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Abstract. To answer queries, many XML management systems perform
structural joins, i.e., they determine all occurences of parent/child or
ancestor/descendant relationships between node sets. These joins are
often one of the most time-consuming phases in query evaluation, so it is
desirable to reduce the size of the node sets before performing the joins.
This problem has earlier been approached by using signatures built on
the content of the nodes, but in this paper, we propose a novel method
in which the nodes are filtered based on the structural properties of
their subtrees. To achieve this, we use a schema graph which summarizes
the structures of XML documents more accurately than conventional
summarization methods.

1 Introduction

Because of its simplicity and flexibility, Extensible Markup Language (XML)
[1] has proved very useful in many application areas. Today, XML is used not
only as a standard for data exchange, but also as a core for development and
deployment platforms, such as Microsoft .NET. Furthermore, there are many
application areas, such as bioinformatics, where XML serves as a format to store
heterogeneous information [2]. Storing, querying, and updating XML documents
presents an interesting research area and there has indeed been a significant
amount of research on XML data management.

Every well-formed XML document can be represented as an XML tree, a
partially ordered labeled tree in which each element, attribute, and text node1

corresponds to an element, attribute, or piece of text in the document, and the
ancestor/descendant relationships between the nodes correspond to the nesting
relationships between elements, attributes, and pieces of text [3]. XML trees
can be modeled using several different methods, such as parent/child indexes,
ancestor/descendant indexes, pre-/postorder encoding [4], absolute or relative
region coordinates [5], and virtual nodes [6]. All of these methods encode the
information of parent/child or ancestor/descendant relationships which is needed
to perform structural joins.

1 According to the original XPath recommendation there are seven different node
types, four of which have been omitted here to simplify the discussion.
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In many systems, query processing is speeded up by using a schema tree, a
structural summary which partitions the nodes of an XML tree into equivalence
classes according to their label paths. In [7], however, we proposed a schema
graph as an alternative way to summarize the structures of XML documents.
Since a schema graph creates a more precise, structure-based partitioning of
the nodes, it can be used for two purposes. Firstly, queries that select nodes
based only on their structural properties, such as ”find all employees who have
children”, can be evaluated very quickly [7]. Secondly, queries that select nodes
based on both structure and content, can be speeded up by using the schema
graph as a filtering structure. For example, when evaluating query ”find all
employees who have a child named Alina”, we can filter out those employees
who do not have any children in the first place.

The remainder of this paper is organized as follows. Section 3 explores the
possibilities of a schema graph as a filtering structure. Section 4 describes Xeek,
our prototype system, and in Section 5, the results of experimental evaluation
are presented. Section 6 concludes this article and discusses our future work.

2 Related Work

A lot of work has been carried out to develop methods to manage XML docu-
ments. The proposed methods can be divided into three categories. In the flat
streams approach, the documents are considered as byte streams. Large streams
are distributed on disk pages using the file system or a BLOB manager in a
database management system. Since accessing the structures of the documents
requires parsing, this method is hardly suitable for XML management systems.
In the metamodeling approach, the documents are first represented as trees which
are then stored into a database. This provides fast access to the XML trees and,
consequently, this method has been used in many XML management systems
[8] [9]. The mixed approach aims to combine the previous two approaches. Some
systems store the data in two redundant repositories, one flat and one metamod-
eled, which allows fast retrieval but creates significant storage overhead [10]. The
other option is the hybrid approach in which the coarser structures of the doc-
uments are modeled as trees and finer structures as flat streams [11].

