
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Integrating Learning, Optimization, and Prediction
for Efficient Navigation of Swarms of Drones

Amin Majd∗, Adnan Ashraf∗, Elena Troubitsyna∗, and Masoud Daneshtalab†
∗Faculty of Natural Sciences and Technology, Åbo Akademi University, Turku, Finland

Email: amajd@abo.fi, aashraf@abo.fi, etroubit@abo.fi
†Division of Intelligent Future Technologies, Mälardalen University, Västerås, Sweden

Email: masoud.daneshtalab@mdh.se

Abstract—Swarms of drones are increasingly been used in a
variety of monitoring and surveillance, search and rescue, and
photography and filming tasks. However, despite the growing
popularity of swarm-based applications of drones, there is still
a lack of approaches to generate efficient drone routes while
minimizing the risks of drone collisions. In this paper, we present
a novel approach that integrates learning, optimization, and
prediction for generating efficient and safe routes for swarms
of drones. The proposed approach comprises three main compo-
nents: (1) a high-performance dynamic evolutionary algorithm
for optimizing drone routes, (2) a reinforcement learning algo-
rithm for incorporating the feedback and runtime data about
the system state, and (3) a prediction approach to predict the
movement of drones and moving obstacles in the flying zone. We
also present a parallel implementation of the proposed approach
and evaluate it against two benchmarks. The results demonstrate
that the proposed approach allows to significantly reduce the
route lengths and computation overhead while producing efficient
and safe routes.

Index Terms—Path planning; drone; swarm; evolutionary al-
gorithms; imperialistic competition algorithm; machine learning;
prediction

I. INTRODUCTION

A drone is a semi-autonomous aircraft that can be controlled
and operated remotely by using a computer along with a
radio-link [1]. Commercially-available drones are increasingly
been used in a variety of applications such as monitoring and
surveillance, search and rescue operations, photography and
filming, media coverage of public events, and aerial package
delivery. However, with the growing popularity and use of
drones for consumer applications, the number of incidents
involving drones is also increasing dramatically. In the United
States alone, the Federal Aviation Administration receives
more than 100 reports every month of unauthorized and poten-
tially hazardous drone activity reported by pilots, citizens, and
law enforcement1. Ensuring a hazard-free, safe flight is also
equally important for indoor applications. Therefore, motion
safety of drones is a prime concern for drone operators, which
refers to the ability of the drones to detect and avoid collisions
with static and moving obstacles in the environment.

For larger and more complex applications which are ei-
ther beyond the capabilities of a single drone or cannot be
performed efficiently if only a single drone is used, multiple

1https://www.faa.gov/uas/resources/uas sightings report/

drones are used together in the form of a swarm or a fleet. In
such scenarios, a safe operation can not be guaranteed without
preventing the drones from colliding with one another and
with static and dynamically appearing, moving obstacles in
the flying zone. Therefore, in the context of a drone swarm,
ensuring motion safety entails devising and implementing
a motion path planning and navigation system for multiple
drones with an integrated support for collision prediction and
avoidance.

In this paper, we present a novel approach that inte-
grates learning, optimization, and prediction for generating
efficient and safe routes for swarms of drones. We assume
that the swarm executes certain missions, in which each
drone flies from a start location to a destination location.
The proposed approach uses geographical locations of the
drones and of the successfully detected, static and dynamically
appearing, moving obstacles to predict and avoid: (1) drone-to-
drone collisions, (2) drone-to-static-obstacle collisions, and (3)
drone-to-moving-obstacle collisions. The proposed approach
comprises three main components: (1) a high-performance
dynamic evolutionary algorithm (EA) for optimizing drone
routes, (2) a reinforcement learning algorithm for incorporat-
ing the feedback and runtime data about the system state, and
(3) a prediction approach to predict the movement of drones
and moving obstacles in the flying zone. To find efficient drone
routes, we propose a parallel and dynamic implementation of
the imperialistic competition algorithm (ICA) [2] that allows
us to find efficient collision-free routes for the drones in
the swarm. Our prediction approach uses exponential moving
average to filter the monitoring data and linear regression to
make predictions from the filtered data.

