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Abstract. Structural joins, i.e., operations that determine all occur-
rences of parent/child or ancestor/descendant relationships between
node sets, are at the heart of XML management systems. To perform
these joins, the systems exploit the information about the nested rela-
tionships between elements, attributes, and pieces of text in XML doc-
uments. Since performing the structural joins is often the most time-
consuming phase in query evaluation, the method chosen to model the
nested relationships has a considerable impact on the overall effective-
ness of any XML management system. In this paper, we discuss four
different methods for modeling the nested relationships using relational
databases. We also propose a novel modeling method and present the
results of our comprehensive performance experiments.

1 Introduction

Since its advent, XML [1], a self-describing markup language recommended by
the World Wide Web Consortium, has rapidly been adopted as the standard
for data representation and interchange in computer networks. In recent years,
XML has increasingly been employed to perform more and more duties; in mod-
ern Web service environments, for example, XML can be used as a means to
model software components which automatically construct themselves around
the information expressed in XML [2]. The importance of XML has also passed
over to the area of databases, where XML serves as a format to store hetero-
geneous information which cannot easily be organized into tables, columns, and
rows [3]. Storing, querying and updating XML documents presents an interesting
research problem and a plethora of work has been done on the subject.

From a technical viewpoint, an XML management system can be built in
several ways. The first option is to build a specialized XML data manager. By
building the data manager from scratch one is able to tailor indexing, storage
management, and query optimization specifically to suit XML data. Obviously,
this is a tempting option and many native XML databases, such as Lore [4] and
NATIX [5], have been developed. However, native XML databases often suffer
from scalability and stability problems and it will still take years before they
reach the maturity that can be expected from a practicable XML management
system.
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Another option is to build an XML management system on top of an object-
oriented database [6] [7]. At first glance, object-oriented databases with their
rich data modeling capabilities may seem to be a perfect solution to the prob-
lem of XML data management, but this is not quite the case. Navigating large
object hierarchies is a rigorous task, and hence the scalability of XML manage-
ment systems built on top of an object-oriented database often leaves a lot to be
desired. Relational databases, on the contrary, provide maturity, stability, porta-
bility, and scalability, so the third alternative, an XML management system on
top of a relational database, is a very viable option. This alternative also allows
the XML data and the relational data coexist in the same database, which is
advantageous, since it is unlikely that XML databases can completely replace
the existing relational database technology in any application area [3] [8].

Since relational databases were originally designed to support non-
hierarchical data, a method for mapping XML data into relational schemas is
needed. The existing mapping methods can roughly be divided into two cat-
egories [9]. In the structure-mapping approach, the database schemas are de-
signed to represent the logical structure or the DTDs of the documents. The
basic method is to create one relation for each element type [8], but more so-
phisticated methods in which the database schema is designed based on detailed
analysis of the document DTDs have also been proposed [10]. Nonetheless, re-
taining the optimality of such a schema can be a rigorous task, since inserting
new documents with different DTDs may result in redesigning the schema and
rebuilding the relations.

The other method is the model-mapping approach in which the database
schemas represent the generic constructs of the XML data model, i.e., element,
attribute, and text nodes. The schemas designed according to the model-mapping
approach are fixed, so documents can be stored without any information of
their DTDs. Furthermore, having a fixed schema simplifies the transformation
of XPath queries into SQL queries [11]. For the aforementioned reasons, we
believe that the model-mapping approach will yield better results than its less
generic counterpart.

When the model-mapping approach is pursued, an incoming document is
first represented as an XML tree, a partially ordered, labeled tree in which each
element, attribute, and text node corresponds to an element, attribute, or piece
of text in the document, respectively; the ancestor/descendant relationships be-
tween the nodes correspond to the nested relationships between elements, at-
tributes, and pieces of text [12]. This tree is then stored into the database and
queried using the query facilities provided by the database management system.

