
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Using Optimization, Learning, and Drone Reflexes
to Maximize Safety of Swarms of Drones

Amin Majd∗, Adnan Ashraf∗, Elena Troubitsyna∗, and Masoud Daneshtalab†
∗Faculty of Natural Sciences and Technology, Åbo Akademi University, Turku, Finland

Email: amajd@abo.fi, aashraf@abo.fi, etroubit@abo.fi
†Division of Intelligent Future Technologies, Mälardalen University, Västerås, Sweden

Email: masoud.daneshtalab@mdh.se

Abstract—Despite the growing popularity of swarm-based
applications of drones, there is still a lack of approaches to
maximize the safety of swarms of drones by minimizing the risks
of drone collisions. In this paper, we present an approach that
uses optimization, learning, and automatic immediate responses
(reflexes) of drones to ensure safe operations of swarms of drones.
The proposed approach integrates a high-performance dynamic
evolutionary algorithm and a reinforcement learning algorithm
to generate safe and efficient drone routes and then augments
the generated routes with dynamically computed drone reflexes to
prevent collisions with unforeseen obstacles in the flying zone. We
also present a parallel implementation of the proposed approach
and evaluate it against two benchmarks. The results show that
the proposed approach maximizes safety and generates highly
efficient drone routes.

Index Terms—Safety; path planning; drone; swarm; evolution-
ary algorithms; machine learning; reflexes

I. INTRODUCTION

Drones are semi-autonomous aircrafts that can be controlled
and operated remotely. Commercially-available drones are in-
creasingly been used in a variety of applications such as mon-
itoring and surveillance, search and rescue operations, pho-
tography and filming, and aerial package delivery. However,
with the growing popularity and use of drones for consumer
applications, the number of incidents involving drones is also
increasing dramatically. In the United States alone, the Fed-
eral Aviation Administration receives more than 100 reports
every month of unauthorized and potentially hazardous drone
activity reported by pilots, citizens, and law enforcement1.
Ensuring a hazard-free, safe flight is also equally important
for indoor applications. Therefore, motion safety of drones is
a prime concern for drone operators. It refers to the ability of
the drones to detect and avoid collisions with static and moving
obstacles in the flying zone. Moreover in scenarios involving
a swarm or fleet of drones, motion safety also entails that the
drones do not collide with one another.

In this paper, we present an approach that integrates opti-
mization, learning, and automatic immediate responses (re-
flexes) of drones to generate efficient and safe routes for
swarms of drones. We assume that the swarm executes certain
missions, in which each drone flies from a start location to a
destination location. The proposed approach uses geographical
locations of the drones and of the successfully detected,

1https://www.faa.gov/uas/resources/uas sightings report/

static and dynamically appearing, moving obstacles to predict
and avoid: (1) drone-to-drone collisions, (2) drone-to-static-
obstacle collisions, and (3) drone-to-moving-obstacle colli-
sions. The proposed approach comprises three main compo-
nents: (1) a high-performance dynamic evolutionary algorithm
(EA) for optimizing drone routes, (2) a reinforcement learning
algorithm for incorporating the feedback and runtime data
about the system state, and (3) a novel reactive module to
dynamically compute drone reflexes to prevent collisions with
unforeseen obstacles in the flying zone.

To find efficient drone routes, we propose a parallel and
dynamic implementation of the imperialistic competition al-
gorithm (ICA) [1] that allows us to find efficient collision-
free routes for the drones in the swarm. The learning com-
ponent is based on the K-nearest neighbor (KNN) learning
algorithm [2]. Each placement produced by our parallel ICA
for a given swarm and environment state is evaluated to train
the system [3]. Both the learning and optimization algorithms
work in parallel to compute alternative routing solutions. The
results are compared and the most efficient solution is chosen.
Since with each run the training set increases, eventually the
learning algorithm becomes capable of proposing better solu-
tions. To maximize safety, we augment the generated routes
with dynamically computed drone reflexes. The drone reflexes
computation module mimics a self-preservation control mech-
anism of humans. The reflexes are the automatic immediate or
mechanical responses to particular hazardous situations, such
as quickly moving the hand away from a hot surface. They
aim at mitigating and confining the effects and damages of
suddenly occurring hazards. In our proposed approach, when a
drone detects a possible collision with an unforeseen obstacle,
the drone reflexes computation module quickly computes a
reflex movement for the drone to prevent and mitigate the
collision. We also present a parallel implementation of the
proposed approach and evaluate it against two benchmarks.
The results show that the proposed approach produces highly
efficient and safe routes.

