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Abstract. In this paper, we present a model-based testing approach
based on user provided testing scenarios. In this approach, when software
model is refined to add/modify features, the test cases are automatically
refined to incorporate these changes. We use the Event-B formalism for
software models, while user scenarios are represented as Communicating
Sequential Process (CSP) expressions.

1 Introduction

Testing is an important activity in the software development life cycle. With ad-
vancements in the model-based approaches for software development, new ways
have been explored to generate test-cases from existing models of the system.
This is often referred to as model-based testing. A software model is usually a
specification of the system which is developed from the given requirements early
in the development cycle [5]. For dependable systems, software model should
also include fault tolerance mechanism as part of their functionality. In this pa-
per, we present a model-based testing approach based on user-provided testing
scenarios. As our formal framework we use the Event-B method [4, 3] supporting
stepwise system development by refinement. Generally, implementation code for
a system-under-test (SUT) can be generated from a sufficiently detailed specifi-
cation. But often, due to the remaining abstraction gap between a model and the
implementation, it is not always feasible to generate implementation code. As a
result, the implementation is not shown to be correct by construction but instead
it is hand-coded by programmer(s). Identifying and writing testing scenarios
for such an implementation is a very time consuming and error-prone process.
In our approach, test scenarios are identified at an abstract specification level
and are automatically refined (together with a specification) at each refinement
step. These scenarios can also include tests of the incorporated fault tolerance
mechanisms. In our approach, test scenarios are represented as Communicating
Sequential Process (CSP) [6] expressions. In the final step, executable test cases
are generated from these CSP expressions to be tested on SUT. This work is
based on our earlier approach [10] for scenario-based testing from B models.

The organisation of the paper is as follows. Section 2 discusses stepwise de-
velopment using the Event-B formalism. Section 3 describes our approach for



model-based testing as well as addresses the topics on refinement and represen-
tation of test scenarios. In Section 4, we illustrate our approach by development
of a fault-tolerant system. Section 5 contains some concluding remarks.

2 Developing Systems by Refinement using the Event-B

Method

This section gives a brief introduction to the Event-B [4, 3] formalism. We also
discuss the stepwise development methodology in Event-B focusing on the basic
types of system refinement.We will use these basic refinement rules in our model-
based testing approach described in the next section.

2.1 Modeling in Event-B

The Event-B [4, 3] is a recent extension of the classical B method [2] formalism.
Event-B is particularly well-suited for modeling event-based systems. The com-
mon examples of event-based systems are reactive systems, embedded systems,
network protocols, web-applications and graphical user interfaces.

In Event-B, the specifications are written in Abstract Machine Notation
(AMN). An abstract machine encapsulates state (variables) of the machine and
describes operations (events) on the state. A simple abstract machine has fol-
lowing general form

MACHINE AM
SETS TYPES
VARIABLES v
INVARIANT I
INITIALISATION INIT
EVENTS

E1 = . . .
. . .
EN = . . .

END

A machine is uniquely defined by its name in the MACHINE clause. The
VARIABLE clause defines state variables, which are then initialized in the
INITIALISATION clause. The variables are strongly typed by constraining
predicates of the machine invariant I given in the INVARIANT clause. The
invariant defines essential system properties that should be preserved during
system execution. The operations of event based systems are atomic and are
defined in the EVENT clause. An event is defined in one of two possible ways

E = WHEN g THEN S END

E = ANY i WHERE C(i) THEN S END

where g is a predicate over the state variables v, and the body S is an Event-B
statement specifying how the variables v are affected by execution of the event.
The second form, with the ANY construct, represents a parameterized event
where i is the parameter and C(i) contains condition(s) over i. The occurrence
of the events represents the observable behavior of the system. The event guard
(g or C(i)) defines the condition under which event is enabled.



2.2 Refinement of Event-Based Systems

The basic idea underlying the formal stepwise development is to design system
implementation gradually, by a number of correctness preserving steps, called
refinements. The refinement process starts from creating an abstract, albeit im-
plementable, specification and finishes with generating executable code. In gen-
eral, refinement process can be seen as a way to reduce non-determinism of
the abstract specification, to replace abstract mathematical data structures by
data structures implementable on a computer, and, hence, gradually introduce
implementation decisions.

We are interested how refinement affects the external behavior of a system
under construction. Such external behavior can be represented as a trace of ob-
servable events, which then can be used to produce test cases. From this point
of view, we can distinguish two different types of refinement called atomicity
refinement and superposition refinement.