Many content-based filtering methods derived from information retrieval have
been applied to structured documents [6] [12]. However, a structure-based filter-
ing method for XML management systems has previously been proposed only
by Park and Kim [13]. Their idea is to attach a signature built over the labels
of the descendants to each node of the XML tree. This signature can then be
used to filter out the nodes which cannot satisfy the conditions set by a query.
However, since their method requires accessing the XML tree before filtering, it
is fundamentally different from the method proposed in this paper. Furthermore,
our schema graph partitions the nodes of an XML tree very accurately, so nodes
can be filtered based on complex structural conditions. This can often reduce
the size of joined node sets more than a filtering method that relies on simple
label signatures.
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3 Using a Schema Graph as a Filtering Structure

As mentioned above, a schema graph creates an accurate, structure-based par-
titioning of the nodes of an XML tree, which makes it possible to filter the
nodes based on their structural position. To define a schema graph formally we
first need to define two concepts for the nodes of an XML tree, namely a label
(Definition 1), and a label path (Definition 2).

Definition 1. A label l(n) for node n is the name of the corresponding element
if n is an element node and the name of the corresponding attribute preceded by
an @-sign if n is an attribute node.

Notice that Definition 1 does not define any label for text nodes. However,
text nodes, as well as element and attribute nodes, do have a label path which
is defined in Definition 2.

Definition 2. Let s(n) denote the parent of node n. The label path p(n) of
an element or attribute node n is /l(n) if n is a root node, and p(s(n))/l(n)
otherwise. The label path of a text node n is p(s(n)).

Many XML management systems, such as Lore [8], BUS [9], and XRel [14],
summarize the documents using a schema tree, an index structure which parti-
tions the nodes according to their label paths2. A schema tree allows fast retrieval
of the nodes based on their label paths, but to achieve structure-based filtering
on the summary level we need a summarization method which creates more
accurate partitioning. Thus, our filtering method takes advantage of a schema
graph, an acyclic, directed graph, which allows fast retrieval of the nodes based
not only on their label paths, but also on the structures of their subtrees. The
partitioning created by a schema graph is described formally in Definition 3; the
difference between schema tree and schema graph is illustrated in Fig. 1.

Definition 3. Let N denote the set of nodes in an XML tree and let C(n) denote
the set of attribute and element nodes that are children of node n. A vertex in a
schema graph corresponds to an equivalence class [n]g induced by an equivalence
relation ≡g on N such that for any n1, n2 ∈ N , n1 ≡g n2, iff

C(n1) = ∅ ∧ C(n2) = ∅ ∧ p(n1) = p(n2), or

C(n1) �= ∅ ∧ C(n2) �= ∅ ∧ (∀c1 ∈ C(n1) : ∃c2 ∈ C(n2) : c1 ≡g c2) ∧
(∀c2 ∈ C(n2) : ∃c1 ∈ C(n1) : c2 ≡g c1).

In simple terms, two nodes in an XML tree are equivalent if their label paths
are identical and their subtrees are structurally similar. Notice that according
to Definition 3 there cannot exist two nodes n1, n2 ∈ N such that p(n1) �= p(n2)
and n1 ≡g n2, so we can define a label path also for a vertex in a schema graph
in Definition 4.
2 In Lore, for example, this index is called a DataGuide, but in the current paper, any

structure that partitions the nodes according to their label paths is called a schema
tree.
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Fig. 1. An XML tree, a schema tree, and a schema graph

Definition 4. A label path p(v) for a vertex v in a schema graph is the label
path of any node belonging to the equivalence class corresponding to v.

Consider, for example, evaluating XPath query /b/c[//@d="y"] using the
XML tree and the schema tree presented in Fig. 1. We first use the schema
tree to find the set N1 = {2, 4, 8, 12, 17} of element nodes with the label path
/b/c and then the set N2 = {3, 7, 9} of attribute nodes with label path matching
/b/c//@d. Both of these operations can be performed very quickly. After this, we
scan N2 to find the set N3 = {3, 9} of attribute nodes with label path matching
/b/c//@d and value ”y”. Sets N1 and N3 are then structurally joined to find all
nodes in N1 that have a descendant in N3, so the result of this query is {2, 8}.