The paper is structured as follows. Section II briefly reviews
EAs and ICA. Section III presents the proposed approach
that integrates optimization, learning, and drone reflexes.
Section IV presents some important implementation details
and experimental results. Finally in Section V, we review
important related works and present our conclusions.

II. IMPERIALISTIC COMPETITION ALGORITHM

Evolutionary computing comprises a set of optimization
algorithms, which are inspired by a biological or societal
evolution [1]. The evolutionary algorithms (EAs) are widely
used in the swarm systems due to their ability to find,
in a highly performant way, near-optimal solutions for the
computationally hard problems. An EA mimics the survival
of the fittest principle of the nature.

Most EAs start from a random generation of the initial
population of genotypes – the encodings of candidate solutions
– in the overall search space according to a certain probability
distribution. For each genotype, we can evaluate the fitness
function, which represents the requirements to which the popu-
lation should adapt. A fitness function assigns quality measures
to the genotypes and drives the population improvement. The
genotypes with the higher values of the fitness function get
a higher probability to be chosen as the parents of the next
generation. The chosen parents undergo variations to create
offsprings. A variation consists of mutation and recombination.
Mutation is a unary operator applied to a genome to produce
a (slightly) modified mutant - a child (offspring). Mutation
is stochastic, that is, the child depends on the outcomes
of random choices. Recombination (or crossover) merges
the information from two parent genotypes into offspring
genotypes. Similarly to mutation, the recombination is also
stochastic. Since the EAs keep the population size constant,
we need to implement a survivor selection mechanism that
chooses the individuals that remain in the next generation.
Typically, it relies on the fitness ranking over the united set
of parents and offsprings and selecting the top fittest segment
as the next generation. The algorithm terminates either when
the predefined number of generations have been produced,
time allocated for running the algorithm has elapsed, or the
successive generations bring only a negligible improvement.

There is a large variety of EAs. Some of them are in-
spired by natural phenomena, while others, such as Imperialist
Competitive Algorithm (ICA) [1], by the social processes.
The algorithm simulates a human social evolution. Its parallel
implementation [4] has shown a remarkable performance in
comparison with other EAs and offers a promising solution
supporting compute-intensive tasks of swarm-based systems.

Figure 1 presents a flowchart highlighting the main steps
in the ICA. The algorithm starts by a random generation of
a set of countries - the genotypes - in the search space of
the optimization problem. The fitness function determines the
power of each country. The countries with the best values
of the fitness function become imperialists, while the other
countries become colonies. The colonies are divided among
the imperialists and hence the overall search space is divided
into empires. An association of a colony with an imperialist
means that only the genotype of the imperialist and its
associated colonies are used for crossover. The intuition behind
it as follows: since the imperialist has a higher value of the
fitness function, by crossing over with an associated colony,
which is known to have a lower value of the fitness function,

we inherit the strongest traits of the current population.
The mutation and crossover are implemented by assimi-

lation and revolution operators. Assimilation moves colonies
closer to an imperialist in its socio-political characteristics. For
instance, it can be implemented by replacing a certain bit in a
colony genotype with the corresponding bit of the imperialist.
Revolution results in a drastic change of a colony’s character-
istics. It can be implemented by a random replacement of a
certain bit in the colony genotype. As a result of assimilation
and revolution, a colony might reach a better position and get
a chance to take over the control of the entire empire, that is,
to overthrow the current imperialist. This can happen only if
the evaluation of the fitness function of such a colony gives a
higher value (when solving a maximization problem) than the
value of the fitness function of the current imperialist.

