .= 0 if δmin > 0. Since
Pcwe (r|H) ≤ 1, it follows that

Pcwe(r) = EHPcwe (r|H)
≤ Pr {H : δmin ≤ 0}

≤
Ko∑
m=1

(
Ko

m

)
Pr
{
H : max

k
δ

(m)
1,k (α(m)

1 ) ≤ 0
}

+

Ko∑
m=1

(
Ko

m

)m−1∑
n=1

(
m

n

)
Pr
{
H : max

k
δ

(m,n)
2,k (α(m,n)

2 ) ≤ 0
}

(40)
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where the last inequality follows from the union bound of
probabilistic events. Further, in (40) we have over-counted
in the second summand the number of choices of n Do-
linearly independent rows out of m nonzero rows in the
different matrix [τ jo (xi − x′i)]

Ko−1
i=0

Ko−1
j=0 . Yet, even with this

over-estimate, as (
Ko

m

)
,

(
m

n

)
.= 1

for all m,n within the designated range, we can rewrite (40)
as

Pcwe(r) ≤̇ max
{

max
m

Pr
{
H : max

k
δ

(m)
1,k (α(m)

1 ) ≤ 0
}

max
m,n

Pr
{
H : max

k
δ

(m,n)
2,k (α(m,n)

2 ) ≤ 0
}}
(41)

Below we investigate the diversity order of each term in (41).

C. Diversity Gain of the First Case

For each m, 1 ≤ m ≤ K0, we have

Pr
{
H : max

k
δ

(m)
1,k (α(m)

1 ) ≤ 0
}

= Pr

{
H :

1
k

[∑Qm

i=Qm−k+1

(
1− α(m)

1,i

)]
− rm

k ≤ 0,

all k, and α(m)
1,1 ≥ α

(m)
1,2 · · · ≥ α

(m)
1,Qm

}

= Pr

{
H :

Qm∑
i=1

(
1− α(m)

1,i

)+

≤ rm

}
(42)

= Pr
{
H : log det

(
Inr

+ SNRHsH
†
s

)
≤ rm log SNR

}
(43)

.= SNR−d
∗
mnt,nr

(rm) (44)

where Qm := min{mnt, nr} and where in (43) Hs :=
[Hi1 · · ·Him ]. (42) follows from [4]–[6] where (x)+ =
max{x, 0} for x ∈ R. (44) is given in [7] since Hs is of
size (nr ×mnt).

Furthermore, in (44) d∗p,q(s) represents the optimal diversity
gain tradeoff of a (p × q) MIMO Rayleigh fading channel
at multiplexing gain s and is given by a piecewise linear
function connecting the points (s, (p − s)(q − s)) for s =
0, 1, · · · ,min{p, q}.

D. Diversity Gain of the Second Case

Similarly, for the second kind of maximizations in (41) we
have for each 1 ≤ n < m ≤ Ko that

Pr
{
H : max

k
δ

(m,n)
2,k (α(m,n)

2 ) ≤ 0
}

= Pr

{
H :

1
k

[∑Qn

i=Qn−k+1

(
1− α(m,n)

2,i

)]
− rn

k ≤ 0,

all k, and α(m,n)
2,1 ≥ α

(m,n)
2,2 · · · ≥ α(m,n)

2,Qn

}

= Pr

{
H :

Qn∑
i=1

(
1− α(m,n)

2,i

)+

≤ rn

}
= Pr

{
H : log det

(
Inr

+ SNRHeqH†eq
)
≤ rn log SNR

}
(45)

where

Heq =
[
H̃1 · · · H̃n

]

=
[
Hi1 · · · Him

]


Int

. . .
Int

Pin+1,1 · · · Pin+1,n

...
...

...
Pim,1 · · · Pim,n


(46)

that is, H̃` = Hi` +
∑m
k=n+1HikPik,` for ` = 1, · · · , n. The

matrices Pi,j are defined in (30).
To analyze the probability of (45), set

Hs,1 :=
[
Hi1 · · · Hin

]
(47)

Hs,2 =
[
Hin+1 · · · Him

]
(48)

Pm,n =

 Pin+1,1 · · · Pin+1,n

...
...

...
Pim,1 · · · Pim,n

 , (49)

and we can rewrite (46) as

Heq = Hs,1 + Hs,2Pm,n. (50)

Hs,1 is of size (nr ×nnt), Hs,2 is of size (nr × (m−n)nt),
and Pm,n is of size ((m− n)nt × nnt).

