
Extending Semantic Web tools for improving
Smart Spaces interoperability and usability

Natalia Dı́az Rodrı́guez and Johan Lilius and M.P. Cuéllar and Miguel Delgado
Calvo-Flores

Abstract This paper explores the main challenges to be tackled for more accessi-
ble, and easy to use, Smart Spaces. We propose to use Semantic Web principles of
interoperability and flexibility to build an end-user graphical model for rapid pro-
totyping of Smart Spaces applications. This approach is implemented as a visual
rule-based system that can be mapped into SPARQL queries. In addition, we add
support to represent imprecise and fuzzy knowledge. Our approach is exemplified
in the experimental section using a context-aware test-bed scenario.

Key words: Smart Space, Fuzzy Ontology, Interoperability, End-user Application
Development

1 Introduction

Smart Spaces were built in relation with the vision in which computers work on
behalf of users, they have more autonomy, and they are able to handle unanticipated
situations. This implies the use of Artificial Intelligence (AI), agents and machine
learning. One of the main goals of Smart Spaces is to achieve device interoperability
through standard machine readable information to allow easy construction of mash-
ups of heterogeneous applications. A Smart Space (SS) is an abstraction of physical
ubiquitous space that allows devices to join and leave the space as well as sharing
information. New devices are constantly being introduced, often involving different
information formats or coming from diverse sources. Lack of interoperability be-

Natalia Dı́az Rodrı́guez and Johan Lilius
Turku Centre for Computer Science (TUCS), Department of Information Technologies, Åbo
Akademi University, Turku, Finland. e-mail: {ndiaz,jolilius}@abo.fi and M.P. Cuéllar
and Miguel Delgado Calvo-Flores
Department of Computer Science and Artificial Intelligence, University of Granada, Spain. e-mail:
{manupc,mdelgado}@decsai.ugr.es

1



2 Authors Suppressed Due to Excessive Length

tween systems and devices easily becomes a problem, resulting in them not being
used efficiently. In order to have devices that interoperate seamlessly, their respec-
tive data and functionality must be easily integrated and accessible.

SSs are considered to be context-aware systems; therefore, a key requirement for
realizing them, is to give computers the ability to understand their situational condi-
tions [4]. To achieve this, contextual information should be represented in adequate
ways for machine processing and reasoning. Semantic technologies suite well this
purpose because ontologies allow, independently, to share knowledge, minimizing
redundancy. Furthermore, semantic languages can act as metalanguages to define
other special purpose languages (e.g., policy languages), which is a key advantage
for better interoperability than that one of tools that share no roots of constructs.

We focus on providing the end-user the possibility of rapidly prototype the be-
haviour of a SS, abstracting away technical details. When presenting a semantic SS
to the user, the interface model, even if simplified, must adhere to the Semantic Web
(SW) formal models. Domain Specific Languages (DSL) demonstrate support in
this abstraction for integration of metamodels using ontologies (e.g. in [16]). Con-
cerning end-user frameworks and GUIs for developing SS applications, we can find
works that simplify the tasks to the user when creating their own services, through
simple rules.

The survey of programming environments for novice programmers [9] shows
how to lower the barriers to programming, which is one of our main aims; let non
expert users to take part in the configuration of a Smart Space. Some good examples
of end-user visual editors that simplify the tasks to the user when creating their own
services or applications, through simple rules, are If This Then That 1 for online
social services, Twine 2 for applications based on sensor interaction or Valpas [12]
intelligent environment for assisted living.

A graphical tool to prototype context-aware applications is iCap [14], where cod-
ing is not required, but rather using window controls and IF-THEN rules. Their pub-
lic is developers that want to rapidly test and iterate ubicomp applications. Other
work in this line is a reconfiguration framework focused on tackling system vari-
ability and policy definition in runtime [6]. They use PervML as DSL, Feature Mod-
elling techniques and Model Driven Engineering (MDE) principles such as code
generation. End-user interaction evaluation is pending.