The next step of the algorithm computes the power of each
empire and implements the imperialistic competition, which
corresponds to the selection of the survivals process. The
power of an empire is computed by aggregating the fitness
value of the imperialist and a weighted sum of the fitness val-
ues of the colonies. The imperialists also try to take possession
of colonies of other empires, that is, the weakest empire loses
its weakest colony. In each step of the algorithm, based on
their power, all the empires get a chance to take control of
one or more of the colonies of the weakest empire. The steps
of the algorithm are repeated until a termination condition is
reached. As a result, the imperialist of the strongest empire
produces the best solution. To improve performance of ICA,
we introduce the notion of multi-population, that is, we divide
the overall search space into multiple populations or clusters
and perform a local search within each one of them. The best
local solutions are then taken as input to perform the search in
the entire search space. The multi-population based search also
allows to use the inter-population migration operation, which
migrates the best country from one population and uses it to
replace the worst country in another population. Since the local
search procedures are independent of each other, they can be
implemented in parallel. Moreover, the multi-population based
search enables a wider exploration of the search space, which
helps to find high quality solutions.

III. THE PROPOSED APPROACH

A swarm of drones is a typical example of a complex
distributed networked system [5]. Each drone can be seen as a
mobile sensing node that is capable of collecting monitoring
data and communicating with some other drones in the swarm
as well as with the cloud-based navigation center. Finding
an efficient and safe route for each drone is a complex
optimization problem. Therefore, we need to rely on certain
heuristics to achieve the required objectives. In this paper,
we use a dynamic EA to compute the drone routes [6]. The
proposed algorithm is based on the imperialistic competition
algorithm (ICA) [1].

Figure 2 presents an overview of our proposed approach
called DIANA (Dynamic Intelligent Autonomous Navigation

Fig. 1. A flowchart highlighting the main steps in the imperialistic competition algorithm

Algorithm) [3]. The Offline Part in the figure uses our pro-
posed ICA-based route generation algorithm to generate drone
routes before the start of the mission. Moreover, it computes
and uses the shortest paths between the start and destination
locations of the drones. Since a drone swarm is a highly
dynamic system, we augment our offline module with an on-
line approach that provides runtime means for monitoring and
reconfiguration. The information obtained from the Dynamic
Monitoring component has two main purposes. On one hand,
it is a feedback mechanism. On the other hand, it allows us to
detect the changes in the drone swarm and in the flying zone.
Such changes may invoke swarm reconfiguration and regener-
ation of the drone routes. In addition, the Prediction module
uses the runtime monitoring data to predict the movement
of drones and moving obstacles in the flying zone. We feed
the monitoring data and prediction results to both a Dynamic
EA and a Learning Algorithm. Both modules compute the
alternative routes. The routes are compared by the Decision
Center that chooses the best solutions from the proposed alter-
natives. The Navigation Center then issues the corresponding
commands to the drones. The Safe Area Computation and
the Reflexes Computation modules compute the safe area and
drone reflexes, respectively. They implement our proposed
drone reflexes approach. The safe area computation module
uses the information of the known and predicted obstacles
to compute a safe area for each drone. Moreover, when a
drone suddenly detects a possible collision with an unpredicted
obstacle, the reflexes computation module quickly computes
a reflex movement for the drone to prevent and mitigate the
collision.

The proposed DIANA approach uses the parallel implemen-
tation of the ICA [4] with an integrated migration operation
(referred henceforth as the MICAP algorithm). The MICAP
algorithm computes the initial drone routes as well as the
subsequent new routes during the execution of the mission.
For the learning module, we use a K-nearest neighbor (KNN)-

based learning algorithm [2] that runs alongside the MICAP
algorithm.

The main steps of the DIANA approach are presented in
Algorithm 1. The algorithm starts with the preplanning of
the mission - the offline execution of MICAP to find the
initial routes. It then obtains the current actual and predicted
state of the system by invoking the dynamic monitoring and
prediction modules and runs the MICAP algorithm and the
KNN-based learning algorithm until the mission completes.
In each iteration, it compares the results of MICAP with that
of the KNN-based learning algorithm and selects the best
solutions. The KNN algorithm is a popular learning method.
In this paper, we use it for classification. The main idea of the
algorithm is as follows. We select K samples in the training
set. The algorithm predicts the numerical target - the nearest
neighbor - based on a similarity measure, which in our case

Fig. 2. The proposed DIANA approach

is a distance function. We compute the numerical target as the
average of the Euclidian distances of the K nearest neighbors.