In this paper, we focus on modeling the ancestor/descendant relationships.
We discuss four different methods: parent/child index, pre-/postorder encoding,
ancestor/descendant index, and our own proposal, the ancestor/leaf index, which
maintains the ancestor information for the leaf nodes only. Obviously, this in-
formation can be used to perform structural joins between leaf nodes and inner
nodes; structural joins between inner nodes are performed by checking whether
common leaf node descendants for these inner nodes can be found.
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The remainder of this paper is organized as follows. In section 2, we briefly
review the related work, and in section 3, we present the different methods for
modeling the nested relationships. The results of our experiments are presented
in section 4; section 5 concludes this article and discusses our future work.

2 Related Work

From the vast amount XML-to-SQL query translation literature [11], the papers
concentrating on mapping XML data into relations pursuing the model-mapping
approach are relevant to our work. Previously, many such methods have been
proposed, two of which are most essential here, namely XRel [9] and XParent
[13]. In XRel, the nested relationships are modeled using region coordinates; a
similar method was also presented in [3]. According to the authors, XRel provides
better overall performance than Edge [8], a structure-mapping method proposed
by Florescu and Kossmann. However, the performance evaluation was carried
out using only one set of XML documents, so the scalability of this approach is
still somewhat in doubt.

XParent, on the contrary, models the structural relationships between nodes
using a parent/child index. The authors compared the effectiveness of their
method against Edge and XRel, but again, the performance evaluation was car-
ried out using one set of documents and a very limited set of queries. The authors
also discussed using an ancestor/descendant index, but did not present any re-
sults from this alternative.

3 Modeling Nested Relationships

In this section, we present the relational schemas used in our tests. Our relational
schemas are designed according to the XPath data model, and thus the element,
attribute, and text nodes1 are stored in three relations Element, Attribute, and
Text, respectively. The nodes are identified using their preorder numbers which
also preserve the information of the order among the nodes.

Since path expressions regularly appear in XPath queries, we preserve the
information about the label paths of the nodes using a Path table which allows
fast retrieval of the nodes according to their label paths. Similar decomposition
of the nodes is used also in both XRel and XParent as well as in many native
XML databases [4].

3.1 Parent/Child Index

The most obvious method for modeling the structural relationships between
nodes is to build a parent/child index which, for a given set of nodes, allows fast

1 According to the original XPath recommendation, there are seven different node
types, but for simplicity, we have omitted root, comment, namespace, and processing
instruction nodes.
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retrieval of their parent or child nodes. Since each node has at most one parent,
the identifier of the parent node can be inlined into the same relation with the
node itself. Hence, this approach results in the following relational schema:

Path(PathId, PathExp)

Element(DocId, PreId, ParId, PathId)

Attribute(DocId, PreId, ParId, PathId, Value)

Text(DocId, PreId, ParId, PathId, Value)

In the above schema, the database attributes PathId and PathExp represent
the path identifier and path expression, respectively. For technical reasons [9],
the labels in a path are separated using ”#/” instead of ”/”. In relations Element,
Attribute, and Text, the database attributes DocId, PreId, ParId, and PathId
represent the document identifier, node identifier, the identifier of the parent
node, and path identifier, respectively. The database attribute Value represents
the value of an attribute or text node. In each relation, the underlined set of
attributes serves as the primary key.

However, if we are to retrieve all ancestors of a given node, we need recursive
joins. This can be done using the linear recursion queries of the SQL3 standard,
but if the database management system does not provide such feature, we can
determine the number of needed joins by constructing the SQL queries in accor-
dance with the document DTDs. Obviously, this can lead to very complicated
queries and query generation, since each document may have a different DTD.
Furthermore, XML documents often have to be managed without any DTDs
at all, and thus this method lacks the genericity provided by the other three
alternatives discussed in this paper.

3.2 Pre-/Postorder Encoding

The information about ancestor/descendant relationships can also be implicitly
encoded by using region coordinates [9] or pre-/postorder encoding [14]. The
structural joins can be performed by taking advantage of the following simple
property of preorder and postorder numbes: for any two nodes n1 and n2, n1 is an
ancestor of n2, iff the preorder number of n1 is smaller than the preorder number
of n2 and the postorder number of n1 is greater than the postorder number of n2.
Since both preorder and postorder numbers are needed to perform the structural
joins, we also include the postorder number PostId in the primary key although
attributes DocId and PreId would be enough to identify a node.