In [17] a rule-based framework with puzzle-like pieces allows to specify domain-
specific situations with service invocations and state changes. Its use in a PDA
showed quicker progress in users with less provided help. In SiteView [1], a tan-
gible interface allows to control simple conjunctive rules of a ”world-in-miniature”
to help users create and view the effects of the rules.

A more complex system, aimed at end-users, is [15]. It is based on a pervasive
navigation environment which uses spatial and resource annotations from the users’
pictures. Pervasive Maps allow to model, explore and interact with complex perva-
sive environments.

1 http://ifttt.com
2 http://supermechanical.com/twine/



Title Suppressed Due to Excessive Length 3

Fig. 1 User interface mock-up and example of semantic rule construction.

In [5], an ECA (Event-Condition-Action) rule system allows end-users to con-
trol and program their SS in a drag & drop environment with wildcards filters and
textual expressions, allowing in this way complex rules to be formulated. Finally,
the dataflow rule language in [3] shows increased expressiveness in young non-
programmers. However, previous frameworks lack underlying semantic capabilities
and support for fuzzy rule expressions through linguistic labels. There does not ex-
ist a GUI for visualizing both fuzzy ontologies and fuzzy rules. Thus, our proposal
takes the interaction with context-aware Smart Spaces to a higher level, allowing
easier prototyping of the SS’s behaviour by a) providing semantics to enhance the
context-awareness, and b) permitting imprecise every-day life expressions. Next
section elaborates more on our proposal and Section 3 discusses the approach and
suggests future directions.

2 A framework for rapid application development of
context-aware Smart Spaces

Our contribution consist of a graphical interface for representing, visualizing and in-
teracting with SSs information. It allows any end-user to model his own applications
without knowledge of programming. Data gathering is possible by aggregation of
different ontologies and datasets. The interface is based on simple IF-THEN rules



4 Authors Suppressed Due to Excessive Length

OWL2 Appearance OWL2 Appearance OWL2 Appearance

Class Data
type

Indivi-
dual

Data
Pro-
perty

Object
Pro-
perty

Appli-
cation/
Service

Table 1 Graph visual model representation mapping to OWL2

applied to graph-based data. A node can be of two types, representing an OWL
class (Entity, large and white) or a data property value (small and purple). An arc
can represent a data property or object property, depending on the type of the des-
tination node (destNode={Class or Value}). The THEN clause of the rule serves
to 1) add, remove or update information in form of arcs and nodes (representing
RDF triples) from the knowledge base, or 2) execute a registered browser-based
application (with associated service grounding), possibly using concrete and well
defined individuals or properties described in the IF clause or Linked Data. Regis-
tered web or Linked Data services are represented in large grey nodes. Subgraphs
in IF and THEN clauses can be connected with logical operators and included into
loops expressed in the rule’s consequent. A minimum degree of satisfiability can be
expressed for a determined subgraph, since a rule can be mapped to a Mamdani rule
in a fuzzy reasoner (e.g. fuzzyDL [2]). Fuzzy modifiers are considered in the same
way as crisp properties (e.g. isVeryNearTo in Fig. 1).

The graph-based and ”puzzle”-like pieces to edit rules with take inspiration from
the successful Scratch framework [11]. Variable bindings are correct, by construc-
tion of the user interface, through letting the user allocate pieces only in the positions
in which corresponding data ranges and domains are allowed.

This intuitive way of expressing a rule’s condition, by dragging and joining com-
patible (data type-wise) nodes and arcs, can be easily translated into SPARQL query
patterns (e.g., conditions in the WHERE field) and allow fast formulation of mash-up
applications. Table 1 summarizes the mapping applied to transform end-user visual
model representations into OWL2 entities.