In our approach, the algorithm takes as the input K solutions
generated for the same system state. Then it computes an
average solution. For each drone in the swarm, it takes K
routes proposed for it. Then it computes an average route
in terms of the Euclidian distance. By computing such a
route for each drone in the swarm, the learning component
calculates the complete solution for the swarm. The decision
center uses a fitness function to compute fitness values for the
solutions produced by MICAP and the learning algorithm. It
then chooses the solution with the highest fitness value.

The prediction module implements a two-step approach [7],
[8], which allows to make predictions under real-time con-
straints. The approach involves trackers that offer a repre-
sentative view of the trends to the predictors, thus achieving
the two-step approach. In a three-dimensional flying zone, the
current location of an obstacle or a drone monitored at time ti
contains three values (x, y, z), which represent the three axis.
Therefore, for predicting the future location of an obstacle
or a drone at time ti+k, we use three parallel trackers and
three parallel predictors. Our prediction approach is further
elaborated in [3].

The computation of the drone reflexes is elaborated in the
example depicted in Figure 3 and 4. Figure 3 shows the safe
area for Drone1. It shows the radius of the safe area (r=4),
the repulsive forces of Drone2 and Drone3 to Drone1 (F2
and F3), and the total force direction (FD). In each iteration,
our algorithm computes FD based on all drones in the safe
area. The computation of the repulsive forces is based on the
distances of Drone2 and Drone3 from Drone1 (Dis2 and Dis3).
In this example, Dis2 and Dis3 are

√
8 and 3, respectively. In

each iteration, the repulsive forces and FD are computed in the
online part in the cloud layer (as shown in Algorithm 1). For
example to prevent Drone1 from colliding with Drone2, the
repulsive force for Drone1 is computed as F2 = (r −Dis2)
along with the reflex direction in the opposite direction of
Drone2.

Figure 4 illustrates that when Drone1 detects an unpredicted
obstacle, it computes its reflex position based on the total force
direction (FD) and the force of the obstacle to Drone1 (FOb).
FOb is a unit vector in the opposite direction of the obstacle.
Finally, the drone computes the safe direction (SD) for reflex
movement. SD is a vector from the drone to a safe position
in the flying zone. It is computed as the sum of FD and FOb.

The pseudo-codes of the proposed MICAP, KNN, safe
area computation, and drone reflex computation algorithms
are presented in Procedure 1, 2, 3, and 4, respectively. All
four procedures are invoked by the main DIANA algorithm
presented in Algorithm 1. The MICAP, KNN, and safe area
computation modules can be implemented on a remote server
in the cloud layer, while the latency-sensitive operation in-
volving the computation of drone reflexes runs in the drones
layer or on a fog or edge server. Section IV elaborates our
optimization approach and some important implementation
details of DIANA.

Algorithm 1 DIANA
1: {Offline part in the cloud layer}
2: Best-Placement ← Call MICAP(Initial-State)
3: Send(Best-Placement) → Navigation Center
4: {Online part in the cloud layer}
5: while Mission is in progress do
6: Current-State ← Call Dynamic Monitoring and

Prediction modules
7: Best-EC-Result ← Call MICAP(Current-State)
8: Best-KNN-Result ← Call KNN(Current-State)
9: Best-Placement ← Max(Best-EC-Result,

Best-KNN-Result)
10: Send(Best-Placement) → Navigation Center
11: Send(Best-Placement)→ KNN-Dataset
12: FD ← Call Compute-Safe-Area(Current-State)
13: {Online part in the drones layer}
14: if a drone detects an unpredicted obstacle in its safe

area then
15: Drone-Reflex-Position ← Call Compute-Drone-

Reflex(Unpredicted-Obstacle-Position, FD)
16: Prevent and mitigate the collision by moving the

drone to Drone-Reflex-Position
17: end if
18: end while

Fig. 3. First part of drone reflex computation

Fig. 4. Second part of drone reflex computation

Procedure 1 MICAP(Current-State)
1: if Processor Pi then
2: for j=1 to Population Size do
3: Initial-Population [j] ← Countryj
4: Cost Initial-Population[j] ← α · Safety-Level +

