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Abstract: In the domain of environmental sciences, measurement is the process that maps some 

observed phenomenon to a formal measurement value, the latter being the result of a measurement 

process. The measurement process relies on data representing physical quantities of possibly 

continuously changing phenomena. Because of the inherent imprecision of this source data and 

interpretations made within the measurement process itself, the measurement processes and their 

measurement values are plagued with quality issues. Many of these quality issues may be 

parameterised and provided as metadata of the measurement value, e.g. precision, resolution, 

trustworthiness. Of these, the trustworthiness quality parameter is evaluated by the consumer of the 

measurement value; this evaluation is a subjective perception of the level of momentary reliance 

justifiably placed on the measurement value and possible quality parameters. Initially the level of 

trustworthiness is thus vacuous with the consumer’s trustworthiness building up by gained evidence in 

the provider in providing this type of a measurement value. In this paper we define a method for 

representing, calculating and monitoring the trustworthiness parameter placed on a provider providing 

measurement values. The inherent imprecision of any measurement value is considered as a level of 

(un)certainty with a three-valued representation. The presented method is based on Dempster-Shafer 

theory of evidence and uses Subjective Logic to calculate with the trustworthiness. We apply 

techniques of reputation based trustworthiness for a meaningful reliability analysis in environmental 

sciences. We validate our method on data from the indoor environment of a residential house. 
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1. INTRODUCTION 

 
A contemporary problem when processing inherently uncertain data is assigning a confidence level 
on the output. Traditional means of dealing with this problem include statistics. Computationally heavy 
analysis of models by statistics assumes the environment as a static element motivating the 
statement that “all models are wrong, but some are useful” (Box and Draper, 1987). This statement 
holds equally true for environmental modelling. Firstly, the environment is inherently inconsistent, 
making any logical model of this a simplification of reality (Abrial 2010). This raises the practical 
question of the model’s distance to reality indicating its usefulness (Box and Draper, 1987). Secondly, 
as the environment (nature) is informal, any measurement on it is inherently uncertain. Hence, all 
computerized (formal) tasks are triggered by an informal event, e.g. a key press, an observation. 
Moreover, all computer-aided information is eventually used on the informal environment, e.g. to 
adjust a valve and stigmergically affect the environment, to display information to the human and let 
the human decide further actions. Hence, it is fair to state that the beginning and the end of each task 
is informal (Zemanek 1980) motivating that the formal mode (computations) merely extends the 
informal mode; they do not replace it (Naur 1982). These motivations highlight the ongoing challenge 
of making sense of sensory data (Tollefson 2011; Balazinska et al. 2007) due to the inherent 
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presence of uncertainty in any meaningful computer-aided task. The problem domain described 
above is common to all domains processing vast amounts of continuous data with ever varying 
uncertainty levels for providing an output. Clearly, environmental modelling is such a domain. 
Experience-based reputation systems (Jøsang et al. 2007) is another one.  
 
In this paper we present a method from experience-based reputation systems applied to the 
environmental modelling domain. The method relies on Subjective Logic (Jøsang et al. 1997, 2014), 
hereafter denoted SL, that is related to the Dempster-Shafer theory of evidence and it may be used to 
analyze Bayesian networks (Jøsang et al. 2006a). The proposed method addresses many challenges 
of environmental measurement, including those where the deviating quality of sensory observations is 
evident. Hence, this method is the contribution of this paper. The observation and process uncertainty 
are treated in the three-valued representation of SL featuring an extensive set of rules, including 
sequential and parallel composition of values. It is therefore very well suited for contemporary service 
oriented visions such as the “ModelWeb” (Bastin et al. 2013) or architectures alike the sentient object 
where one model may provide input to another (Biegel and Cahill 2004; Fitzpatrick et al. 2002; Coutaz 
and Rey 2002; Rey and Coutaz 2004; Gray and Salber 2001), depicted in Figure 1.  
 

This paper is organized as follows. Section 2 outlines the proposed method for deriving the 
trustworthiness of environmental measurement with a formal presentation of the foundations of 
experience-based trustworthiness and SL. Section 3 presents the result of this method when applied 
to an indoor environment of a residential house. Specifically, we present the result of calculating the 
indoor temperature of a residential house based on the weighted mean by trustworthiness of four 
temperature sensors and provide this result’s trustworthiness. Section 4 discusses shortly the findings 
and Section 5 concludes the paper. 
 