A great power of visual languages is their ability of categorizations of certain
primitives, and the graphical properties, to carry semantic information. Furthermore,
elements of their syntax can intrinsically carry semantic information. To develop an
effective visual language, i.e., a language that can be easily and readily interpreted
and manipulated by the human reader, we followed guidelines for visual language
design [7, 10]. These can be summarized as morphology as types, properties of
graphical elements, matching semantics to syntax, extrinsic imposition of structure
and pragmatics for diagrams. In our UI, we attach meaning to the components of the



Title Suppressed Due to Excessive Length 5

language both naturally (by exploiting intrinsic graphical properties such as keeping
the underlying RDF graph structure) and intuitively [7] (taking consideration of
human cognition, e.g. using colour to distinguish literals from classes). E.g., we
considered the primary properties of graphical objects [8] to design our language’s
construct symbols.

2.1 End-user graphical model mapping to SPARQL

Through structuring the edition of applications as simple IF-THEN rule statements,
and by using an underlying graph-based graphical structure, an end-user can model
semantic behaviour, by means of classes, individuals and relationships. The RDF
store, which reflects its content on the left side of the UI, shows only legal relation-
ships and properties associated to each entity. Simple SPARQL queries can extract
the required data to be presented in each view, each moment the user hovers a spe-
cific entity or menu. E.g., given a class, show its object properties associated. For
example, to get the object properties of the class GenericUser, the following query
would return hasCalendar, worksForProject, performsActivity, etc.

1 SELECT DISTINCT ?pred
2 WHERE { ?pred rdfs:domain ha:GenericUser.
3 ?pred rdfs:range ?object.
4 ?object a owl:Class.}

The mapping that transforms a graphical rule into a SPARQL query is below:

1 Initialize counter for ClassNode variables, n to 0.
2 Initialize processedNodes dictionary to empty.
3 <-IF CLAUSE MAPPING->
4 For each ClassNode in IFClause of the Rule:
5 For each Arc leaving from ClassNode:
6 If destNode is a Datatype: // Data Property Triple
7 Add patterns (?indiv_n a ClassName) and
8 (?indiv_n dataProp destNodeDataValue) to WHERE
9 Add originNode and its index n to processedNodes

10 Increment variable index n
11 Else: // The Triple represents an Object Property
12 If originNode is processed, obtain its index x
13 If destNode is processed, get its index z
14 Add pattern (?indiv_x objectProp ?indiv_z) to WHERE
15 Else:
16 Add pattern (?indiv_x objectProp ?indiv_n) to WHERE
17 Add destNode and its index n to processedNodes
18 Increment variable index n
19 Else:
20 If destNode is processed, get its index y
21 Add pattern(?indiv_n objectProp ?indiv_y) to WHERE
22 Add originNode and its index n to processedNodes
23 Increment variable index n



6 Authors Suppressed Due to Excessive Length

24 Else:
25 Add pattern (?indiv_n objectProp ?indiv_n+1) to WHERE
26 Add originNode and destNode to processedNodes
27 Increment variable index n by 2
28 <-THEN CLAUSE MAPPING->
29 If THENClause.type is APP: // Execute external App
30 For each ClassNode in THENClause:
31 If ClassNode is processed, obtain its index w &
32 add ’?indiv_w’ to SELECT
33 Else: "ERROR: Class Nodes in APP parameters need to be

defined in IFClause". Exit
34 QueryResult = Run SPARQL Query with {SELECT, WHERE}
35 Execute set of AppNodes with QueryResult as parameters
36 Else:
37 If THENClause.type is ADD: // Add triples
38 For each Arc marked toAdd, add pattern to INSERT
39 Else:
40 If THENClause.type is REMOVE: // Remove triples
41 For each Arc marked toDelete, add pattern to DELETE
42 Run SPARQL query including {SELECT, WHERE, INSERT, DELETE}