Path(PathId, PathExp)

Element(DocId, PreId, PostId, PathId)

Attribute(DocId, PreId, PostId, PathId, Value)

Text(DocId, PreId, PostId, PathId, Value)

For brevity, we have omitted the actual algorithms for translating XPath
queries into SQL queries; for a detailed description we refer the reader to [9].
The idea is to translate the XPath queries first into query trees which are then
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translated into SQL queries. For example, the query tree corresponding to the
XPath query //a/b[//c=’ecm’]/d translates into the following SQL query:

SELECT DISTINCT e3.DocId, e3.PreId

FROM Element e1, Element e3, Text t2, Path p1, Path p2, Path p3

-- Match path expressions:

WHERE p1.PathExp LIKE ’#%/a#/b’

AND p2.PathExp LIKE ’#%/a#/b#%/c’

AND p3.PathExp LIKE ’#%/a#/b#/d’

-- Retrieve nodes:

AND e1.PathId = p1.PathId

AND t2.PathId = p2.PathId

AND e3.PathId = p3.PathId

-- Match values:

AND t2.Value = ’ecm’

-- Perform structural joins:

AND t2.DocId = e1.DocId

AND t2.PreId > e1.PreId

AND t2.PostId < e1.PostId

AND e3.DocId = e1.DocId

AND e3.PreId > e1.PreId

AND e3.PostId < e1.PostId

Notice that the structural joins are performed using nonequijoins on preorder
and postorder numbers, which can lead to scalability problems when querying
large XML documents. However, splitting the data into many small documents
can be expected to help, since part of the structural joins can then be performed
using equijoins on document identifiers.

3.3 Ancestor/Descendant Index

By building an ancestor/descendant index, i.e., by calculating the transitive clo-
sure over the parent/child relation, we can perform the structural joins com-
pletely without the expensive nonequijoins. To maintain the ancestor/descendant
information, we employ a new relation AncDesc.

Path(PathId, PathExp)

Element(DocId, PreId, PathId)

Attribute(DocId, PreId, PathId, Value)

Text(DocId, PreId, PathId, Value)

AncDesc(DocId, AncId, DescId)

Obviously, this rather extreme approach can result in a very large AncDesc
table. However, since no nonequijoins are needed, this approach should usually
perform better than the pre-/postorder encoding, and thus in applications where
the query performance is of paramount importance, it might just pull its weight.
If this approach is pursued, the XPath query //a/b[//c=’ecm’]/d translates
into the following SQL query:
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SELECT DISTINCT e3.DocId, e3.PreId

FROM Element e1, Element e3, Text t2, Path p1, Path p2, Path p3,

AncDesc d2, AncDesc d3

-- Match path expressions as in previous query.

-- Retrieve nodes as in previous query.

-- Match values as in previous query.

-- Perform structural joins:

AND t2.DocId = e1.DocId

AND d2.DocId = t2.DocId

AND d2.AncId = e1.PreId

AND d2.DescId = t2.PreId

AND e3.DocId = e1.DocId

AND d3.DocId = e3.DocId

AND d3.AncId = e1.PreId

AND d3.DescId = e3.PreId

3.4 Ancestor/Leaf Index

We can easily represent the ancestor/descendant information in a more com-
pact manner by using an ancestor/leaf index which, essentially, is an ances-
tor/descendant built on the leaf nodes only. More formally, an ancestor/leaf
index for an XML tree is a set of pairs (n1, n2), where n2 is a leaf node and n1 is
an element node located on the path from n2 to the root of the tree. According
to this definition, nodes n1 and n2 do not have to be distinct, so the leaf nodes
of type element serve a dual purpose. We maintain the ancestor/descendant
information for the leaf nodes in relation AncLeaf.