The learning component is based on the K-nearest neighbor
(KNN) learning algorithm [3]. Each placement produced by
our parallel ICA for a given swarm and environment state
is evaluated to train the system. Both the learning and opti-
mization algorithms work in parallel to compute alternative
routing solutions. The results are compared and a more effi-
cient solution is chosen. Since with each run the training set
increases, eventually the learning algorithm becomes capable
of proposing better solutions.

We believe that our proposed approach provides a promising
solution to ensure efficient, collision-free navigation of the
drones in a swarm. We also present a parallel implementation

https://www.faa.gov/uas/resources/uas_sightings_report/

of the proposed approach and evaluate it against two bench-
marks. The results demonstrate that the proposed approach al-
lows to significantly reduce the route lengths and computation
overhead while producing efficient and safe routes.

The paper is structured as follows. Section II briefly reviews
EAs and ICA. Section III presents the proposed approach that
integrates learning, optimization, and prediction for generating
efficient and safe drone routes. In Section IV, we describe
our prediction approach in detail. Section V presents some
important implementation details and experimental results.
Finally in Section VI, we review important related works and
present our conclusions.

II. IMPERIALISTIC COMPETITION ALGORITHM

Evolutionary computing comprises a set of optimization
algorithms, which are inspired by a biological or societal
evolution [4]. The evolutionary algorithms (EAs) are widely
used in the swarm systems due to their ability to find,
in a highly performant way, near-optimal solutions for the
computationally hard problems. An EA mimics the survival
of the fittest principle of the nature.

There is a large variety of EAs. Some of them are in-
spired by natural phenomena, while others, such as Imperialist
Competitive Algorithm (ICA) [2], by the social processes.
The algorithm simulates a human social evolution. Its parallel
implementation [5] has shown a remarkable performance in
comparison with the other EAs and offers a promising solution
supporting compute-intensive tasks of swarm-based systems.

Figure 1 presents a flowchart highlighting the main steps
in the ICA. The algorithm starts by a random generation of
a set of countries - the genotypes - in the search space of
the optimization problem. The fitness function determines the
power of each country. The countries with the best values
of the fitness function become imperialists, while the other
countries become colonies. The colonies are divided among
the imperialists and hence the overall search space is divided
into empires. An association of a colony with an imperialist
means that only the genotype of the imperialist and its
associated colonies are used for crossover. The intuition behind
it as follows: since the imperialist has a higher value of the
fitness function, by crossing over with an associated colony,
which is known to have a lower value of the fitness function,
we inherit the strongest traits of the current population.

The mutation and crossover are implemented by assimi-
lation and revolution operators. Assimilation moves colonies
closer to an imperialist in its socio-political characteristics. For
instance, it can be implemented by replacing a certain bit in a
colony genotype with the corresponding bit of the imperialist.
Revolution results in a drastic change of a colony’s character-
istics. It can be implemented by a random replacement of a
certain bit in the colony genotype. As a result of assimilation
and revolution, a colony might reach a better position and get
a chance to take over the control of the entire empire, that is,
to overthrow the current imperialist. This can happen only if
the evaluation of the fitness function of such a colony gives a

higher value (when solving a maximization problem) than the
value of the fitness function of the current imperialist.

The next step of the algorithm computes the power of each
empire and implements the imperialistic competition, which
corresponds to the selection of the survivals process. The
power of an empire is computed by aggregating the fitness
value of the imperialist and a weighted sum of the fitness val-
ues of the colonies. The imperialists also try to take possession
of colonies of other empires, that is, the weakest empire loses
its weakest colony. In each step of the algorithm, based on
their power, all the empires get a chance to take control of
one or more of the colonies of the weakest empire. The steps
of the algorithm are repeated until a termination condition is
reached. As a result, the imperialist of the strongest empire
produces the best solution. To improve performance of ICA,
we introduce the notion of multi-population, that is, we divide
the overall search space into multiple populations or clusters
and perform a local search within each one of them. The best
local solutions are then taken as input to perform the search in
the entire search space. The multi-population based search also
allows to use the inter-population migration operation, which
migrates the best country from one population and uses it to
replace the worst country in another population. Since the local
search procedures are independent of each other, they can be
implemented in parallel. Moreover, the multi-population based
search enables a wider exploration of the search space, which
helps to find high quality solutions.

