
Supporting XPath Axes with Relational
Databases Using a Proxy Index�

Olli Luoma

Department of Information Technology and Turku Centre for Computer Science
University of Turku, Finland

olli.luoma@it.utu.fi

Abstract. In recent years, a plethora of work has been done to develop
methods for managing XML documents using relational databases. In
order to support XPath or any other XML query language, the rela-
tional schema must allow fast retrieval of the parents, children, ances-
tors, or descendants of a given set of nodes. Most of the previous work
has aimed at this goal using pre-/postorder encoding. Relying on this
method, however, may lead to scalability problems, since the structural
relationships have to be checked using nonequijoins, i.e., joins using <
or > as their join condition. Thus, we discuss alternative methods, such
as ancestor/descendant and ancestor/leaf indexes, and present a novel
method, namely a so called proxy index. Our method allows us to replace
nonequijoins with equijoins, i.e., joins using = as their join condition. The
results of our comprehensive performance experiments demonstrate the
effectiveness of the proxy index.

1 Introduction

Because of its simplicity and flexibility, XML [1] has widely been adopted as the
lingua franca of the Internet. Currently, XML is used not only as a platform-
independent means to transfer data in computer networks, but also as a format
to store large amounts of heterogeneous data in many modern application areas,
such as bioinformatics [2]. It is thus widely agreed that without efficient means
for managing XML documents, the potential of XML cannot be realized to its full
extent, and the database community has been actively developing methods for
storing and querying large amounts of XML data using XML query languages,
most often XPath [3] and XQuery [4].

According to XPath [3], every well-formed XML document can be represented
as an XML tree, a partially ordered tree with seven different node types. In
addition to this tree representation, XPath also lists 12 axes1, i.e., operators
for tree traversal, such as parent, child, ancestor, descendant, preceding,
and following. In order to provide adequate XPath support, all axes have to
be implemented efficiently. The majority of the previous proposals, however,

� Supported by the Academy of Finland.
1 In XPath 2.0, the namespace axis of XPath 1.0 was deprecated.

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 99–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 Olli Luoma

have considered only the descendant and child axes, and thus they lack the
flexibility and generality intended by the original XPath recommendation.

In many previous proposals [5] [6] [7], the structural relationships between
the nodes of an XML tree have been modeled using pre-/postorder encoding,
i.e., by maintaining the pre- and postorder numbers of the nodes, or by using
some similar method. This method forces us to check the nested relationships
using expensive nonequijoins, which can easily lead to scalability problems [8]
[9]. Thus, methods aiming at replacing nonequijoins with equijoins have been
proposed; an ancestor/descendant index [10] maintains all ancestor/descendant
pairs, an ancestor/leaf index [9] maintains the ancestor information only for the
leaf nodes.

Maintaining the ancestor/descendant or ancestor/leaf information explicitly,
however, consumes much more storage than pre-/postorder encoding. According
to our previous experiments [9], a database based on ancestor/leaf approach
consumes roughly twice and a database based on ancestor/descendant approach
roughly four times the storage consumed by a database based on pre-/postorder
encoding, which makes these methods somewhat impractical.

The main contributions of this paper can be listed as follows:

1. We present a novel method for modeling the structural relationships in XML
trees, namely a proxy index. Our method supports all 12 XPath axes, pro-
vides good query performance, and encodes the structural information much
more compactly than the ancestor/descendant and ancestor/leaf indexes.

2. We show that not only is it possible to support all axes of XPath using an-
cestor/descendant, ancestor/leaf, and proxy indexes, it is actually practical
when large XML documents have to be queried efficiently. To support this
claim, we present the results of our comprehensive performance experiments.

This paper proceeds as follows. In section 2, we review the related work and in
section 3, we present the basics of the XPath query language; section 4 provides
the reader with a more detailed discussion on the previous proposals. We present
the proxy index in section 5 and the results of our performance evaluation in
section 6. Section 7 concludes this article and discusses our future work.