  
2. TRUSTWORTHINESS OF A MEASUREMENT VALUE 
 
A measurement value is the output of a measurement process that maps a nonempty subset of 
observed properties of phenomena or provided output(s) of other measurement process(es) into more 
meaningful data with respect to the purpose of the measurement. Needless to say, that output 
abstracts (incorporates) all uncertainties of the underlying data and inaccuracies of the models. On 
this, trustworthiness as a quality parameter (Buchholz et al., 2003) is identified and noted as a 
complex parameter (Buchholz et al. 2003; Wegdam et al. 2007). Trustworthiness is considered either 
policy-based or experience-based (Bonatti et al. 2005). Policy-based is used when Boolean reasoning 
is applied while experience-based is used when the level is based on a priori recorded events, i.e. 
evidence. Hence, experience-based trustworthiness fits the domain of environmental modelling better. 
 
We define (experience-based) trustworthiness as a parameter between the consumer (trustor) and 
the provider (trustee) in line with McKnight and Chervaney (1996) with the difference that the trustee 
may be a matter of any kind: 

Figure 1: The Sentient Object model 
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Definition 1. Trustworthiness: “The extent to which a trustor is willing to depend on a trustee in a 
given proposition with a feeling of relative security, even though negative 
consequences are possible.” 

Some notable issues in this definition are that trustworthiness is a feeling of unwarranted expectations 
on the trustee, that it is proposition specific, and that it is relevant only when something can go wrong. 
As either the expectations of the trustor or the performance of the trustee may change, the level of 
trustworthiness is subject to continuous variations and is always incomplete, i.e. complete 
trustworthiness is a mere theoretical concept. This motivates the use of a continuously varying 
parameter to model trustworthiness derived from distinct experiences. Hence, trustworthiness is not 
uniform and cannot be statistically modelled. The next sections present a mathematical framework for 
trustworthiness.  
 
 
2.1 Theory for a Three-valued Parameter  
 
The theory is based on Dempster-Shafer theory of evidence where the set of possible exclusive and 
exhaustive outcomes of any event is �. The powerset 2� then denotes all combinations of outcomes, 
hereafter propositions. Let mass � denote the evidence in favour of a specific outcome with � ∶ 2� →
[0,1], �(∅) = 0 and ∑ �(�) = 1�∈�� . This additivity is modelled on a mass space, e.g. � = {��, ��, ��} 
where the mass ‘�� or ��’ denote the certainty of not ��, but not certain whether �� or ��, i.e. the mass 
of ({��, ��}). In addition to the mass �, the belief ��� defined on � ⊆ � as ���(�) =  ∑ �(�)�⊆�  
denotes the ‘certainty’ or  ‘evidence’ in favour for the propositions �; for singleton � � = ���. 
Plausibility �� denotes the maximal probability that the evidence gives rise to. We have that �� ≥ ��� 
and ��(�) = ∑ �(�)�∩��∅  and �� > ��� whenever �(�) ≠ 0. Moreover, let the complement of ��� be 

������� defined on �̅ ⊆ � where �̅ ∩ � = ∅ and �̅ ∪ � = �, then the evidence against ���(�) is �������(�̅), i.e. 
��(�) = 1 − �������(�̅). The difference between���(�) and ��(�) denotes the level of uncertainty, i.e. the 
level of lacking evidence in favour of or against a proposition. More elaborate explanations of these 
concepts in the context of trustworthiness may be found elsewhere (Neovius 2012; Neovius and Sere 
2013). 
 
 
2.2 Experiences, their Type, Decay and Abstraction 
 
An experience ��� captures the level of satisfaction in a proposition the trustor first-handedly 
perceived on the data provided by the trustee at a given time. We represent such an Exp formally by 
a four-tuple (�, �, �, �) where � = �������, � is the datum (typically time), � is a proposition and 
� ∈  �����. We write ������ when we indicate all experiences prior to ����� and only � for an 
arbitraryvalue. An agent’s history is a set of such experiences, i.e. ����� = {(�, �, �, �)} where �� is the 

agent in question. To acquire a specific projection of the experiences, we write ����������� where 

���� defines the projection, e.g. ��������, ��, ������������ =  {(�, �)} where �� ≤  �� for � =  0, 1, … , �, 

i.e. �� indicates the time for this snapshot and �����(��, ��, �����������) =  � a specific experience.  

