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Abstract

Since its advent, the Extensible Markup Language
(XML) has gained tremendous popularity in many differ-
ent application areas. However, XML data is generally very
verbose and redundant, and thus it requires a lot of disk
space to store and bandwidth to transfer. To overcome this
problem, many methods for compressing XML documents
have been proposed. In general, data compression requires
a model which is used to predict the next symbol in the data.
In this paper, we compare different models suitable for XML
compression. We also present a novel modeling method and
measure the information content in a set of XML documents
using different modeling methods.

1. Introduction

Data compression can be regarded as a process which
transforms a stream of symbols into a stream of codes. In
general, codes can be assigned to single symbols or larger
coding units. In order to actually compress the data, the
stream of codes should be more compact than the stream of
symbols, which can obviously be achieved by using fewer
bits for frequent symbols and more bits for rare ones. This
requires amodelwhich is capable of predicting the next
symbol in the stream as accurately as possible. The purpose
of theencoder, then, is to assign codes for the source stream
based on the information provided by the model. The for-
mer stage of the process is generally referred to asmod-
eling and the latter ascoding. The coding stage has been
well studied and methods for producing optimal codes are
known [6, 11, 12]. Modeling, on the contrary, depends on
the nature of the compressed data, and thus this part of data
compression still offers interesting research problems.

A predictive model bases its predictions on acontext, i.e.,
a set of previously appeared symbols. For each context, a
model provides the probability distribution of the followers.
The number of previously appeared symbols taken into ac-
count is usually referred to as theorder of the model. A

model of order 1 therefore takes only one previously ap-
pearing symbol into account, whereas a model of order 0
considers the global probability distribution of the symbols.
One could also define a context of order -1 in which all sym-
bols are equally probable. In general, increasing the order
of the model, i.e., taking more previously appeared symbols
into account, increases the accuracy of the predictions thus
leading to shorter codes and better compression ratio.

In this paper, we focus on the problem of compressing
XML data, i.e., data marked up using a meta-language rec-
ommended by the World Wide Web Consortium [14]. As
mentioned, the coding stage is generally well known, and
thus our focus is on predictive modeling. In the case of
XML compression, this problem is especially interesting
since the hierarchical nature of XML provides us with many
different modeling alternatives which cannot be applied on
flat text. A model could, for example, take advantage of the
observation that certain symbols are more likely to appear
between or after certain tags and less likely to appear be-
tween or after some others. We also propose a novel model-
ing method which is suitable for partial decompression and
provides accurate predictions.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review the related work and in Section 3,
different modeling methods including our own proposal are
discussed. We then move on to our experimental results in
Section 4 and conclude this paper in Section 5.

2. Related work

Because of the popularity of XML and because of its in-
herently verbose nature a plethora of methods for compress-
ing XML data have been proposed. Some proposals, such
as XGRIND [13], XPRESS [10], XQZip [5], and XSeq
[9], support queries, whereas others, such as XMill [8] and
XMLPPM [3], do not. The methods in the former cate-
gory usually aim at supporting some subset of XPath [15],
an XML query language which can essentially be used to
select parts of XML documents. One might, for example,
want to decompress all parts of the documents which ap-



pear between<abstract> and</abstract> tags. In
the latter group, partial decompression is not desired, and
thus only compression time andcompression ratio, that is,
the size of the compressed document vs. the size of the
original document, are the determining factors.

In our view, however, most of the previous work has
blurred the distinction between modeling and coding to
some extent. It is therefore very hard to say which part of
their claimed performance is due to the use of more effi-
cient coding methods, e.g., using arithmetic coding instead
of Huffman coding, and which is due to modeling. Never-
theless, there are some papers which concentrate on mod-
eling in the case of hierarchical data compression. Cheney
[4], for instance, discussed different modeling methods but
his work dismissed the possibility of partial decompression.
One should keep in mind, however, that standard text com-
pressors usually perform very well also on XML data, and
thus it makes more sense to concentrate on partial decom-
pression than aim at marginally improving the compression
ratio.