III. THE PROPOSED APPROACH

A swarm of drones is a typical example of a complex
distributed networked system [6]. Each drone can be seen as a
mobile sensing node that is capable of collecting monitoring
data and communicating with some other drones in the swarm
as well as with the cloud-based navigation center. Finding an
efficient route for each drone in the swarm to ensure motion
safety is a complex optimization problem. Therefore, we need
to rely on certain heuristics to achieve the required objectives.
In this paper, we propose a dynamic EA to compute the
drone routes [7]. The proposed algorithm is based on the
imperialistic competition algorithm (ICA) [2].

Figure 2 presents an overview of the proposed approach
called DIANA (Dynamic Intelligent Autonomous Navigation
Algorithm). The Offline Part in the figure uses our proposed
ICA-based route generation algorithm to generate drone routes
before the start of the mission. Moreover, it computes and uses
the shortest paths between the start and destination locations of
the drones. Since a drone swarm is a highly dynamic system,
we augment our offline module with an online approach that
provides runtime means for monitoring and reconfiguration.
The information obtained from the Dynamic Monitoring com-
ponent has two main purposes. On one hand, it is a feedback
mechanism. On the other hand, it allows us to detect the
changes in the drone swarm and in the flying zone. Such
changes may invoke swarm reconfiguration and regeneration
of the drone routes. In addition, the Prediction module uses
the runtime monitoring data to predict the movement of drones

T.C.n=Cost(Imperialistn)+גmean{Cost(colonies of empiren)}

START
Is there a colony that is

dominating its relevant

imperialist?

Is there a colony that is

dominating its relevant

imperialist?

Are Stop

Conditions

satisfied?

Are Stop

Conditions

satisfied?

1.Initialize the Empires1.Initialize the Empires 2.Assimilation

3.Exchange Imperialist

and the best Colony

4.Compute Total Cost
5.Imperialistic Competitive

END

2

N
O

YES

N
O

YES

Imperialist 1

Imperialist 2

Imperialist 3

Empire 1
Empire 2

Empire 3

The Weakest Empire

Fig. 1. A flowchart highlighting the main steps in the imperialistic competition algorithm

and moving obstacles in the flying zone. We feed the moni-
toring data and prediction results to both a Dynamic EA and
a Learning Algorithm. Both modules compute the alternative
routes. The routes are compared by the Decision Center that
chooses the best solutions from the proposed alternatives. The
Navigation Center then issues the corresponding commands
to the drones.

The proposed DIANA approach uses the parallel implemen-
tation of the ICA [5] with an integrated migration operation
(referred henceforth as the MICAP algorithm). The MICAP
algorithm computes the initial drone routes as well as the
subsequent new routes during the execution of the mission.
For the learning module, we use a K-nearest neighbor (KNN)-
based learning algorithm [3] that runs alongside the MICAP
algorithm.

The main steps of the DIANA approach are presented in
Algorithm 1. The algorithm starts with the preplanning of

Navigation Center

Decision Center

Dynamic

Monitoring
Dynamic EALearning Algorithm

Offline Part

Online Part
Best decision

Prediction

Drones

Fig. 2. Overview of the proposed approach

the mission - the offline execution of MICAP to find the
initial routes. It then obtains the current actual and predicted
state of the system by invoking the dynamic monitoring and
prediction modules and runs the MICAP algorithm and the
KNN-based learning algorithm until the mission completes.
In each iteration, it compares the results of MICAP with that
of the KNN-based learning algorithm and selects the best
solutions. The KNN algorithm is a popular learning method.
In this paper, we use it for classification. The main idea of the
algorithm is as follows. We select K samples in the training
set. The algorithm predicts the numerical target - the nearest
neighbor - based on a similarity measure, which in our case
is a distance function. We compute the numerical target as the
average of the Euclidian distances of the K nearest neighbors.

In our approach, the algorithm takes as the input K solutions
generated for the same system state. Then it computes an
average solution. For each drone in the swarm, it takes K
routes proposed for it. Then it computes an average route
in terms of the Euclidian distance. By computing such a
route for each drone in the swarm, the learning component
calculates the complete solution for the swarm. The decision
center uses a fitness function to compute fitness values for the
solutions produced by MICAP and the learning algorithm. It
then chooses the solution with the highest fitness value.