β
Path-Length

5: end for
6: Initial-Population ← Sort Initial-Population
7: for j=1 to #Empire do
8: Imperialist[j] ← Initial-Population [j]
9: end for

10: for j=#Empire+1 to Population Size do
11: Assigned as a Colony to an Empire
12: end for
13: for All Colony do
14: Assimilate Colony → Imperialist
15: end for
16: for All Colony do
17: if Colony ≥ Imperialist then
18: Colony ↔ Imperialist
19: end if
20: end for
21: for j=1 to #Empire do
22: Empire Power[j] ← Cost(Imperialistj) + ξ ·

Mean(Cost(Colonies of Empirej))
23: end for
24: Temp ← Worst CountryWorst Empire
25: Empirel 6=Worst Empire ← Temp
26: if #Iterations % Migration Gap=0 then
27: Best Country ← Worst CountryProcessor P(i+1)%#Processors

28: Worst Country ← Best CountryProcessor P(i+1)%#Processors

29: end if
30: if termination condition then
31: return Best Country
32: end if
33: end if

Procedure 2 KNN(Current-State)
1: for All Instance ∈ Dataset do
2: Find Nearest-Neighbor
3: end for
4: return Nearest-Neighbor

Procedure 3 Compute-Safe-Area(Current-State)
1: for i in 1 to number of drones do
2: Dsi ← (Drones in safe area ∪ Obstacles in safe area)
3: for j in 1 to |Dsi| do
4: FDi=

∑o
k=1 (FOj→Di

· (r - DisDi→Oj
))

5: end for
6: end for
7: return FD

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present some important implementation
details and experimental results. We assume that the flying

Procedure 4 Compute-Drone-Reflex
1: FOb ← FOunpredicted obstacles→Di

· (r −DisDi→Ounpredicted obstacles)
2: SD ← FOb + FDi
3: return SD

zone AREA is represented by a three-dimensional grid.
However, for a simpler illustration, we describe the main steps
with a two-dimensional grid shown in Figure 5(a). Our goal is
to find an efficient, collision-free route for each drone from the
initial start location of the drone to the destination location.

We use the example shown in Figure 5(b) to explain the
principles used for defining the countries in the MICAP
algorithm. For the drone d1, initially situated at location 20,
the shortest path from the initial location to the destination is
a sequence 〈20, 19, 18, 17, 16, 11, 6〉. We note that the path of
each drone can be succinctly represented by a turning point –
we call it middle point, which would be 16 for d1. Therefore,
the proposed approach uses the middle points to optimize the
drone routes. By using different values for a drone’s middle
point, it is possible to generate different routes for the drone.
Thus, it allows to explore different alternatives in the search
space. Lets assume that the middle points for the two other
drones in Figure 5(b) are 12 and 9. A country representing all
drone routes for the swarm in Figure 5 can then be defined as
a triple 〈〈16, 12, 9〉〉. In general, for nd drones a country is an
nd-tuple consisting of the middle points of the corresponding
drones.

In the offline, planned part of the proposed approach, all
locations occupied by static obstacles and the initial locations
of the moving obstacles are marked as occupied or unsafe.
The offline route planning module then generates all shortest
paths between each pair of locations in the flying zone AREA
while avoiding all locations marked as occupied or unsafe
and stores the generated routes in a database, which is then
used to compose the routes for the individual drones as a
concatenation of the shortest routes from initial locations
to the middle points and from the middle points to the
final destinations. The shortest routes are computed using the
algorithm proposed by Dijkstra [9].

The fitness function to evaluate the fitness of each country
optimizes the safety/performance ratio. The first argument of
our fitness function is the distance metric

Distance Metric =

nd∑
i=1

DistanceCurrenti→Middlei

+ DistanceMiddlei→Destinationi

It defines the total length of the drone routes according to the
given solution. For our example in Figure 5(b) the distance
metric of the routing defined by the country 〈16, 12, 9〉 is the
sum of the lengths of the drone paths: 6+6+6=18. The second
argument of the fitness function defines the number of cross
points associated with the given solution. For our example
in Figure 5(b), the number of cross points is 3: in location
17 between the route 1 and 2, in location 12 between the

Fig. 5. An illustrative example of drone route planning

route 2 and 3, and in the location 11 between route 1 and 3,
correspondingly.