2 Related Work

From a technical viewpoint, an XML management system (XMLMS) can be built
in several ways. One option is to build a native XML database, i.e., to build an
XML management system from scratch. This option allows one to design all
features, such as query optimization and storage system, specifically for XML
data. In the XML research literature, there are several examples of this approach,
such as Lore [11] and NATIX [12].

Another approach followed, for instance, in [13] is to build an XMLMS on
top of an object-oriented database. This approach allows us to take advantage
of the rich data modeling capabilities of object-oriented databases. In this con-
text, however, traversing large XML trees means traversing large object hier-
archies, which can be a rigorous task, and thus the scalability of these systems

Supporting XPath Axes with Relational Databases Using a Proxy Index 101

might be somewhat questionable [14]. Relational databases, on the contrary, pro-
vide a technically sound platform for data management, and thus building an
XMLMS on top of a relational database is a viable option. This method allows
the relational data and the XML data to coexist the same database, which is
advantageous, since it is unlikely that XML databases can completely replace
the traditional database technology in the near future. Unfortunately, there is
some undeniable mismatch between the hierarchical XML and flat relational
data models, and thus, after half a decade of XMLMS research, it still is not
clear which one or ones of these approaches will prevail.

The previous proposals to manage XML data using relational databases can
roughly be divided into two categories [5]. In the structure-mapping approach
(schema-aware approach), the relational models are designed in accordance with
the DTDs or the logical structure of the documents. The standard approach is to
create one relation for each element type [14], but more sophisticated methods
have also been proposed [15]. All of these methods, however, are at their best
in applications where a large number of documents corresponding to a limited
number of DTDs have to be stored. If this is not the case, we are at risk to end
up with a very large number of relations, which complicates the XPath-to-SQL
query translation [7] [16]. The other approach is the model-mapping approach
(schema-oblivious approach) in which the database schemas represent the generic
constructs of the XPath data model, such as element, attribute, and text nodes.
Unlike in the structure-mapping approach, the database schema is fixed, and
thus we can store any well-formed XML document without changing the schema.
Having a fixed schema also simplifies the XPath-to-SQL query translation.

Thus far, the model-mapping approach has been followed in many proposals,
such as XRel [5] (based on a variant of pre-/postorder encoding), XParent [10]
(based on an ancestor/descendant index), and SUCXENT [17] (based on a vari-
ant of ancestor/leaf index). All of these methods, however, have only considered
the descendant and child axes of XPath, and thus they provide a very limited
XPath support. The XPath accelerator proposed by Grust [7] took a leap for-
ward by providing support for all XPath axes and relative addressing. However,
since XPath accelerator is based on pre-/postorder encoding, the nested rela-
tionships have to be checked using nonequijoins, and thus the scalability of the
method may be somewhat in doubt [9].

3 XPath Axes

As mentioned earlier, the tree traversals in XPath are based on 12 axes which are
presented in Table 1. These axes are used in location steps which, starting from
a context node, result in a set of nodes in the relation defined by the axis with
the context node. A location step of the form axis::nodetest[predicate] also
includes a node test which can be used to restrict the name or the type of the
selected nodes. An additional predicate can be used to filter the resulting node
set further. For example, the location step n/descendant::record[child::*]
selects all descendants of the context node n which are named record and have
one or more child nodes.

102 Olli Luoma

Table 1. The XPath axes and their semantics

Axis Semantics of n/Axis

child Children of n.
parent Parent of n.
ancestor Transitive closure of parent.
descendant Transitive closure of child.
ancestor-or-self Like ancestor, plus n.
descendant-or-self Like descendant, plus n.
preceding Nodes preceding n, no ancestors.
following Nodes following n, no descendants.
preceding-sibling Nodes preceding n and with the same parent as n.
following-sibling Nodes following n and with the same parent as n.
attribute Attribute nodes of n.
self Node n.