In Atomicity refinement, one event operation is replaced by several opera-
tions, describing the system reactions in different circumstances the event occurs.
Intuitively, it corresponds to a branching in the control flow of the system. Let us
consider an abstract machine AM A and a refinement machine AM AR given
below. It can be observed that an abstract event E is split (replaced) by the
refined events E1 and E2. Any execution of E1 and E2 will correspond to some
execution of abstract event E1. It is also shown graphically in Fig.1(a).

REFINEMENT AM AR
MACHINE AM A REFINES AM A

. . . . . .
EVENTS EVENTS

E = WHEN g E1 ref E = WHEN g ∧ g1 THEN S1 END
THEN S END E2 ref E = WHEN g ∧ g2 THEN S2 END

END END

In Superposition refinement, new implementation details are introduced into
the system in the the form of new events that were invisible in the previous
specification. These new events can not affect the variables of the abstract spec-
ification and only define computations on newly introduced variables. For our
purposes, it is convenient to further distinguish two basic kinds of superposition
refinement, where

– a non-looping event is introduced,
– a looping but terminating event is introduced.

Let us consider an abstract machine AM S and a refinement machine AM SR
as shown below

REFINEMENT AM SR
MACHINE AM S REFINES AM S

. . . . . .
EVENTS EVENTS

E = WHEN g E = WHEN g THEN S END
THEN S END E1 = WHEN g1 THEN S1 END

END END

It can be observed that the refined specification contains both the old and the



new events, E and E1 respectively. To ensure termination of the new event(s),
the VARIANT clause is added in a refinement machine. This VARIANT

clause contains an expression over a well-founded type (e.g., natural numbers).
The new events should decrease the value of the variant, thus guaranteeing that
the new events will eventually return the control as the variant expression can
not be decreased indefinitely. These two types of refinements are also shown
graphically in Fig.1(b) and (c).

Let us note that the presented set of refined types is by no means complete.
However, it is sufficient for our approach based on user defined scenarios.
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Fig. 1. Basic refinement transformations

3 Our Approach for Model-Based Testing

3.1 Scenario-based approach for testing

In the literature, we can find several definitions of the term scenario. Scenarios
are generally used to represent system requirements, analysis, user and compo-
nent interaction,test cases etc [9].

We use the term scenario to represent a test scenario for our system under
test (SUT). A test scenario is one of possible valid execution paths that the sys-
tem can follow. In other words, it is one of expected functionalities of the system.
For example, in a hotel reservation system, booking a room is one functionality,
while canceling a pre-booked room is another one. In this article, we use both
terms functionality and scenario interchangeably.

Each scenario usually includes more than one system-level procedure/event,
which are executed in some particular sequence. In a non-trivial system, identi-
fying such a sequence may not be an easy task. Our testing approach is based on
stepwise system development, where an abstract model is first constructed and
then further refined to include more details (e.g., functionalities) of the system.
On the abstract level, an initial scenario is provided by the user. Afterwards, for
each refinement step, scenarios are refined automatically. In Fig.2, an abstract
model Mi is refined by Mi+1 (denoted by Mi ⊑ Mi+1). Scenario Si is an ab-
stract scenario, formally satisfiable (|=) by specification model Mi, provided by



the user. In the next refinement step, scenario Si+1 is constructed automatically
from Mi, Mi+1 and Si in such a way that Si+1 formally satisfies model Mi+1.

SUT Test cases
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Fig. 2. Overview of our Model-based testing approach

Each scenario can be represented as a Communicating Sequential Process (CSP)
[6] expression. Since we develop our system in a controlled way, i.e. using ba-
sic refinement transformations described in Section 2.2, we can associate these
Event-B refinements with syntactic transformations of the corresponding CSP
expressions. Therefore, knowing the way model Mi was refined by Mi+1, we can
automatically refine scenario Si into Si+1. To check whether a scenario Si is
a valid scenario of its model Mi, i.e., model Mi satisfies (|=) scenario Si, we
use Pro-B model checker [8]. Pro-B supports execution (animation) of Event-B
specifications, guided by CSP expressions. The satisfiability check is performed
at each refinement level as shown in the Fig.2. The refinement of scenario Si is
the CSP trace-refinement denoted by ⊑T .

After the final refinement, the system is implemented from the model Mi+n.
This implementation is called system under test (SUT). The scenario Si+n, ex-
pressed as a CSP expression, is unfolded into the executable test cases that are
then applied to SUT. In the next sections we will demonstrate how scenarios are
represented and refined as CSP expressions.