IV. PREDICTION APPROACH

Our prediction approach is based on the two-step approach
of Andreolini and Casolari [8] and Andreolini et al. [9]. The
two-step approach allows to make predictions under real-time
constraints. It is based on the rationale that periodic sampling
of data offers an instantaneous view of the trends. However,
raw data are of little help for distinguishing different types of
trends in the data. The direct use of the measured raw data
does not solve the problem, because raw data can be highly
variable. Prediction based on the monitored raw data can be
risky and inconvenient. Thus, it is preferable to operate on
a representation of the behavior of the system. The approach

Algorithm 1 DIANA
1: {Offline part}
2: Best-Placement ← Call MICAP(Initial-State)
3: Send(Best-Placement) → Navigation Center
4: {Online part}
5: while Mission is in progress do
6: Current-State ← Call Dynamic Monitoring and

Prediction modules
7: Best-EC-Result ← Call MICAP(Current-State)
8: Best-KNN-Result ← Call KNN(Current-State)
9: Best-Placement ← Max(Best-EC-Result,

Best-KNN-Result)
10: Send(Best-Placement) → Navigation Center
11: Send(Best-Placement)→ KNN-Dataset
12: end while

Procedure 1 MICAP(Current-State)
1: if Processor Pi then
2: for j=1 to Population Size do
3: Initial-Population [j] ← Countryj
4: Cost Initial-Population
5: [j] ← α · Covering Quality - β

CommunicationCost
6: end for
7: Initial-Population ← Sort Initial-Population
8: for j=1 to #Empire do
9: Imperialist[j] ← Initial-Population [j]

10: end for
11: for j=#Empire+1 to Population Size do
12: Assigned as a Colony to an Empire
13: end for
14: for All Colony do
15: Assimilate Colony → Imperialist
16: end for
17: for All Colony do
18: if Colony ≥ Imperialist then
19: Colony ↔ Imperialist
20: end if
21: end for
22: end if

Procedure 2 KNN(Current-State)
1: for All Instance ∈ Dataset do
2: Find Nearest-Neighbor
3: end for
4: return Nearest-Neighbor

Procedure 3 Prediction
1: Invoke two parallel instances of the Tracker
2: {see Section IV}
3: Invoke two parallel instances of the Predictor
4: {see Section IV}
5: return prediction results

involves trackers that may offer a representative view of the

trends to the predictors, thus achieving the two-step approach.
A tracker filters out the noise and can be used to yield

a more regular view of the trend of an obstacle or drone
movement. It takes as input a raw measure si monitored
at time ti, and a set of previously collected n measures,
that is

−→
Sn(ti) = (si−n, ..., si), and outputs a representation

of the trends li at time ti. Formally, tracker is a function
Tracker(

−→
Sn(ti)) : Rn → R. Multiple applications of tracker

provides a sequence of values that yield a regular trend of the
movement. There are different classes of linear and non-linear
trackers, such as simple moving average (SMA), exponential
moving average (EMA), and cubic spline (CS) [9]. SMA
is a simple linear method, but has known shortcomings of
increased oscillations when n is small and of significant delay
when n is large. CS is a non-linear method that is more
expensive to compute than SMA and EMA, but instead of
returning a new tracker value for each raw measure, it returns
a new tracker value after n measures. More sophisticated
(time-series) models often require training periods to compute
the parameters and/or off-line analyses. Similarly, the linear
(auto) regressive models such as ARMA and ARIMA, usually
require frequent updates to their parameters in the case of
highly variable systems [8]. Therefore, the proposed approach
implements a tracker based on the EMA model, which limits
the delay without incurring oscillations and computes a tracker
value for each measure.

EMA is the weighted mean of the n measures in the vector−→
Sn(ti), computed at time ti, where i > n, and the weights
decrease exponentially. An EMA based tracker is defined as

EMA(
−→
Sn(ti)) = α · si + (1− α) · EMA(

−→
Sn(ti−1))

where α = 2
n+1 . The initial value EMA(

−→
Sn(tn)) is set to the

arithmetic mean of the first n values

EMA(
−→
Sn(tn)) =

n∑
j=0

sj

n

The predictor takes as input a set of tracker values−→
Lq(ti) = li−q, ..., li and outputs a future tracker value at
time ti+k, where k > 0. Formally, predictor is a function
Predictork(