XPath also provides a means for checking the string values of the nodes.
The XPath query /descendant-or-self::record="John Scofield Groove
Elation Blue Note", for instance, selects all element nodes with label “record”
for which the value of all text node descendants concatenated in document order
matches “John Scofield Groove Elation Blue Note”. In the scope of this paper,
however, we will not concentrate on querying the string values; our focus is on
the XPath axes.

4 Previous Proposals

In this section, we discuss the previous proposals for modeling nested relation-
ships in XML documents using relational databases in detail. For brevity, we
have omitted the document identifiers from the relations, but as in [9], these
could easily be added to support storage and retrieval of multiple documents in
a single database.

4.1 Pre-/Postorder Encoding

The pre-/postorder encoding [18] makes use of the following very simple property
of pre- and postorder numbers. For any two nodes n1 and n2, n1 is an ancestor
of n2, iff the preorder number of n1 is smaller than the preorder number of n2

and the postorder number of n1 is greater than the postorder number of n2. As
in [7], we store all the nodes in a single relation Node:

Node(Pre, Post, Par, Type, Name, Value)

In this schema, the database attributes Pre, Post, and Par correspond to
the preorder and postorder numbers of the node and the preorder number of the
parent of the node, respectively. The database attribute Type corresponds to
the type of the node and the database attribute Name to the name of the node.

Supporting XPath Axes with Relational Databases Using a Proxy Index 103

Value corresponds to the string value of the node. Like many earlier proposals
[5] [10] [17], we do not store the string values of element nodes.

As noticed by Grust [7], the pre- and postorder numbers, combined with
the parent information, are sufficient to perform all XPath axes by using the
query conditions presented in Table 2; node tests can be supported by using the
additional query conditions presented in Table 3.

Table 2. Pre-/postorder encoding query conditions for supporting the axes

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor ni+1.Pre<ni.Pre AND ni+1.Post>ni.Post

descendant ni+1.Pre>ni.Pre AND ni+1.Post<ni.Post

ancestor-or-self ni+1.Pre<=ni.Pre AND ni+1.Post>=ni.Post

descendant-or-self ni+1.Pre>=ni.Pre AND ni+1.Post<=ni.Post

preceding ni+1.Pre<ni.Pre AND ni+1.Post<ni.Post

following ni+1.Pre>ni.Pre AND ni+1.Post>ni.Post

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Table 3. Additional query conditions for supporting the node tests

Axis Query conditions

node()

text() ni+1.Type="text"

comment() ni+1.Type="comm"

processing-instruction() ni+1.Type="proc"

name ni+1.Type="elem" AND ni+1.Name="name"

* ni+1.Type="elem"

For brevity, we will not discuss the XPath-to-SQL query translation in full
detail. For our purposes, it is sufficient to say that the SQL queries can be
generated simply by walking through all the location steps in an XPath query
and by using the query conditions to perform each step. For example, the XPath
query n1/descendant::record can be translated into the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2

WHERE n2.Pre>n1.Pre AND n2.Post<n1.Post

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

The last row of the query is added to ensure that the nodes are returned in
document order, as required by the XPath recommendation. Optional predicates

104 Olli Luoma

in queries can be evaluated by changing the tuple variable in the SELECT part of
the query. The XPath query n1/descendant::*/following-sibling::record
[child::title], for example translates into the following SQL query:

SELECT DISTINCT n3.*

FROM Node n1, Node n2, Node n3, Node n4

-- First step /descendant::*

AND n2.Pre>n1.Pre AND n2.Post<n1.Post

AND n2.Type="elem"

-- Second step /following-sibling::record

AND n3.Pre>n2.Pre AND n3.Post>n2.Post AND n3.Par=n2.Par

AND n3.Type="elem" AND n3.Name="record"

-- Third step /child::title

AND n4.Par=n3.Pre

AND n4.Type="elem" AND n4.Name="title"