3.2 Scenario Refinement and Representation

As we have described before, the scenarios are represented as CSP expressions.
We refine our models in a controlled way targeting at individual events. We
assume that the events are only executed when their guards are enabled. For
simplicity, we omit the guard information from CSP expressions. Here we will
discuss how individual refinement steps effect the scenarios. Let us assume we
are given an abstract specification M0 with three events, namely, A, B and C, and
a scenario S0 representing the execution order of these events: first the event A,
then the event B, and finally the event C. As a regular expression, we can write
this sequence as:



A.B.C

and its corresponding CSP expression is given by

S0 = A → B → C → SKIP

In the next refinement step, the model M0 is refined by M1. This refinement
step may involve any of three types of the supported refinements discussed in
Section 2.2. We will discuss them one by one.
Atomicity Refinement. Let us suppose an event B is refined using atomicity
refinement. As a result, it is split into two events namely B1 and B2. It means
that the older event B will be replaced by two new events B1 and B2 modelling a
branching in the control flow. This can be shown as the regular expression

A.(B1 + B2).C

As a CSP expression we can represent it as

S1 = A → ((B1 → C → SKIP) ⊓ (B2 → C → SKIP))

where ⊓ is an internal choice operator in CSP.
Superposition refinement. Let us suppose we use superposition refinement
to refine an event C. As a result, a new non-looping event D is introduced in the
system. The new scenario can be expressed as a regular expression:

A.B.D.C

and as a CSP expression:

S1 = A → B → D → C → SKIP

Finally, let us suppose we again use superposition refinement to refine event C.
However, this time a new looping event D is introduced into the system. The
new scenario can be represented as a regular expression

A.B.D∗.C

and its corresponding CSP expression is given as

S1 = A → B → D → C → SKIP

where D is defined as

D = D ⊓ SKIP

In the next section, we outline how scenarios are unfolded into test cases.

3.3 From Scenarios to Test-cases

Unfolding of scenarios into test cases is a process that is very similar to system
simulation. During this process, an Event-B model is initialised and executed,
which being guided by the provided scenarios. For our approach, we use Pro-B
model checker,which has the functionality to animate B specifications guided by
the provided CSP expression. After the execution of each event, present in the
scenario, information about the changed system state is stored.

In other words, the execution trace is represented by a sequence of pairs
< e, s >, where e is an event and s is a post-state (the state after execution of
event e). From now on we will refer to a single pair < e, s > as an ESPair.

For a finite number of events e1, e2.....en, present both in the model M and
the System Under Test (SUT), a test case t of length n consists of an initial
state INIT and a sequence of ESPairs



t = INIT, {< e1, s1 >,< e2, s2 >, ....... < en, sn >}

Similarly, a scenario is formally defined as finite set of related test cases, i.e.,
scenario S = {t1, t2, .., tn} As mentioned earlier, ESPair relates an event with
its post-state. This information is stored during test-case generation. For SUT
these stored post-states become expected outputs of the system and act as a
verdict for the testing. After execution of each event, the expected output is
compared with the output of the SUT. This comparison is done with the help
of probing functions. The probing functions are such functions of SUT that at
a given point of their invocation, return state of the SUT. For a test-case to
pass the test, each output should match the expected output of the respective
event. Otherwise, we conclude that a test case has failed. In the same way, test
cases from any refinement step can be used to test implementation as long as
both the implementation and the respective test cases share the same events and
signatures.

4 Testing Development of a Fault-Tolerant System

In this section, we show how our testing methodology can be used in the devel-
opment of a fault-tolerant system . We consider an example of a mobile agent
system [7], where an agent performs three basic tasks when connected to the
server. These basic tasks are named as Engage, NormalActivity and Disengage.
To incorporate the fault-tolerant behavior, the system is repeatedly refined using
the basic refinement types described in Section 3.2. The introduction of fault-
tolerance increases the complexity of the system. Our testing methodology can
be applied to test the new scenarios that result from this complexity. The initial
Event-B machine named Cama specify the three basic events, mentioned above.

MACHINE Cama

SETS Agents

VARIABLES agents

INVARIANT agents ⊆ Agents

INITIALISATION agents:= ∅

EVENTS

Engage = ANY aa WHERE aa ∈ Agents ∧ aa 6∈ agents

THEN agents := agents ∪ {aa} END;

NormalActivity = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN skip END ;

Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

END

In the specification Cama, let us note that the event NormalActivity may happen
zero or more times. The sequence of events, as determined by the specification,
is shown in Fig.3(a).

In the next refinement machine Cama1, the event Disengage is refined into



two new events in order to differentiate between leaving normally or because of
a failure. This refinement step is atomicity refinement as discussed in Section
3.2. The other events of the specification remain the same. The execution graph
for this refinement is shown in Fig.3(b).

REFINEMENT Cama1 REFINES Cama

. . .