Let us now consider evaluating the same query using the schema graph pre-
sented in Fig. 1 to filter the nodes. First, we use the schema graph to find the
set N1 = {2, 4, 8} of element nodes that satisfy the condition /b/c[//@d], i.e.,
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the set of nodes that belong to the equivalence class corresponding to a vertex v
in the schema graph such that p(v) = /b/c, and from which a vertex with label
path matching /b/c//@d can be reached. Notice that this set is now smaller
than the set N1 obtained using the schema tree. We then proceed similarly as in
our first example to find the set N3 = {3, 9} of attribute nodes with label path
matching /b/c//@d and value ”y”. After this, we structurally join sets N1 and
N3 to get the final result {2, 8}.

The algorithms needed for evaluating queries using a schema graph as a
filtering structure are presented in Fig. 2. As in XRel [14], for example, queries
have to be first represented as query trees in which exactly one node is active
and each node has two features, a label path and a value; for element nodes, the
value is defined as an empty string. Notice that algorithm nodeVertexMatch is
intrinsically complex as such3, but this problem can be avoided rather easily. In
our prototype system Xeek, for example, we achieved good results by using a
relational database system to implement the schema graph redundantly as a set
of pairs (v1, v2), where vertex v2 is reachable from vertex v1.

Notice also that our filtering method can take full advantage of the structural
conditions involved in complex queries, which sets it apart from the method pro-
posed by Park and Kim [13]. For example, to answer XPath query //s[s[d/n=
"Aino"][s/n="Aapo"]], we join four node sets, set N1 of nodes that satisfy
the condition //s[s[d/n][s/n]], set N2 of nodes that satisfy the condition
//s/s[d/n][s/n], set N3 of nodes with label path //s/s/d/n and value ”Aino”,
and set N4 of nodes with label path //s/s/s/n and value ”Aapo”. Assuming
that every label present in our query is part of the signature, the filtering method
proposed by Park and Kim would have resulted in N1 satisfying a much looser
condition //s[//s][//d][//n] and N2 satisfying //s/s[//d][//n][//s]. Fur-
thermore, in our method, the filtering actually takes place on the summary level,
i.e., before accessing the XML tree.

4 Xeek - A Prototype System

To test our idea of structure-based filtering, we implemented Xeek, a prototype
system based on a relational database. The basic Xeek schema consists of five
relations:

Element(DocId, Start, End, VertexId)

Attribute(DocId, Start, End, VertexId, Value)

Text(DocId, Start, End, VertexId, Value)

Vertex(VertexId, PathExp)

ReachVertex(VertexId, ReachVertexId)

NodeSet(NodeSetId, DocId, Start, End)

3 Since implementing the schema graph as a graph is hardly practical, we actually
did define the schema graph as a partitioning criterion, not as a graph structure, in
Definition 3.
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evaluate(n)

// in: Node n of a query tree

// out: Node set corresponding to the query tree defined by n

N = getNodes(n)

for each m in children(n) such that not activePath(m) do

if contentCondition(m) then

N = joinFirst(N, evaluate(m))

for each l in children(n) such that activePath(l) do

N = joinSecond(N, evaluate(l))

return N

joinFirst(N1, N2)

// in: Node sets N1, N2

// out: Nodes of N1 that have a descendant in N2

joinSecond(N1, N2)

// in: Node sets N1, N2

// out: Nodes of N2 that have an ancestor in N1

contentCondition(n)

// in: Node n of a query tree

// out: TRUE iff n or some of its descendants has a value

activePath(n)

// in: Node n of a query tree

// out: TRUE iff n or some of its descendants is the active node

getNodes(n)

// in: Node n of a query tree

// out: All nodes in an XML tree matching the query tree defined by n

if value(n) == empty then

return all nodes of an XML tree corresponding to any vertex v in a

schema graph such that nodeVertexMatch(n, v)

else

return all nodes m of an XML tree corresponding to any vertex w in a

schema graph such that nodeVertexMatch(n, w) and value(m) = value(n)

nodeVertexMatch(n, v)