−→
Lq(ti)) : Rq → R. With the use of the trackers

that provide high correlation among values, even simple linear
predictors are sufficient to predict the future trend of the
movement. The predictor is characterized by the prediction
window k and the past time window q. Using a simple linear
regression model [10], the predictor uses the last q tracker
values

−→
Lq(ti) [11]. It is based on a straight line defined as

l = Θ0 + Θ1 · t

where Θ0 and Θ1 are unknown constants, called regression
coefficients, which can be estimated at runtime based on the
tracker values

−→
Lq(ti) in the past time window. One common

approach to estimate these regression coefficients is to use

the least-square estimation method [10]. The least-square
estimators of Θ0 and Θ1, say Θ̂0 and Θ̂1, are computed as

Θ̂0 = l̄ − Θ̂1 · t̄

and

Θ̂1 =

i∑
j=i−q

(lj · tj)−

 i∑
j=i−q

lj

 ·
 i∑
j=i−q

tj

q

i∑
j=i−q

t2j −

 i∑
j=i−q

tj

2

q

where

l̄ =
1

q

i∑
j=i−q

lj and t̄ =
1

q

i∑
j=i−q

tj

The predictor returns a predicted future tracker value l̂i+k that
corresponds to time ti+k. It is computed as follows:

Predictork(
−→
Lq(ti)) = l̂i+k = Θ̂0 + Θ̂1 · ti+k

Prediction results depend upon selection of proper values for
the tracker and predictor parameters. Therefore, it is necessary
to find a value for n that represents a good tradeoff between
a reduced delay and a reduced degree of oscillations [8].
Similarly, the values of q and k should be selected carefully.

In a two-dimensional flying zone, the current location of an
obstacle or a drone monitored at time ti contains two values
(x, y), which represent the horizontal and the vertical axis,
respectively. Therefore, for predicting the future location of an
obstacle or a drone at time ti+k, we use two parallel trackers
and two parallel predictors. One pair of tracker and predictor
works with the x values and the other pair works with the y
values.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present some important implementation
details and experimental results. We assume that the flying
zone AREA is represented by a grid as shown in Figure 3(a).
Our goal is to find an efficient, collision-free route for each
drone from the initial start location of the drone to the
destination location.

We use the example shown in Figure 3(b) to explain the
principles used for defining the countries in the MICAP
algorithm. For the drone d1, initially situated at location 20,
the shortest path from the initial location to the destination is
a sequence 〈20, 19, 18, 17, 16, 11, 6〉. We note that the path of
each drone can be succinctly represented by a turning point –
we call it middle point, which would be 16 for d1. Therefore,
the proposed approach uses the middle points to optimize the
drone routes. By using different values for a drone’s middle
point, it is possible to generate different routes for the drone.
Thus, it allows to explore different alternatives in the search

space. Lets assume that the middle points for the two other
drones in Figure 3(b) are 12 and 9. A country representing all
drone routes for the swarm in Figure 3 can then be defined as
a triple 〈〈16, 12, 9〉〉. In general, for nd drones a country is an
nd-tuple consisting of the middle points of the corresponding
drones.

In the offline, planned part of the proposed approach, all
locations occupied by static obstacles and the initial locations
of the moving obstacles are marked as occupied or unsafe.
The offline route planning module then generates all shortest
paths between each pair of locations in the flying zone AREA
while avoiding all locations marked as occupied or unsafe
and stores the generated routes in a database, which is then
used to compose the routes for the individual drones as a
concatenation of the shortest routes from initial locations
to the middle points and from the middle points to the
final destinations. The shortest routes are computed using the
algorithm proposed by Dijkstra [12].

The fitness function to evaluate the fitness of each country
optimizes the safety/performance ratio. The first argument of
our fitness function is the distance metric

Distance Metric =

nd∑
i=1

DistanceCurrenti→Middlei

+ DistanceMiddlei→Destinationi

It defines the total length of the drone routes according to the
given solution. For our example in Figure 3(b) the distance
metric of the routing defined by the country 〈16, 12, 9〉 is the
sum of the lengths of the drone paths: 6+6+6=18. The second
argument of the fitness function defines the number of cross
points associated with the given solution. For our example
in Figure 3(b), the number of cross points is 3: in location
17 between the route 1 and 2, in location 12 between the
route 2 and 3, and in the location 11 between route 1 and 3,
correspondingly.