3. Modeling methods

In what follows, an XML document is treated as anXML
tree, a labeled, partially ordered tree in which each node
corresponds to an element, attribute, or piece of text in the
document. We use special ending nodes with empty tags
</> in order to preserve the nested structure of the docu-
ment and consider names of element and attribute nodes as
extensions of our alphabet. Characters in text nodes or in
attribute values are treated as individual symbols. Fig. 1
illustrates such a tree representation for the following docu-
ment:

<books>

<book isbn="3540285830">

<name>XML Technologies and

Applications</name>

<publisher>Springer</publisher>

</book>

<book isbn="0672315149">

<name>XML Unleashed</name>

<publisher>Sams</publisher>

</book>

</books>

3.1 Preorder

The most straightforward way of defining the context for
XML trees is to use thepreorder (depth-first order) of the
nodes. In preorder traversal, a node is visited before its sub-
trees are recursively visited from left to right. This is also

the order in which the symbols actually appear in the phys-
ical document, and thus preorder is often also referred to as
document order. Since this is also the order in which a SAX
parser encounters the symbols the approach is very easy to
implement. For the same reason, the preorder model suits
well for adaptivecompression, i.e., a compression scheme
in which the model is constructed in the fly. This modeling
method considers the XML document in Fig. 1, for exam-
ple, simply as the following stream of symbols:<books> ,
<book> , <@isbn> , 3, 5, 4, 0, 2, 8, 5, 8, 3, 0, </> ,
<name>, X, M, L, . . . .

Using a model of order 2, for example, we have two
equally probable symbols in context<publisher>,S ,
i.e., symbolsp anda. Thus, encoding each of these sym-
bols takes just one bit. Context</>,<publisher> ,
on the other hand, is always followed by symbolS,
and thus no bits at all are needed to encode symbols in
this context1. Based on the information provided by the
model, the decoder always outputs symbolS when context
</>,<publisher> is encountered. Initially, the context
can be filled with special<null> symbols, and thus the
context for symbol<books> is <null>,<null> and for
the first<book> symbol<null>,<books> . However,
defining the context using the preorder of the nodes is some-
what cumbersome if partial decompression is desired. This
is due to the fact that in order to construct a model to trans-
form a code into a symbol, the whole preceding document
has to be decompressed. Thus, it is hard to skip subtrees
during decompression. Of course, general methods aimed
at partial decompression, such as the proposal by Lekatsas
and Wolf [7], can still be applied in order to support partial
decompression to some extent.

3.2 Level-order

In level-order (breadth-first order) traversal, nodes on
level i are visited from left to right before nodes at level
i + 1 are visited from left to right. The tree presented
in Fig. 1, for instance, would be traversed in the follow-
ing order:<books> , <book> , <book> , </> , <@isbn> ,
<name>, <publisher> , </> , <@isbn> , . . . . However,
the method is not easy to implement since in order to pre-
dict the leftmost node of, say, level 5, we obviously need to
know the rightmost node of level 4. A practical approach
would therefore be to reorder the symbols from preorder
into level-order before actually performing the compres-
sion, which limits the use of the approach in an adaptive
setting. Conversely, of course, the symbols have to be or-
dered back into preorder after decompression. For the same
reason, it is very tricky to support partial decompression
when this modeling method is used.

1This, of course, assumes a semi-adaptive compression scheme in
which the model is transferred with the compressed data.



<books> 

<book> 

<name> <publisher><@isbn> 

XML Unleashed 

Sams

</><book>

<@isbn> <name> <publisher>

3540285830 Springer

XML Technologies and 
Applications 

</> 

</>

</> </> 

</>

</>0672315149

</> </>

Figure 1. A tree representation of an XML document

3.3 Children-depth-first

In [1], an interesting order calledchildren-depth-firstfor
traversing a tree was introduced. In this approach, a node
and its siblings are visited from left to right before recur-
sively visiting the children of the node and the children of
its siblings from left to right. If applied to the tree presented
in Fig. 1 this approach would yield the following symbol se-
quence:<books> , <book> , <book> , </> , <@isbn> ,
<name>, publisher , </> , 3, 5, 4, 0, . . . . In other
words, this method can be regarded as a hybrid between
preorder and level-order. However, the children-depth-first
approach suffers from similar drawbacks as the level-order
approach since in order to compress the leftmost node of a
set of siblings on leveli + 1, its rightmost ”uncle” on level
i is needed to build the context.