The third argument is the safety level of the time gap at the
cross point. We introduce three safety levels: 0 if there is no
cross points, 1 if the time gap at the cross point is above the
safety threshold, and 2 if the time gap is below the threshold.
For our example in Figure 5(b), the time gap at cross point
17 is 1, because the drones arrive at that point at times 3 and
2, the time gap for the cross point 12 is 2, because the drones
arrive there at times 3 and 1, and for the cross point 11, it is 5.
As a matter of illustration, we can assume that the time gaps
below threshold 2 are classified as level 2, while the time gaps
at and above threshold 2 as level 1. Hence, the cross point 17
obtains level 2, while the cross points 11 and 12 obtain level
1 each. The safety level of a complete routing solution for the
swarm can then be computed by aggregating the individual
safety levels of all cross points in the solution: 2+1+1=4. We
define our route optimization task as a minimization problem
with the following fitness function:

Fitness Function = Distance Metric + α·
Number of CrossPoint + β · Level

Here α and β are the weight coefficients defined as

1 ≤ α ≤ nd

2
1 ≤ β ≤ √np× nd

where nd is the number of drones and np is the total number
of points. These values allow us to adapt the fitness function
evaluation based on the level of complexity of the flying zone
and the number of drones. For our example in Figure 5(b), the
value of the fitness function is computed as 18 + 1.5 × 3 +
5× 4 = 42.5.

A. Experiment Design and Setup
We have implemented the proposed DIANA approach on a

shared memory model. We used the message passing interface

(MPI) to parallelize the proposed algorithm and MPICH2

to run the algorithm. To implement DIANA, we used four
processors in a ring topology. Our algorithm was tested on
Intel R© Xeon R© E5-1620 v3 @ 3.50 GHz processors with 16
GB memory and NVIDIA R© GeForce R© GTX 1080 graphics
processing units.

We present results from two benchmark implementations.
Benchmark 1 is based on a small 100×100×20 flying zone
with 16 drones, 3 dynamic obstacles moving on straight
lines from different starting positions, 2 dynamic obstacles
moving randomly from different starting positions, and 8
unforeseen/unpredicted static obstacles. Benchmark 2 is based
on a large 1000×1000×100 flying zone with 250 drones, 10
dynamic obstacles moving on straight lines from different
starting positions, 15 dynamic obstacles moving randomly
from different starting positions, and 60 unpredicted static
obstacles. Figure 6 and 7 depict the routes of the moving ob-
stacles in Benchmark 1 and 2, respectively. The experimental
design is summarized in Table I.

We also compare the results with two alternative ap-
proaches:

• A well-known approach called Dynamic Genetic Algo-
rithm (DGA) [10], which addresses a similar problem.

• A baseline approach called DANA (Dynamic Au-
tonomous Navigation Algorithm), which is similar to DI-
ANA except that it does not use learning and prediction.

B. Results and Analysis

Table II and III present a comparison of the results of
DIANA, DGA, and DANA. The comparison is based on the
following seven metrics:

2https://www.mpich.org/

TABLE I
EXPERIMENTAL DESIGN

Benchmark 1 Benchmark 2
Flying zone 100×100×20 1000×1000×100
Problem size Small Large
Number of drones 16 250
Number of unpredicted static
obstacles

8 60

Number of moving obstacles 5 25

1) Route length: the length of a drone route measured as
the number of steps in the drone route. To be minimized
to generate shorter routes.

2) Minimum distance: the minimum distance between a
drone and an obstacle. To be maximized to generate
safer routes.

3) Frequency of route regeneration: the number of times
the drone routes are regenerated. To be minimized for
reducing the re-computation overhead.

4) Number of crashes: the number of drone collisions. To
be minimized to generate safer routes.

5) Length of the longest route: the total number of steps in
the generated longest route. To be minimized to generate
shorter routes.

6) Total time: total runtime of the algorithm in millisec-
onds. To be minimized for reducing the algorithm run-
time.