Let (heq,i)
t denote the ith row of matrix Heq , i =

1, 2, · · · , nr; then since the entries of matrices Hs,1 and Hs,2

are i.i.d. CN (0, 1) random variables, the covariance matrix of
hteq,i is

Σ = E(heq,i)(heq,i)
† = Innt

+ Pt
m,nP∗m,n. (51)

(heq,i)
t and (heq,j)

t are statistically independent for all i 6= j
and

E(heq,i)(heq,j)
† = 0.

Since Σ is hermitian symmetric positive definite, by spectrum
theorem of hermitian symmetric nonnegative definite matrices
we have

Σ = UtΞU∗ = Ut (Innt
+ Λ) U∗ (52)

where UtΛU∗ is the eigen-decomposition of Pt
m,nP∗m,n. Ξ =

Innt
+ Λ is an (nnt × nnt) diagonal matrix whose diagonal

values are the eigenvalues of Σ. Moreover, these eigenvalues
are lower bounded by 1. U is an (nnt × nnt) unitary matrix
consisting of unit-norm eigenvectors of Σ.

Since entries of Heq are jointly complex Gaussian, we can
apply simulation theorem to simulate Heq . To this end, let
G be an (nr × nnt) matrix whose entries are i.i.d. CN (0, 1)
random variables and set

Gs = G
√

Ξ U. (53)

By Karhunen-Loève expansion, Gs is statistically equivalent
to the matrix Heq , meaning that Gs and Heq have the same
joint probabilistic density functions.
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As a short summary, the above analysis shows

Pr
{
H : log det

(
Inr

+ SNRHeqH†eq
)
≤ rn log SNR

}
= Pr

{
Gs : log det

(
Inr

+ SNRGsG†s
)
≤ rn log SNR

}
= Pr

{
G : log det

(
Inr

+ SNRGΞG†
)
≤ rn log SNR

}
(54)

Next, we will use Minkowski determinant inequality [8] for
positive definite matrices to study the probability given in (54).
The Minkowski determinant inequality states

[det (A+B)]1/n ≥ [det (A)]1/n + [det (B)]1/n , (55)

if A and B are (n × n) positive definite matrices. Thus, for
some very small ε, 0 < ε < 1 we set

A = (1− ε)Inr
+ SNRGG†

B = εInr
+ SNRGΛG†

where it should be noted that B is a positive definite matrix
with probability one (W.P.1). The Minkowski determinant
inequality then shows that[

det
(
Inr

+ SNRGΞG†
)]1/nr

= [det (A+B)]1/nr

≥ [det (A)]1/nr + [det (B)]1/nr (W.P.1)

≥ [det (A)]1/nr

.=
[
det
(
Inr + SNRGG†

)]1/nr
,

where the last exponential equality follows from (1 − ε) .=
SNR0 when ε→ 0. Hence

log det
(
Inr + SNRGΞG†

)
≥̇ log det

(
Inr + SNRGG†

)
(56)

with probability one. It in turn implies

Pr
{

log det
(
Inr + SNRGΞG†

)
≤ rn log SNR

}
≤̇ Pr

{
log det

(
Inr

+ SNRGG†
)
≤ rn log SNR

}
.= SNR−d

∗
nnt,nr

(nr). (57)

Summarizing results of (41), (44) and (57) gives

Pcwe(r) ≤̇ SNR−d(r) (58)

and

d(r) := min
n<m

{
d∗mnt,nr

(mr), d∗nnt,nr
(nr)

}
(59)

= min
m

{
d∗mnt,nr

(mr)
}
. (60)

This proves the DMT optimality of the construction.

E. Proof Outline for K Even

For the case when the number of users K is even, the proof
of Theorem 4 can be easily modified. Here we only discuss
briefly what the changes are. Firstly, with

H =
[
H0 · · · HK−1 0

]
in mind, i.e. HKo−1 = 0, the result of the squared Euclidean
distance between S̄ and S̄′ appearing in (23) remains to hold.
Similarly, the further-lower bounds on d2

E(S̄, S̄′) appearing in

(29) and (37) stay without changes except that one should keep
in mind that

1) the parameter m of the first case, where rank(C̄−C̄ ′) =
mnt, and m out of Ko xi’s are distinct, has value from
1 up to Ko − 1 = K. This is because HKo−1 = 0,
hence we can always assume xKo−1 = x′Ko−1 without
affecting the value of d2

E(S̄, S̄′). Thus the diversity gain
resulting from the first case is

min
1≤m≤K

d∗mnt,nr
(mr) .

compared to the case of odd K where (44) has m up to
Ko.

2) the parameters m and n in the second case can be argued
similarly as the above, and we have 1 ≤ n < m ≤
Ko − 1 = K. Hence the diversity gain resulting from
this case is

min
1≤n≤K−1

d∗nnt,nr
(nr) .

Therefore, overall the main result of the DMT optimality of
the proposed construction remains to hold.
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