// in: Node n of a query tree, vertex v of schema graph

// out: TRUE iff v matches the query tree defined by n

if children(n) == empty then

return (labelPath(n) matches labelPath(v))

else

return (for each node m in children(n) there exists vertex w such

that w is reachable from vertex v and nodeVertexMatch(m, w))

Fig. 2. Algorithms for evaluating queries using a schema graph
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Each tuple in relations Element, Attribute, and Text corresponds to an
element, attribute, or text node, respectively. The database attributes DocId
and VertexId represent the document identifier and the identifier of the schema
graph vertex, respectively, and the database attributes Start and End represent
the region coordinates of a node, i.e., a pair of numbers that point to the start
and end positions of the corresponding part of the XML document. The database
attribute Value represents the value of an attribute or text node. The underlined
database attributes serve as the primary keys in each of the relations.

Relations Vertex and ReachVertex are used to model the schema graph.
Each tuple in relation Vertex corresponds to a vertex in a schema graph. The
database attributes VertexId and PathExp correspond to the identifier and
the label path of the vertex, respectively. For technical reasons [14], the la-
bels in a path are separated using ”#/” instead of ”/”. Each tuple in relation
ReachVertex corresponds to a pair of vertices in a schema graph in which the
vertex identified by ReachVertexId is reachable from the vertex identified by
VertexId. NodeSet is a temporary relation used to store the resulting node sets
corresponding to each node in a query tree during query evaluation.

In Xeek, the query evaluation consists of three phases. First, Xeek validates
a query and generates a query tree using similar methods to those proposed
in [14]. In the second phase, Xeek materializes the nodes needed for structural
joins, i.e., stores the node sets corresponding to each node of the query tree into
relation NodeSet. For example, to materialize the node sets corresponding to
query //c[@d=’y’], Xeek executes the following SQL queries:

INSERT INTO NodeSet SELECT 1, e1.DocId, e1.Start, e1.End

FROM Vertex v1, Vertex v2, ReachVertex r2, Element e1

WHERE v1.PathExp LIKE ’#%/c’ AND v2.PathExp LIKE ’#%/c#/@d’

AND r2.VertexId = v1.VertexId AND r2.ReachVertexId = v2.VertexId

AND e1.VertexId = v1.VertexId;

INSERT INTO NodeSet SELECT 2, a1.DocId, a1.Start, a1.End

FROM Vertex v1, Attribute a1

WHERE v1.PathExp LIKE ’#%/c#/@d’ AND a1.VertexId = v1.VertexId

AND a1.Value = ’y’;

The first of these two SQL queries materializes the set of nodes satisfying
condition //c[@d]. Notice that without filtering we would have materialized the
set of nodes that only satisfy the condition //c.

In the third phase, Xeek performs the structural joins on the materialized
node sets. The result of our example query can be obtained from the NodeSet
table using the following SQL query:

SELECT n1.DocId, n1.Start, n1.End FROM NodeSet n1, NodeSet n2

WHERE n1.NodeSetId = 1 AND n2.NodeSetId = 2

AND n1.DocId = n2.DocId AND n2.Start BETWEEN n1.Start AND n1.End;
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5 Experimental Results

We evaluated the effectiveness of our method using three different sets of XML
documents: the 7.65 MB collection of Shakespeare’s plays marked up in XML
[15], a synthetic 111 MB XMark document generated using XMLgen [16], and
a 127 MB XML document generated from the DBLP database [17]. We stored
these documents into a MySQL database using Xeek; the sizes of the relations
in each case are presented in Table 1.

Notice that, although Xeek models the schema graph redundantly, the sizes
of relations Vertex and ReachVertex are rather modest for the Shakespeare
collection and the DBLP document. The structure of the deeply nested XMark
document, in contrast, is much more irregular, so the combined size of the rela-
tions Vertex and ReachVertex is rather large, about 10 % of the database. It is
worth noticing, however, that the best-case and worst-case sizes of both schema
tree and schema graph are identical [7]. The best-case behaviour of both struc-
tures is yielded by an XML tree where all element nodes that share the same
label path also share the same subtree structures. The worst-case behaviour is
yielded by an XML tree where every node has a different label.