3.4 Ancestor path

One option is to predict a symbol based on its ances-
tors in the tree. This method can be easily implemented
by maintaining a stack of ancestors during compression and
decompression. In the context<book>,<publisher> ,
for example, we now have symbolsS and </> each ap-
pearing with probability 2/16 and symbolsp, r , i , n, g,
e, r , a, m, s each appearing with probability 1/16. Since
only element nodes and attribute nodes can now be part of
the context the contextual information available in the text
nodes is lost. Moreover, this approach dismisses the order
of the nodes, and thus its ability to predict element and at-
tribute nodes is also quite limited. However, the ancestor
path approach provides us with the possibility of partial de-
compression, and thus it has been followed in some XML
compressors.

3.5 Left-sibling-parent

Our own context proposal,left-sibling-parent, supports
partial decompression but can still use the context informa-

tion available in the text nodes and provide accurate pre-
dictions. For any node, the left-sibling-parent predecessor
is defined as the left sibling of the node if a left sibling
exists and as the parent of the node otherwise. Initially,
the context can again be filled using<null> symbols.
For example, in the tree presented in Fig. 1, the context
<book>,<@isbn> is followed by symbols3 and0 each
appearing with probability 1/4 and symbol<name>appear-
ing with probability 1/2. By applying Huffman coding, for
example, symbols3 and0 can therefore be coded with 00
and 01, whereas<name> could be coded with 1. Con-
text <name>,X , on the other hand, is always followed by
symbolMand contextX,M by symbolL. As a larger exam-
ple, the ”maximal” left-sibling-parent context for symbol
a in Sams is <books> , <book> , <book> , <@isbn> ,
<name>, <publisher> , S.

In order to support partial decompression, we could
encode each subtree as a 3-tuple(name, length, codes)
where name is a code for the name of the root of the
subtree,length the length of thecodes part in bits, and
codes simply a (possibly empty) compressed representa-
tion of the children of the root, i.e, a set of similar 3-tuples.
If name is not the searched tag we simply skip the next
length bits in the compressed representation before contin-
uing the decompression. Otherwise, we continue decom-
pressingcodes. This approach can obviously only support
XPath queries generated using name tests and thechild
axis. One should notice, however, that thedescendant
anddescendant-or-self axes or containment queries
could also be supported by adding information about the
different tags appearing in the subtree into the representa-
tion of subtrees. It is also worth noticing that the context
information can be used to predict not onlyname but also
length and - in the case of containment query support - the
set of tags appearing in the subtree. A detailed analysis of
this alternative, however, is beyond the scope of this paper.



4. Experimental results

This section presents the results of our experiments.
For simplicity, we assume asemi-adaptivecompression
scheme, i.e., we assume that the model is built before the
actual encoding. Thus, two passes through the document
are needed and the model has to be passed on with the
compressed data. One should, however, notice that this is
the only practical possibility if partial decompression is de-
sired. In order to support partial decompression, we have
to be able to skip the compressed representations of some
subtrees which obviously requires encoding subtree sizes.
However, since the root of a subtree appears before the sub-
tree in an XML document the subtree size cannot be en-
coded before visiting the subtree. Of course, if partial de-
compression is not aimed at one can resort to adaptive com-
pression. It is our belief that our results of predictive power
of different context models are applicable also in the case
of adaptive compression.

In our tests, we used the following set of XML docu-
ments:

• Documentallelements.xml available at [16] is
the periodic table of chemical elements marked up in
XML. The document is very shallow with some struc-
tural variation. The content consists mainly of num-
bers and the text nodes are small, i.e., they contain a
small amount of characters.

• In sigmodrecord.xml available at [17], the text
nodes are larger than inallelements.xml . The
structure is again simple and the amount of structural
variation is small.

• Documentdream.xml available at [16] is Shake-
speare’sA Midsummer Night’s Dreammarked up in
XML. In this case, the document consists mostly of
textual content and the structure is very simple.

To start with, we measured the information content of
these documents using the modeling methods discussed
in Section 3. The names of the element and attribute
nodes were treated as single symbols and ending tags were
treated as discussed earlier. Theinformation contentfor
symbol si appearing in contextsi1 , . . . , sin

denoted as
I(si|si1 , . . . , sin) was defined as usual, i.e.,

I(si|si1 , . . . , sin
) = log2

(
1

P (si|si1 , . . . , sin
)

)
where n denotes the order of the model and
P (si|si1 , . . . , sin) denotes the conditional probability
of symbolsi appearing in contextsi1 , . . . , sin

. The average
information content per symbol, i.e., theentropy, then, was

simply defined as the mean of the information contents of
the symbols.