The third argument is the safety level of the time gap at the
cross point. We introduce three safety levels: 0 if there is no
cross points, 1 if the time gap at the cross point is above the
safety threshold, and 2 if the time gap is below the threshold.
For our example in Figure 3(b), the time gap at cross point
17 is 1, because the drones arrive at that point at times 3 and
2, the time gap for the cross point 12 is 2, because the drones
arrive there at times 3 and 1, and for the cross point 11, it is 5.
As a matter of illustration, we can assume that the time gaps
below threshold 2 are classified as level 2, while the time gaps
at and above threshold 2 as level 1. Hence, the cross point 17
obtains level 2, while the cross points 11 and 12 obtain level
1 each. The safety level of a complete routing solution for the
swarm can then be computed by aggregating the individual
safety levels of all cross points in the solution: 2+1+1=4. We
define our route optimization task as a minimization problem
with the following fitness function:

Fitness Function = Distance Metric + α·
Number of CrossPoint + β · Level

1 2 4 5

7 9 10

11 12 13 14

16 17 18 19 20

21 22 23 24 25

1 2 4 5

7 M 10

11 M 13 14

M 17 18 19 20

21 22 23 24 25

1 2 4 5

7 9 10

11 12 M 14

16 M 18 19 20

21 22 23 M 25

Current Position Destination Position M M M Middle Position

(a) (b) (c)

Obstacles Suggested Path Traveled Path

Fig. 3. An illustrative example of drone route planning

Here α and β are the weight coefficients defined as

1 ≤ α ≤ nd

2
1 ≤ β ≤ √np× nd

where nd is the number of drones and np is the total number
of points. These values allow us to adapt the fitness function
evaluation based on the level of complexity of the flying zone
and the number of drones. For our example in Figure 3(b), the
value of the fitness function is computed as 18 + 1.5 × 3 +
5× 4 = 42.5.

A. Experiment Design and Setup

We have implemented the proposed DIANA approach on a
shared memory model. We used the message passing interface
(MPI) to parallelize the proposed algorithm and MPICH2

to run the algorithm. To implement DIANA, we used four
processors in a ring topology. Our algorithm was tested on
Intel R© Xeon R© E5-1620 v3 @ 3.50 GHz processors with 16
GB memory and NVIDIA R© GeForce R© GTX 1080 graphics
processing units.

We present results from two benchmark implementations.
Both benchmarks are based on a 50×50 flying zone with 18
static obstacles, 1 moving obstacle, and 8 drones. We also
compare the results with two alternative approaches:
• A well-known approach called Dynamic Genetic Algo-

rithm (DGA) [13], which addresses a similar problem.
• A baseline approach called DANA (Dynamic Au-

tonomous Navigation Algorithm), which is similar to DI-
ANA except that it does not use learning and prediction.

B. Results and Analysis

Figure 4 and 6 present the actual and predicted movement
of the moving obstacle in Benchmark 1 and 2, respectively.

2https://www.mpich.org/

Fig. 4. Benchmark 1: actual and predicted movement of the moving obstacle

In Benchmark 1, the moving obstacle moved on a straight
line while in Benchmark 2 the obstacle moved randomly. The
results show that as soon as there were enough data points
to make good predictions, our prediction approach started to
provide precise estimates of the obstacle movement with a
low prediction error. The prediction results were used by our
KNN-based learning algorithm and our MICAP algorithm to
generate new routes for the drones in an online manner.

Figure 5 and 7 present the flying zones from Benchmark
1 and 2, respectively. They depict the static obstacles, the
actual movement of the moving obstacle, and the drone
routes. The results show that all drones successfully completed
their maneuvers while avoiding collisions with the static and
moving obstacles and with the other drones in the flying zone.

Table I presents a comparison of the results of DIANA,

Fig. 5. A snapshot of the flying zone from Benchmark 1

Fig. 6. Benchmark 2: actual and predicted movement of the moving obstacle

Fig. 7. A snapshot of the flying zone from Benchmark 2

DGA, and DANA. The comparison is based on three metrics:
1) Route length: the length of a drone route measured as

the number of steps in the drone route. To be minimized
to generate shorter routes.