Table 2 shows our small but versatile query set for the different collections and
Table 3 the materialization and the join times for each query, both with filtering
and without filtering. Notice that the materialization times with filtering are
seldom much longer than without filtering, although the filtering requires more
accesses to the schema graph in the materialization phase. In many cases, the
materialization times with filtering are even shorter, because filtering reduces
the amount of tuples that have to be written in the NodeSet table.

As our results demonstrate, the small penalty paid in the materialization
phase usually pays off in the join phase. In the best case, structural filtering can
improve the query evaluation time by an order of magnitude. When evaluating
query Q6, for example, filtering reduces the sizes of node sets to be structurally
joined to 713, 2210, and 14314 from 21750, 2210, and 14314, respectively, which
reduces the time needed for structural joins considerably.

One interesting detail in the results is the relatively good join performance
while evaluating queries using the Shakespeare collection. Since the Shakespeare
collection consists of many XML documents, the structural joins can partially
be performed using equijoins on document identifiers. In contrast, the joins on
the XMark and DBLP documents have to be completely performed using much
slower nonequijoins on the region coordinates.

6 Conclusion and Future Work

In this paper, we proposed a new structure-based filtering method for XML
management systems which is utilizes an accurate, structure-based partitioning
created by a schema graph. Our filtering method can take advantage of even
the most complex structural conditions set by queries, which sets it apart from
previous proposals. We implemented our method using a relational database and
presented the positive results of our performance studies.



A Structure-Based Filtering Method for XML Management Systems 409

Table 1. Database sizes

Shakespeare XMark DBLP
Relation Tuples Size(MB) Tuples Size(MB) Tuples Size(MB)

Element 179618 11.0 1666315 112 3332130 164
Attribute 0 0 381878 30.9 404276 32.9
Text 147383 16.4 988027 145 3003323 234
Vertex 232 0.02 52747 3.75 552 0.04
ReachVertex 3231 0.08 1041318 29.3 3779 0.13
Total 330464 27.5 4130285 321 6744060 431

Table 2. Query set

# Data Query

Q1 Shak. /PLAY/ACT[//SPEAKER=’EDMUND’]

Q2 Shak. //SPEECH[SPEAKER=’HAMLET’]/STAGEDIR

Q3 Shak. //SPEECH[SPEAKER=’KING LEAR’][STAGEDIR=’Aside’]

Q4 XMark //person[//interest/@category=’category620’]

Q5 XMark //item[@featured=’yes’]

Q6 XMark //item[@featured=’yes’]//mail//keyword

Q7 DBLP //article[author=’Jukka Teuhola’]

Q8 DBLP //inproceedings[crossref=’conf/safecomp/1998’]

Q9 DBLP //article[@rating=’SUPERB’]/author

Table 3. Query performance

With filtering Without filtering
# Mat.(sec) Join(sec) Mat.(sec) Join(sec)

Q1 0.60 0.00 0.77 0.00
Q2 1.36 0.03 0.57 0.52
Q3 1.33 0.02 0.57 0.35
Q4 0.49 0.45 0.64 1.09
Q5 1.53 6.13 0.98 61.02
Q6 1.64 14.36 1.10 >600
Q7 2.19 1.48 2.18 1.48
Q8 2.09 4.05 4.28 7.83
Q9 3.67 7.06 9.88 11.27
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We plan to extend Xeek to a full-fledged XML storage system. To achieve this,
we need to develop ways to efficiently construct the result documents from the
result sets. During the performance studies we encountered some cases where the
join order of the tables determined by the MySQL query optimizer was far from
optimal. Thus, we will seek ways to avoid the pitfalls of bad query optimization
by studying how different optimization and join methods used in RDBMSs affect
the performance when the database is used to manage XML trees.
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