The results are presented in Fig. 2, Fig. 3 and Fig. 4.
In our results, the preorder method is referred to as PRE,
ancestor path as ANC, level-order as LVL, children-depth-
first as CDF, and left-sibling-parent as LSP. The entropy
was measured as bits per symbol with tags treated as sin-
gle symbols;model sizewas simply defined as the number
of different contexts. It should be emphasized that the re-
sults are not actual compression results but rather measured
entropies of the documents. One cannot therefore expect to
reach actual compression ratios close to these figures. In
general, the size of the model was roughly inversely pro-
portional to the accuracy of the predictions, i.e., the aver-
age information content of a symbol. There were, however,
some interesting details in our results. In most cases, LVL
was asymptotically able to produce the most accurate pre-
dictions, which suggests that shuffling the parts of a docu-
ment in level-order before compression should lead to gains
in compression ratio. As expected, the performance of ANC
was clearly the worst in all cases. Finally, one should notice
that our own proposal LSP is competitive especially in the
case of short contexts. Furthermore, LSP seems to provide
a good tradeoff between the size of the model and accuracy
of the predictions, and thus it might be a viable option for
adaptive compression in which memory utilization is an im-
portant factor [4].

To study the difference between PRE and LVL further,
we compared these methods by applying the populargzip
andbzip2 compressors to the documents ordered in pre-
order and level-order2. Sincegzip and bzip2 are also
used as actual compressors in XMill, an XML-conscious
compressor presented in [8], we also included the results
obtained using XMill with the same implementations of
gzip andbzip2 . The results of these tests are presented
in Table 4; all values represent the compression ratio as bits
in the compressed data per character in the original docu-
ment. In the case ofgzip , XMill was able to outperform
both LVL which was able to outperform PRE. This sup-
ports our earlier observation of the better prediction ability
of LVL. However, whenbzip2 was used, the approaches
performed much more evenly and PRE actually marginally
outperformed both LVL and XMill. This is very proba-
bly due to the fact thatbzip2 performs Burrows-Wheeler
transformation [2] prior to compression. Thus, when the
document reaches the compressor it is no longer ordered in
preorder or level-order. Nevertheless, the results obtained
usingbzip2 are very interesting since they show that the
practicability of XMill is somewhat questionable.

2Strictly speaking, the order was not level-order since attributes had to
be maintained in conjunction with the starting tags.



gzip bzip2
Document XMill LVL PRE XMill LVL PRE

allelements.xml 0.4376 0.5736 0.5872 0.4112 0.4256 0.4184
sigmodrecord.xml 1.1248 1.2584 1.5072 0.9784 0.9344 0.9480
dream.xml 2.2768 2.2816 2.3456 1.9432 1.8344 1.8096

Average 1.2797 1.3712 1.4800 1.1109 1.0648 1.0587

Table 1. The results concerning the tests with gzip and bzip2 in bits per character

5 Concluding remarks

XML data is inherently redundant in nature and there-
fore very amenable to compression. Although standard
text compressors do a rather good job, they are restricted
to preorder when it comes to defining the context. How-
ever, since the hierarchy of XML documents involves more
structural information and correlations than flat text there is
a challenge to find better contexts for elements, attributes,
and characters. Thus, we experimented with several dif-
ferent models comparing their prediction power and model
size. Moreover, we introduced a novel modeling method,
a so called left-sibling-parent context, which is capable of
supporting partial decompression and yet provides accurate
predictions. One interesting detail in our experiments was
that the level-order context could outperform the preorder
context. The margin was, however, quite narrow, and thus
we are more interested in supporting partial decompres-
sion of XML documents compressed using the left-sibling-
parent method.
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Figure 2. The measured entropies (left) and model sizes (right) for allelements.xml

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10

B
its

 / 
S

ym
bo

l

Context Length

PRE
ANC
LVL
CDF
LSP

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  2  4  6  8  10

M
od

el
 S

iz
e

Context Length

PRE
ANC
LVL
CDF
LSP

Figure 3. The measured entropies (left) and model sizes (right) for sigmodrecord.xml
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Figure 4. The measured entropies (left) and model sizes (right) for dream.xml