ORDER BY n3.Pre;

In [7], Grust also described how the evaluation of descendant and
descendant-or-self axes can remarkably be accelerated by tightening the
query conditions for the pre- and postorder numbers of the descendant nodes.
Using this idea, the XPath query n1/descendant::record can be translated
into the following “accelerated” SQL query in which height denotes the height
of the tree:

SELECT DISTINCT n2.*

FROM Node n1, Node n2

WHERE n2.Pre>n1.Pre AND n2.Pre<=n1.Post + height

AND n2.Post<n1.Post AND n2.Post>=n1.Pre - height

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

However, if n1 is the root of the tree the query is not accelerated at all, since
every node in the tree has a preorder (postorder) number smaller (larger) than
the postorder (preorder) number of n1. In general, the closer to the root the
context node resides, the less will the query be accelerated.

The XML research literature knows several methods similar to pre-/postorder
encoding, such as the nested sets model [2] and the order/size scheme [6]. XRel
[5] makes use of region coordinates which tell the indexes of the first and last
character of the piece of text corresponding to an element, attribute or text
node. Nevertheless, all of these methods impose the nested relationships to be
checked using expensive nonequijoins.

4.2 Ancestor/Descendant Index

An extreme approach for modeling the nested relationships is to build an ances-
tor/descendant index, i.e., to explicitly maintain all ancestor/descendant pairs.

Supporting XPath Axes with Relational Databases Using a Proxy Index 105

In order to evaluate ancestor-or-self and descendant-or-self axes effi-
ciently, all nodes actually have to be in relation AncDesc with themselves, which
raises the storage requirements even higher. Nevertheless, this approach can pro-
vide good query performance, and thus it has been followed in [10], for instance.
To maintain the ancestor/descendant information, we use an AncDesc table:

Node(Pre, Par, Type, Name, Value)

AncDesc(Anc, Desc)

It is easy to find the query conditions for ancestor/descendant index; these
are presented in Table 4. Evaluating the ancestor and descendant axes involves
an equijoin on preorder numbers to ensure that the context node is not included
in the result of the location step. When evaluating following and preceding
axes, we use subqueries to filter the descendants and ancestors from the result.

Table 4. Ancestor/descendant index query conditions for performing the axes using
AncDesc tuple variable ai

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor ancestor-or-self AND NOT ni+1.Pre=ni.Pre

descendant descendant-or-self AND NOT ni+1.Pre=ni.Pre

ancestor-or-self ni+1.Pre=ai.Anc AND ai.Desc=ni.Pre

descendant-or-self ni+1.Pre=ai.Desc AND ai.Anc=ni.Pre

preceding ni+1.Pre<ni.Pre AND ni+1 NOT IN ancestor

following ni+1.Pre>ni.Pre AND ni+1 NOT IN descendant

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Using the query conditions presented in Table 4 and the additional query
conditions presented in Table 3, we can now translate the XPath query
n1/descendant::record into the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2, AncDesc a1

WHERE n2.Pre=a1.Desc AND a1.Anc=n1.Pre AND NOT n2.Pre=n1.Pre

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

It is worth noticing that in this query, there are no expensive nonequijoins,
and thus we can expect this query to run faster than the corresponding query
that is based on pre-/postorder encoding.

106 Olli Luoma

4.3 Ancestor/Leaf Index

Simply put, an ancestor/leaf index is an ancestor/descendant index built only
the leaf nodes as descendants. To maintain the ancestor/leaf information, we
employ an AncLeaf table:

Node(Pre, Par, Type, Name, Value)

AncLeaf(Anc, Leaf)

Obviously, the database attribute Leaf corresponds to the preorder number
of the leaf node and Anc corresponds to the preorder number of the ancestor of
the leaf node. Similarly to the ancestor/descendant approach, all leaf nodes are
in relation AncLeaf with themselves.