EVENTS

. . .

NormalLeaving ref Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

Failure ref Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

END

INIT

Engage

NormalActivity

Disengage

(a) Execution graph of Cama

INIT

Engage

NormalActivity

NormalLeaving

Failure
Final states

(b) Execution graph of Cama1
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(c) Execution graph of Cama2
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(d) Execution graph of Cama3
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(e) Execution graph of Cama4

Fig. 3. All possible Event execution scenarios across refinements

In the next refinement machine Cama2, we introduce temporary loss of connec-
tion for our agents. This new event is called TempFailure. This refinement step
introduces a looping event (see superposition refinement in Section 3.2). To guar-
antee termination of the new event, we introduce a new variable disconn limit,
which is used as a variant.



REFINEMENT Cama2 REFINES Cama1

. . .

VARIABLES agents, disconn limit

INVARIANT disconn limit ∈ NAT

VARIANT disconn limit

EVENTS

. . .

NormalActivity = ANY aa WHERE aa ∈ agents

THEN disconn limit := Disconn limit END;

TempFailure = ANY aa WHERE (aa ∈ agents)

THEN disconn limit := disconn limit - 1 END;

END

The execution flow for Cama2 is given in Fig.3(c). In next refinement machine
Cama3, a new event Disconnect is introduced. It is the event that precedes
(causes) TempFailure. This refinement is a superposition refinement introducing
a non-looping event. A new variable timers is used to ensure order of execution.

REFINEMENT Cama3 REFINES Cama2

. . .

EVENTS

. . .

Disconnect = ANY aa WHERE aa ∈ agents

THEN timers := timers ∪ {aa} END

TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || timers := timers - {aa} END;

END

The execution flow for Cama3 is shown in Fig.3(d). In the final refinement
step, we elaborate on error recovery and time expiration by splitting the events
TempFailure and Failure by atomicity refinement.

REFINEMENT Cama4 REFINES Cama3

. . .

EVENTS

. . .

TimerExpiration ref Failure = ANY aa WHERE

(aa ∈ agents) ∧ (aa ∈ ex agents)

THEN agents := agents - {aa} || ex agents := ex agents - {aa} END;

AgentFailure ref Failure = ANY aa WHERE

(aa ∈ agents) ∧ (aa 6∈ timers) ∧ (aa 6∈ ex agents)

THEN agents := agents - {aa} END;

Connect ref TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || timers := timers - {aa} END;

Timer ref TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || ex agents := ex agents ∪ {aa} ||



timers := timers - {aa} END

END

The execution graph for Cama4 is shown in Fig.3(e). This graph shows all
the possible events with their respective states but the order of execution is
controlled by their guards. In addition, the Fig.4 shows all the possible scenarios
based on the information derived from events’ guards and bodies. The dashed
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(a) Event execution possibility 1
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(b) Event execution possibility 2
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Disconnect
Timer

(c) Event execution possibility 3

Fig. 4. All possible Event execution scenarios

arrows represent possible loops of the event(s) during the execution. In order to
generate concrete test cases from such models, the number of executions of an
event in the loop can be restricted to some finite bound. The value for this bound
depends on user’s coverage criteria. The CSP representations of the Cama and
Cama4 machines are shown in the following.

Cama = Engage_Guard & Engage -> Node2;;

Node1 = NormalActivity_Guard & NormalActivity -> Node1;;

Node1 = Disengage_Guard & Disengage -> SKIP ;;

⊑
....

⊑

Cama4 = Engage_Guard & Engage -> Node1;;

Node1 = NormalActivity_Guard & NormalActivity -> Node1 ;;

Node1 = Disconnect_Guard & Disconnect -> Node2 ;;

Node1 = Failure_Guard & Failure -> SKIP ;;

Node1 = NormalLeaving_Guard & NormalLeaving -> SKIP ;;

Node1 = TimerExpiration_Guard & TimerExpiration -> SKIP ;;



Node2 = TempFailure_Guard & TempFailure -> Node1 ;;

Node2 = Timer_Guard & Timer -> Node1 ;;

These CSP expressions can be unfolded into test cases as described in Section
3.3.

5 Conclusions

In this paper, we presented a model-based testing approach based on auto-
matic refinement of test scenarios. This work is being done as a possible exten-
sion (plug-in)for the RODIN open-source platform [1]. The EU project RODIN
adopts systemic approach for development of complex systems in which fault-
tolerance mechanisms are incorporated together with main system functionality.
The scenario-based testing approach, presented in this paper, has been tried
in several RODIN case-studies where fault-tolerance is the major concern. Our
approach can also be used in formal software development process in general.
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