Path(PathId, PathExp)

Element(DocId, PreId, PathId)

Attribute(DocId, PreId, PathId, Value)

Text(DocId, PreId, PathId, Value)

AncLeaf(DocId, AncId, LeafId)

The leaf nodes are joined with element nodes as they are joined using the
ancestor/descendant index. The structural joins between element nodes can be
performed by checking whether the nodes have common leaf node descendants.
We must also be able to determine which set of the element nodes contains the
ancestors. In many cases, this information can be deduced based on the label
paths of the nodes, but there are some situations where this is not the case2.
However, to simplify the query translation, we always use the lengths of the path
expressions to determine which one of two sets of element nodes contains the
ancestor or descendant nodes. Hence, the XPath query //a/b[//c=’ecm’]/d
translates into the following SQL query:

2 One example of such an instance would be evaluating query //a[a] using document
<a><a><a/></a></a>. Without checking the heights, the ancestor/leaf index
would also, incorrectly, return the leaf element <a/>.
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SELECT DISTINCT e3.DocId, e3.PreId

FROM Element e1, Element e3, Text t2, Path p1, Path p2, Path p3,

AncLeaf f2, AncLeaf f3, AncLeaf f4

-- Match path expressions as in previous query.

-- Retrieve nodes as in previous query.

-- Match values as in previous query.

-- Perform structural joins:

-- Structural join between leaf nodes and element nodes:

AND t2.DocId = e1.DocId

AND f2.DocId = t2.DocId

AND f2.AncId = e1.PreId

AND f2.LeafId = t2.PreId

-- Structural join between element nodes:

AND LENGTH(p1.PathExp) < LENGTH(p3.PathExp)

AND e3.DocId = e1.DocId

AND f3.DocId = e3.DocId

AND f3.AncId = e1.PreId

AND f4.DocId = f3.DocId

AND f4.AncId = e3.PreId

AND f4.DescId = f3.DescId

Notice that the nonequijoin is now performed using the Path table which
usually contains only a small number of rows, so this join is not as expensive as
the nonequijoins performed using the pre-/postorder encoding.

4 Experimental Results

Because of the lack of genericity in the parent/child approach, we conducted the
performance evaluation only for the pre-/postorder encoding (PP), the ances-
tor/descendant index (AD), and the ancestor/leaf index (AL). We used three
different sets of XML documents: the 7.65 MB collection of Shakespeare’s plays
[15], a synthetic 111 MB XMark document generated using XMLgen [16], and
a 127 MB XML document generated from the DBLP database [17]. The Shake-
speare collection consisted of 37 documents and the other collections consisted
of only one document.

Table 1. Database sizes for PP

Shakespeare XMark DBLP
Relation Tuples Size(MB) Tuples Size(MB) Tuples Size(MB)

Path 57 0 548 0 145 0
Element 179618 8 1666315 73 3332130 135
Attribute 0 0 381878 27 404276 28
Text 147383 12 1188922 139 3005857 201
Total 327058 20 3237663 239 6742408 364
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Table 2. Database sizes for AD

Shakespeare XMark DBLP
Relation Tuples Size(MB) Tuples Size(MB) Tuples Size(MB)

Path 57 0 548 0 145 0
Element 179618 6 1666315 58 3332130 107
Attribute 0 0 381878 22 404276 23
Text 147385 11 1188922 129 3005857 175
AncDesc 1406939 44 16807315 520 16243275 513
Total 1733999 61 20044978 729 22985683 818

Table 3. Database sizes for AL

Shakespeare XMark DBLP
Relation Tuples Size(MB) Tuples Size(MB) Tuples Size(MB)

Path 57 0 548 0 145 0
Element 179618 6 1666315 58 3332130 107
Attribute 0 0 381878 22 404276 23
Text 147383 11 1188922 129 3005857 175
AncLeaf 729554 22 9278809 289 9904635 319
Total 1056612 39 12516472 498 16647043 624

Table 4. Query evaluation times (in seconds)