To evaluate all the axes using ancestor/leaf index, we first define a “spe-
cial axis” special which, for a Node tuple variable ni, can be evaluated us-
ing AncLeaf variables ai and bi with query conditions ni+1.Pre=ai.Anc AND
ai.Leaf=bi.Leaf AND bi.Anc=ni.Pre. In simple terms, the result of the special
axis contains all ancestors and descendants of the context node and the context
node itself. To filter the ancestors or descendants from the result of this query,
we can use the preorder numbers of the nodes, as presented in Table 5.

Table 5. Ancestor/leaf index query conditions for performing the axes

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor special AND ni+1.Pre<ni.Pre

descendant special AND ni+1.Pre>ni.Pre

ancestor-or-self special AND ni+1.Pre<=ni.Pre

descendant-or-self special AND ni+1.Pre>=ni.Pre

preceding ni+1.Pre<ni.Pre AND ni+1 NOT IN ancestor

following ni+1.Pre>ni.Pre AND ni+1 NOT IN descendant

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Using these query conditions and the additional query conditions presented
in Table 3, we can evaluate our example query n1/descendant::record using
the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2, AncLeaf a1, AncLeaf b1

WHERE n2.Pre=a1.Anc AND a1.Leaf=b1.Leaf AND b1.Anc=n1.Pre

AND n2.Pre>n1.Pre

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

Supporting XPath Axes with Relational Databases Using a Proxy Index 107

Although this query involves one nonequijoin on preorder numbers, it can
be evaluated quite efficiently, since most of the work can be carried out using
inexpensive equijoins. Provided that the database management system optimizes
the query correctly, the nonequijoin is very likely performed after the equijoins,
and thus the nonequijoin is performed on only a small number of tuples. To
avoid unnecessary disk I/O during queries, the AncLeaf table should be sorted
according to the database attribute Leaf.

5 Proxy Index

Both ancestor/descendant index and ancestor/leaf index suffer from the same
problem: they maintain a lot of redundant information. In this section, we thus
describe a proxy index as a method for representing the structural relationships
in a more compact manner. Our idea is to select a set of inner nodes to act as
proxy nodes and to maintain the ancestor/descendant information only for these
proxies. The concept of proxy node can formally be defined as follows:

Definition 1. Node n is a proxy node of level i, if the length of the path from
n to some leaf node is i or if n is the root node and the length of the path from
n to some leaf node is smaller than i.

To couple the proxy nodes together with their ancestors and descendants, we
use the relation ProxyReach:

Node(Pre, Post, Par, Type, Name, Value)

ProxyReach(Proxy, Reach)

In this schema, the database attribute Proxy corresponds to the preorder
number of the proxy node and Reach corresponds to the preorder number of
a node that is reachable from the proxy, i.e., a node that is an ancestor or
descendant of the proxy node or the proxy node itself.

Notice that each proxy node corresponds to an equivalence class induced by
an equivalence relation ≡pi on the leaf nodes defined as follows:

Definition 2. For any two leaf nodes n1 and n2, n1 ≡pi n2, iff there exists a
proxy node n3 of level i such that n3 is the nearest proxy node ancestor for both
n1 and n2.

Using this notion, we can now define the ancestor/leaf index as a proxy
index corresponding to the relation ≡p0. Obviously, the structural information
can be encoded more compactly by increasing the value of i. Building an index
corresponding to the relation ≡p1, however, will probably not get us far, since
in the case of typical XML trees, most leaf nodes are text nodes without any
siblings. Thus, with value 1 we will end up with almost as many tuples in the
ProxyReach table as with value 0. For this reason, our experimental evaluation
was carried out using value 2 which proved to provide a good balance between
query speed and storage consumption.