2) Minimum distance: the minimum distance between a
drone and a moving obstacle. To be maximized to
generate safer routes.

3) Frequency of route regeneration: the number of times
the drone routes are regenerated. To be minimized for
reducing the re-computation overhead.

The results show that DIANA outperformed DGA and
DANA in all three metrics. It minimized the route lengths
and the frequency of route regeneration more efficiently than
DGA and DANA. Moreover, it generated drone routes with a
higher minimum distance. In Benchmark 1, DIANA produced
10.13% and 13.03% shorter routes than DANA and DGA,
respectively. Similarly, in Benchmark 2, it generated 17.65%
and 22.23% shorter routes than DANA and DGA, respectively.
Therefore, DIANA generated safer and shorter drone routes
while minimizing the re-computation overhead.

VI. RELATED WORK AND CONCLUSIONS

The problem of motion safety of semi-autonomous robotic
systems is currently attracting significant research attention. A
comprehensive overview of the problems associated with au-
tonomous mobile robots is given in [14]. The analysis carried
out in [15] shows that the most prominent routing schemes do
not guarantee motion safety. Our approach resolves this issue
and ensures not only safety but also provides efficient online
routing.

Macek et al. [16] proposed a layered architectural solution
for robot navigation. However, in their work, they focused on
the safety issues associated with the navigation of a single
vehicle and did not consider the problem of collision-free
navigation in the context of swarms of robots. Aniculaesei
et al. [17] presented a formal approach that employs formal
verification to ensure motion safety. Petti and Fraichard [18]
proposed an approach that relies on partial motion planning
to ensure safety. Their solution supports navigation of a single
vehicle. In our work, we have discretized the flying zone and
have developed a highly efficient approach that computes the
next safe states for an entire swarm and provides a mechanism
for online route regeneration and collision avoidance.

Olivieri and Endler [19] presented an approach for move-
ment coordination of swarms of drones using smart phones
and mobile communication networks. Their work focuses
on the internal communication of the swarm and does not
provide a solution for collision-free route generation. Barry
and Tedrake [20] proposed an obstacle detection algorithm for
drones that allows to detect and avoid collisions in realtime.
Similarly, Lin [21] presented a realtime path planner for drones
that detects and avoids moving obstacles. These approaches are
only applicable for individual drones and they do not provide
support for a swarm of drones. In our work, we focused on
collision prediction and avoidance and efficient navigation of
swarms of drones.

TABLE I
A COMPARISON OF THE PROPOSED APPROACH WITH TWO ALTERNATIVE APPROACHES

Benchmark 1 Benchmark 2
DIANA DANA DGA DIANA DANA DGA

Route length 648 721 745 616 784 792
Minimum distance 5 3 2 4 2 2
Frequency of route regeneration 17 28 39 21 38 37

A comprehensive literature review on motion planning
algorithms for drones can be found in [22]. The approaches
reviewed in [22] are applicable to a preliminary, offline motion
planning phase to plan and produce an efficient path or
trajectory for a drone before the start of the mission. A
more recent survey on motion planning of drones can be
found in [23]. Augugliaro et al. [24] also presented a planned
approach for generating collision-free trajectories for a drone
fleet. In contrast to these approaches, our proposed approach
combines offline motion planning with a more realistic online
route generation approach to produce efficient collision-free
routes.

In this paper, we presented a novel approach that integrates
learning, optimization, and prediction for generating efficient
and safe routes for swarms of drones. The proposed approach
comprises three main components: (1) a high-performance
dynamic evolutionary algorithm for optimizing drone routes,
(2) a reinforcement learning algorithm for incorporating the
feedback and runtime data about the system state, and (3) a
prediction approach to predict the movement of drones and
moving obstacles in the flying zone. We also presented a
parallel implementation of the proposed approach and evalu-
ated it against two benchmarks. The results demonstrated that
the proposed approach significantly reduces the route lengths
and computation overhead while producing efficient and safe
routes.

ACKNOWLEDGMENT

The work was supported by the Academy of Finland
projects OpenCPS: Open Integrated Framework for Acceler-
ating Development of Resilient CPS and CoRA: Continuous
Resilience Assurance of Complex Software-Intensive Systems.

REFERENCES

[1] R. Austin, Unmanned Aircraft Systems: UAVS Design, Development and
Deployment, ser. Aerospace Series. Wiley, 2010.