# Query PP AD AL Tuples

1 //ACT/TITLE 0.00 0.00 0.00 185
2 //ACT[//SPEAKER=’EDMUND’] 0.48 0.03 0.02 5
3 //ACT[//STAGEDIR=’Aside’] 5.94 0.14 0.08 89
4 //ACT[//SPEAKER=’EDMUND’]/TITLE 4.16 4.76 21.48 5
5 //people//profile 0.17 0.16 0.16 12832
6 //item[//location=’Finland’] 2.91 1.54 1.39 16
7 //item[@featured=’yes’] >300 1.13 0.45 2210
8 //item[@featured=’yes’]//location >300 11.06 16.03 2210
9 //article/author 3.65 3.30 3.30 221465
10 //article[@rating=’SUPERB’] 8.39 2.00 2.00 11
11 //article[author=’Jukka Teuhola’] 15.34 0.22 0.09 27
12 //article[author=’Donald E. Knuth’]/year 61.91 2.05 1.94 55

We stored these collections into MySQL databases pursuing approaches PP,
AD, and AL, and built indexes on Element(PathId), Attribute(PathId),
Text(PathId), AncDesc(DocId, DescId), and AncLeaf(DocId, LeafId). We
also built indexes on first three characters of the attribute Value in relations
Attribute and Text. The database sizes for PP, AD, and AL are presented in
Tables 1-3. According to these experiments, AD results in three times and AL
in two times larger database than PP; the size of AncLeaf table is roughly half
of the size of the AncDesc table.
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We evaluated the query performance of the three approaches by using four
queries for each collection; the queries and the query evaluation times are pre-
sented in Table 4. Queries 1-4 were evaluated using the Shakespeare collection,
queries 5-8 using the XMark document, and queries 9-12 using the DBLP docu-
ment. Queries 1, 5, and 9 are simple path expression queries which do not involve
structural joins, and thus all three approaches perform well.

Queries 2, 3, 6, 7, 10, and 11 involve a structural join between leaf node and
inner node, so these queries provide information especially about the perfor-
mance of PP against AD and AL. On large documents (queries 6, 7, 10, and 11),
AD and AL quite clearly outperform PP, since in PP, the structural joins com-
pletely have to be performed using expensive nonequijoins on pre- and postorder
numbers. However, when the collection is splitted into many documents (queries
2 and 3 on the Shakespeare collection), PP performs relatively well. Queries 7
and 8 involve structural joins between massive node sets of thousands of nodes,
so PP performs very poorly. Thus, it can be argued that the scalability of PP
leaves a lot to be desired.

Queries 4, 8, and 12 involve structural joins also between inner nodes, so these
queries can be used to compare AD against AL. Overall, AL seems to perform
almost as well as AD, but as an interesting detail, we found that both AD and PP
outperform AL on query 4. Thus, although AL does not suffer from the severe
scalability problems of PP demonstrated by queries 7 and 8, joining node sets
with large number of leaf node descendants pursuing AL is still rather expensive.
This finding also suggests that splitting large documents into smaller entities
before inserting them into the database would lead to considerable performance
gains in PP, since part of the structural joins can then be carried out using
equijoins on document identifiers.

5 Concluding Remarks

In this paper, we discussed four different methods for modeling the nested rela-
tionships between elements, attributes, and pieces of text in XML documents.
We also proposed a new approach, namely the ancestor/leaf index. We pre-
sented the relational schemas designed according to these models and presented
our experimental results which clearly demonstrated the trade-off between stor-
age consumption and query performance. When building an XML management
system on a relational database, one should consider both this trade-off and the
requirements of the application area. For example, if the management system
will be used to store only web pages, using ancestor/descendant index or ances-
tor/leaf index would be a waste of space, since web pages written in XML are
usually only kilobytes in size.

One interesting detail in our experimental results was the relatively good per-
formance of pre-/postorder encoding when many small documents were queried.
Considering that this approach only consumes half of the disk space consumed
by the ancestor/leaf approach, it might be worthwhile to develop methods for
splitting large XML trees before inserting them into the database. In this case,
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we obviously need ways to perform structural joins between node sets that reside
in separate trees, which presents an interesting research problem.
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