108 Olli Luoma

Similarly to the ancestor/leaf index, we use a “special axis” special which,
for a Node tuple variable ni, can be evaluated using ProxyReach variables ai

and bi with query conditions ni+1.Pre=ai.Reach AND ai.Proxy=bi.Proxy AND
bi.Reach=ni.Pre. Here, the result of the special axis contains all descendants
and ancestors of the proxy nodes that are reachable from ni. Thus, we can use
query conditions similar to those used in the pre-/postorder encoding approach
to filter the unwanted nodes from the result of the axis, as presented in Table 6.

Table 6. Proxy index query conditions for performing the axes

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor special AND ni+1.Pre<ni.Pre AND ni+1.Post>ni.Post

descendant special AND ni+1.Pre>ni.Pre AND ni+1.Post<ni.Post

ancestor-or-self special AND ni+1.Pre<=ni.Pre AND ni+1.Post>=ni.Post

descendant-or-self special AND ni+1.Pre>=ni.Pre AND ni+1.Post<=ni.Post

preceding ni+1.Pre<ni.Pre AND ni+1.Post<ni.Post

following ni+1.Pre>ni.Pre AND ni+1.Post>ni.Post

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Using these query conditions and the additional query conditions presented
in Table 3, we can evaluate our example query n1/descendant::record using
the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2, ProxyReach a1, ProxyReach b1

WHERE n2.Pre=a1.Reach AND a1.Proxy=b1.Proxy AND b1.Reach=n1.Pre

AND n2.Pre>n1.Pre AND n2.Post<n1.Pre

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

Although this query involves two nonequijoins, it can still be evaluated rather
efficiently, as explained in the section discussing ancestor/leaf index.

6 Experimental Results

This section presents the results of our experimental evaluation carried out using
MySQL 5.0 Alpha running on Windows XP and a 2.00 GHz Pentium PC with
512 MB of RAM and standard IDE disks. As in [9], the database schemas cor-
responding to pre-/postorder encoding (PP), ancestor/descendant index (AD),
ancestor/leaf index (AL), and proxy index (PR) were all extended with docu-
ment identifiers; the proxy index was built on relation ≡p2.

Supporting XPath Axes with Relational Databases Using a Proxy Index 109

6.1 Storage Requirements

To start with, we compared the storage consumption of the methods by storing
three different sets of XML documents into databases designed according to
PP, AD, AL, and PR2. For this purpose, we used the 1998 baseball statistics
and a collection of four religious texts, both available at [19]. We also studied
the storage requirements using a deeply nested and structurally complex XML
document generated with XMLgen [20] using factor 1. The database sizes in
both tuples and megabytes, as well as the sizes of original XML documents, are
presented in Table 7.

Table 7. Database sizes

PP AD AL PR
MB Tuples MB Tuples MB Tuples MB Tuples MB

Baseball 0.6 52707 3.6 393095 15.1 233142 9.9 110608 5.2
Religious 6.8 94616 11.7 599005 29.0 366178 20.6 195006 15.0
XMLgen 113 3221932 305 23134116 998 13952004 686 8339906 486

As can be seen in Table 7, PR performs quite well in terms of storage con-
sumption. Although PR consumes more storage than PP, the difference between
PP and PR is not nearly as significant as between PP and AD or AL. In the next
section, we will see that PR allows us to evaluate queries much more efficiently
than PP, which justifies the bigger database size.

6.2 Query Performance

We evaluated the query performance of the different approaches using synthetic
documents generated with XMLgen using factors 0.01, 0.02, 0.04, 0.08, 0.16, 0.32,
0.64, and 1.28. The sizes of these documents ranged approximately from 1.1 MB
to 146 MB. From each document, we randomly selected 20 context nodes, and
performed the parent, child, ancestor, descendant, following-sibling, and
preceding-sibling axes starting from these context nodes.

According to our experiments, the evaluation time of all axes grows linearly
with respect to the document size. Regardless of the document size, however, axes
parent, child, preceding-sibling, following-sibling, and descendant can
be evaluated in almost no time in all approaches, provided that the descendant
queries in PP are accelerated.