7) Time per step: computation time for one step in mil-
liseconds. To be minimized for reducing the computation

Fig. 6. Moving obstacles in Benchmark 1

Fig. 7. Moving obstacles in Benchmark 2

TABLE III
A COMPARISON OF THE ALGORITHM RUNTIME FROM BENCHMARK 2

DIANA DANA DGA
Total time (milliseconds) 248565 824015 4832700
Time per step (milliseconds) 99.986 326.731 1692.122

overhead.
The results show that DIANA outperformed DGA and

DANA in all seven metrics. It minimized the route lengths
and the frequency of route regeneration more efficiently than
DGA and DANA. Moreover, it generated drone routes with
a minimum distance of 1 step, which ensured the safety of
the drones. As a result, there were no drone collisions or
crashes. In Benchmark 1, DIANA produced 14% and 16%
shorter routes than DANA and DGA, respectively. Similarly,
in Benchmark 2, it generated 15% and 13% shorter routes
than DANA and DGA, respectively. DIANA also minimized
the frequency of route regeneration, length of the longest route,
total time, and time per step more efficiently than DANA and
DGA. Therefore, DIANA generated safer and shorter drone
routes while minimizing the computation overhead.

V. RELATED WORK AND CONCLUSIONS

The problem of motion safety of semi-autonomous robotic
systems is currently attracting significant research attention. A
comprehensive overview of the problems associated with au-
tonomous mobile robots is given in [11]. The analysis carried
out in [12] shows that the most prominent routing schemes do
not guarantee motion safety. Our approach resolves this issue
and ensures not only safety but also provides efficient online
routing.

Macek et al. [13] proposed a layered architectural solution
for robot navigation. However, in their work, they focused on
the safety issues associated with the navigation of a single
vehicle and did not consider the problem of collision-free
navigation in the context of swarms of robots. Aniculaesei
et al. [14] presented a formal approach that employs formal
verification to ensure motion safety. Petti and Fraichard [15]
proposed an approach that relies on partial motion planning
to ensure safety. Their solution supports navigation of a single
vehicle. In our work, we have discretized the flying zone and
have developed a highly efficient approach that computes the
next safe states for an entire swarm and provides a mechanism
for online route regeneration and collision avoidance.

Olivieri and Endler [16] presented an approach for move-
ment coordination of swarms of drones using smart phones
and mobile communication networks. Their work focuses
on the internal communication of the swarm and does not
provide a solution for collision-free route generation. Barry
and Tedrake [17] proposed an obstacle detection algorithm for
drones that allows to detect and avoid collisions in realtime.
Similarly, Lin [18] presented a realtime path planner for drones
that detects and avoids moving obstacles. These approaches are
only applicable for individual drones and they do not provide
support for a swarm of drones. In our work, we focused on

TABLE II
A COMPARISON OF THE PROPOSED APPROACH WITH TWO ALTERNATIVE APPROACHES

Benchmark 1 Benchmark 2
DIANA DANA DGA DIANA DANA DGA

Route length 3510 4086 4203 464486 546788 532451
Minimum distance 1 0 0 1 0 0
Frequency of route regeneration 8 23 31 331 744 534
Number of crashes 0 5 5 0 18 48
Length of the longest route 252 272 266 2486 2522 2856

collision prediction and avoidance and efficient navigation of
swarms of drones.

A comprehensive literature review on motion planning
algorithms for drones can be found in [19]. The approaches
reviewed in [19] are applicable to a preliminary, offline motion
planning phase to plan and produce an efficient path or
trajectory for a drone before the start of the mission. A
more recent survey on motion planning of drones can be
found in [20]. Augugliaro et al. [21] also presented a planned
approach for generating collision-free trajectories for a drone
fleet. In contrast to these approaches, our proposed approach
combines offline motion planning with a more realistic online
route generation approach to produce efficient collision-free
routes.

In this paper, we presented an approach that uses optimiza-
tion, learning, and automatic immediate responses (reflexes)
of drones to ensure safe and efficient operations of swarms of
drones. The proposed approach integrates a high-performance
dynamic evolutionary algorithm and a reinforcement learning
algorithm to generate safe and efficient drone routes and then
augments the generated routes with dynamically computed
drone reflexes to prevent collisions with unforeseen obstacles
in the flying zone. We also presented a parallel implementa-
tion of the proposed approach and evaluated it against two
benchmarks. The results showed that the proposed approach
maximizes safety, generates highly efficient drone routes, and
has a low computation overhead.