The algorithm ”parses” first the IF, followed by the THEN clause in the graphi-
cal model, to finally run a SPARQL query with the parameters collected in some of
the array structures for SELECT, INSERT, DELETE and WHERE. Each (origNode,
Arc, destNode) structure in the visual model corresponds to a triple pattern (subject,
predicate, object). A counter n keeps track of node indexes to keep unique naming
for each variable associated in the SPARQL query. Every arc is processed and, de-
pending on the type of its destination node (line 6 & 11), the pattern is modelled
as a)an individual’s data property or b)an object property pattern. Generated pat-
terns are added to the WHERE field of the query. For arcs and nodes in the THEN
clause, the visual model’s equivalent triple patterns are added to the INSERT or
DELETE fields of the SPARQL query, respectively, since these are triples that must
be marked as toAdd, toRemove or toUpdate. Finally, in THEN clause, some appli-
cation (grey) nodes may require input parameters, that can reuse information from
entities declared in the IF clause.

Rule Example Scenario: To study the viability of the ubiquitous model, we pro-
pose a location and context-aware scenario where positioning sensors are available
through, e.g., each person’s phone. We developed a Human Activity ontology that
models different kind of users, their interactions and the activities they perform on
the environment. Let us suppose the end-user wants to create a rule which allows
her to start recording audio of the weekly meeting with his supervisor, automatically
when she gets into his room: ”If Natalia enters the room of his supervisor Johan,
start audio-recording the meeting agenda in her phone’s calendar”. The aim would
be keeping track, for future reference, of the agenda points and brainstorming ideas
discussed, on the user’s calendar. First of all, the user would select, from the GUI
left menu the needed entities, the datatype values for identifying the individuals Jo-
han and Natalia, and the relations which connect these with each other. The query
produced by our algorithm is below. Although 4 lines longer, it is equivalent to a
straightforward query written by somebody with knowledge of SPARQL:



Title Suppressed Due to Excessive Length 7

1 SELECT ?calendar1 ?phone2
2 WHERE{ ?user0 a ha:User.
3 ?user0 ha:hasName "Natalia"ˆˆxsd:string.
4 ?user0 ha:hasCalendar ?calendar1.
5 ?user0 ha:hasPhone ?phone2.
6 ?user0 ha:isInLocation ?location3.
7 ?phone2 ha:isInLocation ?location3.
8 ?location3 ha:isNear ?office4.
9 ?user5 a ha:User.

10 ?user5 ha:hasName "Johan"ˆˆxsd:string.
11 ?user5 ha:hasOffice ?office4.}

3 Discussion and Future work

This paper focuses on providing ordinary end-users with an accessible and func-
tional SS vision through a tool that allows to exploit the potential of SW tech-
nologies, without requiring technical knowledge and supporting everyday life tasks.
Our visual model mock-up proposal, can as well serve as an educative interface
for teaching basic SW technologies and logic programming ideas intuitively. How-
ever, our main contribution is a general purpose visual language based on a seman-
tic metamodel, that supports query federation and (imprecise) rule composition for
rapid development of mash-up applications. Our end-user model pushes the devised
evolution of the SW from a data modelling to a computational medium [13] by
bringing the advantages of the SW closer to any non expert user. Our contribution
follows visual language design guidelines [7] for an intuitive, well matched, visual
language, i.e., its representation clearly captures the key features of the represented
artefact (in our case RDF triples), in addition to simplify various desired reasoning
tasks (i.e., hiding namespaces and query languages). The applications of use range
from assisted living and health care to home automation or industry processes.

Future work will complement the prototype framework to support complete
fuzzy reasoning, develop the graphical model (and its usability) and propose an ac-
tivity model to represent a higher level human behaviour, in which the end-user can
control daily activities, save and exchange rules. The proposed architecture, its sup-
port for imprecise rules and fuzzy reasoning, show the path for dealing with current
issues on SSs’ usability. Since it is clear that having a Scratch for real life problem
modelling would be of great use, future works, aiming at tackling the mentioned
issues, will overcome and better model a context-aware SW accessible not only by
machines but also by any human.

Acknowledgements The research work presented in this paper is funded by TUCS (Turku Centre
for Computer Science).