The results concerning the ancestor axis, on the contrary, reveal one of the
weaknesses of PP. Since this axis cannot be accelerated, the query evaluation
time in PP grows rapidly compared to other approaches. In approaches AD,
AL, and PR, not only the descendant axis, but also the ancestor axis can be

2 Auxiliary indexes were built on Node(Doc, Post) Node(Doc, Par), Node(Type),
AncDesc(Doc, Desc), AncLeaf(Doc, Leaf), Proxy(Doc, Reach), and the first five
characters of Node(Name).

110 Olli Luoma

evaluated very efficiently. Evaluating this axis using the largest test document,
for example, took almost 16 seconds in PP, whereas in AD, AL, and PR, almost
no time at all was needed. The results are presented in Fig. 1; all times are
averages for the 20 context nodes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 10 100

Q
ue

ry
 ti

m
e

(s
)

Document size (MB)

PP
AD
AL
PR

Fig. 1. Times for the ancestor axis (logarithmic scale for size)

As discussed section 4.1, the descendant and descendant-or-self axes are
not accelerated in PP if the root is the context node. This is actually a rather
serious drawback, since all queries based on absolute addressing traverse the tree
starting from the root. To exemplify this problem, Fig. 2 presents the query times
for the XPath query /descendant-or-self::open auction. According to these
results, the scalability of PP leaves a lot to be desired when the traversal starts
from the root. Also in AL, the query times grow rather rapidly, but both PR
and AD perform very well indeed even in the case of the largest test document.
Although the SQL queries in PR look similar to the queries in AL, PR clearly
outperforms AL, since it issues less disk accesses.

After these tests, we still wanted to see how the approaches perform when
a large set of context nodes is used. To do this, we stored the result sets of
our previous query //open auction into separate relations and performed the
location step /descendant-or-self::description starting from these node
sets; the size of the context node set varied from 120 to 15360. In these tests, PP
suffered from severe scalability problems with respect to the number of context
nodes. For instance, even in the case of the smallest test document, PP took
almost two minutes, whereas the other approaches needed less than a second,
which clearly supports our presentiments on the lack of scalability in PP. Indeed,
although the acceleration can make a substantial difference when the set of
context nodes is small, PP does not scale well with respect to the number of

Supporting XPath Axes with Relational Databases Using a Proxy Index 111

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Q
ue

ry
 ti

m
e

(s
)

Document size (MB)

PP
AD
AL
PR

Fig. 2. Times for query //open auction (logarithmic scale for size)

context nodes. PR performed better than AL and also in these tests, AD provided
the best performance. These results are presented in Fig. 3.

All in all, our results were similar to those obtained in [10] and [17]. It must
be pointed out that according to Grust [7], PP performs much better if the pre-
and postorder numbers are indexed using R-trees. The purpose of this study,
however, was to rely on standard relational database technology, and thus we
did not consider this possibility.

7 Conclusion and Future Work

In this paper, we discussed methods for modeling the nested relationships in
XML documents using relational databases. We also proposed a novel method,
namely a proxy index, which maintains the ancestor/descendant information
for a selected set of inner nodes. Our proposal makes it possible to check the
nested relationships mainly using equijoins instead of nonequijoins, and thus our
method can clearly outperform the widely used pre-/postorder encoding. Fur-
thermore, our method encodes the structural relationships in a compact manner,
and thus the storage consumption is low compared to other methods that model
the structural relationships explicitly.

It would be interesting to study how the approaches discussed in this paper
perform when relative addressing is used. Since PR performed quite well with
large sets of context nodes, we believe that our approach performs well also when
relative addressing of XPath is used. It would also be interesting to study how
different clusterings, i.e., orderings of the tuples, affect the performances of the
methods. Ordering the tuples according to their names instead of their preorder
numbers, for example, might provide good results.