[2] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm:
An algorithm for optimization inspired by imperialistic competition,” in
IEEE Congress on Evolutionary Computation, 2007, pp. 4661–4667.

[3] M. Mejdoub and C. Ben Amar, “Classification improvement of local
feature vectors over the KNN algorithm,” Multimedia Tools and Appli-
cations, vol. 64, no. 1, pp. 197–218, 2013.

[4] C. Guestrin, A. Krause, and A. P. Singh, “Near-optimal sensor place-
ments in gaussian processes,” in Proceedings of the 22nd International
Conference on Machine Learning, ser. ICML ’05. ACM, 2005, pp.
265–272.

[5] K. Kar and S. Banerjee, “Node placement for connected coverage
in sensor networks,” WiOpt’03: Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, 2003. [Online]. Available:
https://hal.inria.fr/inria-00466114

[6] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent
mobile sensor networks,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 35, no. 1, pp. 78–92,
2005.

[7] A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila, and H. Tenhunen,
“Placement of smart mobile access points in wireless sensor networks
and cyber-physical systems using fog computing,” in IEEE International
Conference on Scalable Computing and Communications (ScalCom),
July 2016, pp. 680–689.

[8] M. Andreolini and S. Casolari, “Load prediction models in web-
based systems,” in Proceedings of the 1st International Conference on
Performance Evaluation Methodolgies and Tools. ACM, 2006.

[9] M. Andreolini, S. Casolari, and M. Colajanni, “Models and framework
for supporting runtime decisions in web-based systems,” ACM Transac-
tions on the Web, vol. 2, no. 3, pp. 17:1–17:43, 2008.

[10] D. Montgomery, E. Peck, and G. Vining, Introduction to Linear Re-
gression Analysis, ser. Wiley Series in Probability and Statistics. John
Wiley & Sons, 2012.

[11] A. Ashraf, B. Byholm, and I. Porres, “A session-based adaptive admis-
sion control approach for virtualized application servers,” in 2012 IEEE
Fifth International Conference on Utility and Cloud Computing, 2012,
pp. 65–72.

[12] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[13] S. Indhumathi and D. Venkatesan, “Improving coverage deployment for
dynamic nodes using genetic algorithm in wireless sensor networks,”
Indian Journal of Science and Technology, vol. 8, no. 16, 2015.

[14] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots, ser. Intelligent robotics and autonomous
agents. MIT Press, 2011.

[15] T. Fraichard, “A short paper about motion safety,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, 2007, pp.
1140–1145.

[16] K. Macek, D. Vasquez, T. Fraichard, and R. Siegwart, “Safe vehicle
navigation in dynamic urban scenarios,” in 2008 11th International IEEE
Conference on Intelligent Transportation Systems, 2008, pp. 482–489.

[17] A. Aniculaesei, D. Arnsberger, F. Howar, and A. Rausch, “Towards the
verification of safety-critical autonomous systems in dynamic environ-
ments,” in Proceedings of the The First Workshop on Verification and
Validation of Cyber-Physical Systems, 2016, pp. 79–90.

[18] S. Petti and T. Fraichard, “Partial motion planning framework for
reactive planning within dynamic environments,” in Proceedings of
the IFAC/AAAI International Conference on Informatics in Control,
Automation and Robotics, 2005.

[19] B. J. O. de Souza and M. Endler, “Coordinating movement within
swarms of UAVs through mobile networks,” in 2015 IEEE International
Conference on Pervasive Computing and Communication Workshops
(PerCom Workshops), 2015, pp. 154–159.

[20] A. J. Barry and R. Tedrake, “Pushbroom stereo for high-speed navigation
in cluttered environments,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 3046–3052.

[21] Y. Lin, “Moving obstacle avoidance for unmanned aerial vehicles,” Ph.D.
dissertation, Arizona State University, 2015.

[22] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,” Journal
of Intelligent and Robotic Systems, vol. 57, no. 1, p. 65, 2009.

[23] F. Kendoul, “Survey of advances in guidance, navigation, and control of
unmanned rotorcraft systems,” Journal of Field Robotics, vol. 29, no. 2,
pp. 315–378, 2012.

[24] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1917–1922, 2012.

https://hal.inria.fr/inria-00466114