8 Authors Suppressed Due to Excessive Length

References

1. C. Beckmann. Siteview: Tangibly programming active environments with predictive visual-
ization. In In: Intel Research Tech Report, pages 167–168, 2003.

2. F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy description logic reasoner. In
2008 International Conference on Fuzzy Systems (FUZZ-08), pages 923–930. IEEE Computer
Society, 2008.

3. A. C. Bolós, P. P. Tomás, J. J. Martı́nez, and J. A. M. Agües. Evaluating user comprehension
of dataflows in reactive rules for event-driven AmI environments. In Proceedings of the V
International Symposium on Ubiquitous Computing and Ambient Intelligence (UCAmI), 2011.

4. H. Chen, T. Finin, and A. Joshi. Semantic web in a pervasive context-aware architecture. In
Artificial Intelligence in Mobile System (AIMS 2003), In conjunction with UBICOMP, pages
33–40, 2003.

5. M. Garcı́a-Herranz, P. Haya, and X. Alamán. Towards a ubiquitous end-user programming
system for smart spaces. 16(12):1633–1649, jun 2010.

6. P. Giner, C. Cetina, J. Fons, and V. Pelechano. A framework for the reconfiguration of ubi-
comp systems. In J. Corchado, D. Tapia, and J. Bravo, editors, 3rd Symposium of Ubiquitous
Computing and Ambient Intelligence 2008, volume 51 of Advances in Soft Computing, pages
1–10. Springer Berlin Heidelberg, 2009.

7. C. Gurr. Computational diagrammatics: diagrams and structure. In D. Besnard, C. Gacek, and
C. B. Jones, editors, Structure for Dependability: Computer-Based Systems from an Interdis-
ciplinary Perspective. Springer London, 2006.

8. C. Gurr. Visualizing a logic of dependability arguments. In P. Cox, A. Fish, and J. Howse,
editors, Visual Languages and Logic Workshop (VLL 2007), volume 274, pages 97–109, 2007.
Workshop within IEEE Symposium on Visual Languages and Human Centric Computing
VL/HCC 07.

9. C. Kelleher and R. Pausch. Lowering the barriers to programming: A taxonomy of program-
ming environments and languages for novice programmers. ACM Comput. Surv., 37(2):83–
137, June 2005.

10. D. Moody. The physics of notations: Toward a scientific basis for constructing visual notations
in software engineering. IEEE Trans. Softw. Eng., 35(6):756–779, Nov. 2009.

11. M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond, K. Brennan, A. Mill-
ner, E. Rosenbaum, J. Silver, B. Silverman, and Y. B. Kafai. Scratch: programming for all.
Communications of the ACM, 52(11):60–67, 2009.

12. A. Rex. Design of a caregiver programmable assistive intelligent environment. Aalto Univer-
sity, 2011.

13. M. A. Rodriguez and J. Bollen. Modeling computations in a semantic network. Computing
Research Repository (CoRR), ACM, abs/0706.0022, 2007.

14. T. Y. Sohn and A. K. Dey. iCAP: An informal tool for interactive prototyping of context-aware
applications. In Extended Abstracts of CHI, pages 974–975, 2003.

15. G. Vanderhulst, K. Luyten, and K. Coninx. Pervasive maps: Explore and interact with per-
vasive environments. In Pervasive Computing and Communications (PerCom), 2010 IEEE
International Conference on, pages 227 –234, 29 2010-april 2 2010.

16. T. Walter and J. Ebert. Combining DSLs and ontologies using metamodel integration. In
Proceedings of the IFIP TC 2 Working Conference on Domain-Specific Languages, DSL ’09,
pages 148–169, Berlin, Heidelberg, 2009. Springer-Verlag.

17. T. Zhang and B. Brügge. Empowering the user to build smart home applications. In Proceed-
ings of 2nd International Conference on Smart Homes and Health Telematic (ICOST2004),
Singapore, 2004. Palviainen, Marko Series. Marko Palviainen, 2004.