ACKNOWLEDGMENT

The work was supported by the Academy of Finland
projects OpenCPS: Open Integrated Framework for Acceler-
ating Development of Resilient CPS and CoRA: Continuous
Resilience Assurance of Complex Software-Intensive Systems.

REFERENCES

[1] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm:
An algorithm for optimization inspired by imperialistic competition,” in
IEEE Congress on Evolutionary Computation, 2007, pp. 4661–4667.

[2] M. Mejdoub and C. Ben Amar, “Classification improvement of local
feature vectors over the KNN algorithm,” Multimedia Tools and Appli-
cations, vol. 64, no. 1, pp. 197–218, 2013.

[3] A. Majd, A. Ashraf, E. Troubitsyna, and M. Daneshtalab, “Integrating
learning, optimization, and prediction for efficient navigation of swarms
of drones,” in Proceedings of the 26th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP),
2018.

[4] K. Kar and S. Banerjee, “Node placement for connected coverage
in sensor networks,” WiOpt’03: Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, 2003. [Online]. Available:
https://hal.inria.fr/inria-00466114

[5] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent
mobile sensor networks,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 35, no. 1, pp. 78–92,
2005.

[6] A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila, and H. Tenhunen,
“Placement of smart mobile access points in wireless sensor networks
and cyber-physical systems using fog computing,” in IEEE International
Conference on Scalable Computing and Communications (ScalCom),
July 2016, pp. 680–689.

[7] M. Andreolini, S. Casolari, and M. Colajanni, “Models and framework
for supporting runtime decisions in web-based systems,” ACM Transac-
tions on the Web, vol. 2, no. 3, pp. 17:1–17:43, 2008.

[8] A. Ashraf, B. Byholm, and I. Porres, “A session-based adaptive admis-
sion control approach for virtualized application servers,” in 2012 IEEE
Fifth International Conference on Utility and Cloud Computing, 2012,
pp. 65–72.

[9] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[10] S. Indhumathi and D. Venkatesan, “Improving coverage deployment for
dynamic nodes using genetic algorithm in wireless sensor networks,”
Indian Journal of Science and Technology, vol. 8, no. 16, 2015.

[11] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots, ser. Intelligent robotics and autonomous
agents. MIT Press, 2011.

[12] T. Fraichard, “A short paper about motion safety,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, 2007, pp.
1140–1145.

[13] K. Macek, D. Vasquez, T. Fraichard, and R. Siegwart, “Safe vehicle
navigation in dynamic urban scenarios,” in 2008 11th International IEEE
Conference on Intelligent Transportation Systems, 2008, pp. 482–489.

[14] A. Aniculaesei, D. Arnsberger, F. Howar, and A. Rausch, “Towards the
verification of safety-critical autonomous systems in dynamic environ-
ments,” in Proceedings of the The First Workshop on Verification and
Validation of Cyber-Physical Systems, 2016, pp. 79–90.

[15] S. Petti and T. Fraichard, “Partial motion planning framework for
reactive planning within dynamic environments,” in Proceedings of
the IFAC/AAAI International Conference on Informatics in Control,
Automation and Robotics, 2005.

[16] B. J. O. de Souza and M. Endler, “Coordinating movement within
swarms of UAVs through mobile networks,” in 2015 IEEE International
Conference on Pervasive Computing and Communication Workshops
(PerCom Workshops), 2015, pp. 154–159.

[17] A. J. Barry and R. Tedrake, “Pushbroom stereo for high-speed navigation
in cluttered environments,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 3046–3052.

[18] Y. Lin, “Moving obstacle avoidance for unmanned aerial vehicles,” Ph.D.
dissertation, Arizona State University, 2015.

[19] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,” Journal
of Intelligent and Robotic Systems, vol. 57, no. 1, p. 65, 2009.

[20] F. Kendoul, “Survey of advances in guidance, navigation, and control of
unmanned rotorcraft systems,” Journal of Field Robotics, vol. 29, no. 2,
pp. 315–378, 2012.

[21] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1917–1922, 2012.