112 Olli Luoma

 0

 50

 100

 150

 200

 1 10 100

Q
ue

ry
 ti

m
e

(s
)

Document size (MB)

PP
AD
AL
PR

Fig. 3. Times for query //open auction//description (logarithmic scale for size)

References

1. W3C. Extensible Markup Language (XML) 1.0.
http://www.w3c.org/TR/REC-xml.

2. A.B. Chaudri, A. Rashid, and R. Zicari. XML Data Management: Native XML
and XML-Enabled Database Systems. Addison-Wesley, 2003.

3. W3C. XML path language (XPath) 2.0. http://www.w3c.org/TR/xpath20.
4. W3C. XQuery 1.0: An XML query language. http://www.w3c.org/TR/xquery.
5. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A path-based

approach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technologies, 1(1): 110-141, 2001.

6. Q. Li and B. Moon. Querying XML data for regular path expressions. In Proc. of
the 27th Intl Conf. on Very large Databases, pages 361-370, 2001.

7. T. Grust. Accelerating XPath location steps. In Proc. of the 2002 ACM SIGMOD
Conf. on Management of Data, pages 109-120, 2002.

8. C. Zhang, J. Naughton, D. DeWitt, Qiong Luo, G. Lohman. On supporting con-
tainment queries in relational database management systems. In Proc. of the 2001
ACM SIGMOD Conf. on Management of Data, pages 425-436, 2001.

9. O. Luoma. Modeling nested relationships in XML documents using relational
databases. In Proc. of the 31st Annual Conf. on Current Trends in Theory and
Practice of Informatics, pages 259-268, 2005.

10. H. Jiang, H. Lu, W. Wang, and J. Xu Yu. Path materialization revisited: An
efficient storage model for XML data. In Proc. of the 13th Australasian Database
Conf., pages 85-94, 2002.

11. J. McHugh, S. Abiteboul, R. Goldman, R. Quass, and J. Widom. Lore: A database
management system for semistructured data. SIGMOD Record, 26(3): 54-66, 1997.

12. C.C. Kanne and G. Moerkotte. Efficient storage of XML data. Poster abstract in
Proc. of the 16th Intl Conf. on Data Engineering, page 198, 2000.

Supporting XPath Axes with Relational Databases Using a Proxy Index 113

13. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured docu-
ments to novel query facilities. In Proc. of the 1994 ACM SIGMOD Intl Conf. on
Management of Data, pages 313-324, 1994.

14. D. Florescu and D. Kossmann. A performance evaluation of alternative mapping
schemes for storing XML data in a relational database. Technical Report, INRIA,
1999.

15. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.J. DeWitt, and J.F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In Proc. of the 25th Intl Conf. on Very Large Databases, pages 302-
314, 1999.

16. R. Krishnamurthy, R. Kaushik, and J.F. Naughton. XML-to-SQL query translation
literature: The state of the art and open problems. In Proc. of the 1st Intl XML
Database Symposium, pages 1-18, 2003.

17. S. Prakash, S.S. Bhowmick, and S. Madria. SUCXENT: An efficient path-based
approach to store and query XML documents. In Proc. of the 15th Intl Conf. on
Database and Expert Systems Applications, pages 285-295, 2004.

18. P.F. Dietz. Maintaining order in a linked list. In Proc. of the 14th ACM Symposium
on Theory of Computing, pages 122-127, 1982.

19. http://www.ibiblio.org/xml/examples.
20. http://monetdb.cwi.nl/xml/index.html.

	Supporting XPath Axes with Relational Databases Using a Proxy Index
	1 Introduction
	2 Related Work
	3 XPath Axes
	4 Previous Proposals
	4.1 Pre-/Postorder Encoding
	4.2 Ancestor/Descendant Index
	4.3 Ancestor/Leaf Index

	5 Proxy Index
	6 Experimental Results
	6.1 Storage Requirements
	6.2 Query Performance

	7 Conclusion and Future Work
	References