 
Our method defines the score of an experience as a tuple (�, �) where � denotes satisfaction, and � 
denotes dissatisfaction. For (�, �) it holds that �, � ∈  [0, 1] and � +  � ≤  1; much alike ��� and ������� in 
Section 2.1. The possible subadditive feature enables uncertainty to be expressed on an experience 
where score � = (0, 0) is equal to no experience. Dually, absolute experiences are when scored either 
(1, 0) or (0, 1) and dogmatic when � +  � = 1. In addition, this type enables simple summation on the 
�-projection of any set of experiences with a given agent �� so that initially ∑ �����(��, ��, �)�

��� = (0,0) 

indicates no evidence. Adding experiences observed at �� by ��
 is straightforward, ��������� =

����������� ∪ ���, ��, �, ��� when 0 < �. 

 
Decay of an experience is motivated by that newer experiences should weigh more than older. Critical 
for decay is to recognise the independence of � and �, i.e. that decay must not subvert the 
experience, merely reduce its weight. Here, formal treatment of subadditivity in terms of uncertainty is 
fundamental. Let 0 ≤ � ≤ 1 be a decay factor (one of possibly many) on the experiences. Realistically, 
consider � a factor on decay by time, i.e. �����. The decayed experiences at ��, identified by prefix ���

 

are ���
(�����) = {(�, �, �, ����� ∗  �)} and with projections, ���

������(��, ��, �)� =  {(��, ������ ∗  �)} 
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where � ≤ �. Thus, the closer � is to 1, the less ‘forgetting’ is imposed with � = 1 indicating no decay 
(consistent setting) and � = 0 full decay (stochastic setting). Abstraction ��� of experiences is the 
merger of the scores, formally denoted in function 1. 
 

�����
������(��, ��, �)� = ∑ ���

������(��, ��, �)��
���  (1) 

 
Thus, abstraction provides a mathematical sound decayed pair (����, ����) that indicates the weight 
between satisfactory and unsatisfactory observations.  
 
 
2.3 Subjective Logic 
 
SL is probabilistic logic based on the Dempster-Shafer theory of evidence. SL expresses the level of 
trustworthiness on a frame of discernment, i.e. on a proposition among the exclusive and exhaustive 
frame of possible outcomes. Recall Section 2.1, let this frame be � with cardinality � = |�| and � ≥ 2. 

An opinion on this frame is a 3-tuple ���⃗ , �, �⃗ � of a belief mass vector, uncertainty mass scalar and 

base rate vector a in a �-nomial barycentric coordinate system. The vectors ��⃗  and �⃗ are vector-valued 

functions on the propositions of � = {��, ��, ��} with range [0,1]� and ∑ ��⃗ (��) ≤ 1��∈� , e.g. 

���⃗ (��), �, �⃗(��)� , ���⃗ (��), �, �⃗(��)� , ���⃗ (��), �, �⃗(��)� for � = 3. Coarsening this to a binomial opinion 

� = 2 is straightforward by partitioning � to � =  {�, �̅} with a binomial opinion � of ��⃗ (�), �, �⃗(�) where 

disbelief is ��⃗ (�̅) = 1 − ��⃗ (�) − �, or equivalently ∑ ��⃗ (�̅)�̅∈�  and ��⃗ (�) + ��⃗ (�̅) +  � = 1. Based on such a 

binomial opinion the posterior expectation value �(�) is defined as �(�) =  ��⃗ (�) + � ∗ �⃗(�) denoting 
the most likely outcome given the evidence. The level of binomial trustworthiness can be illustrated by 
a triangle with vertices ���, ������� and �, trinomial trustworthiness by a tetrahedron and an n-nomial in an 
n-dimensional barycentric coordinate system.   
 
SL features a set of functions to calculate with distinct opinions. The most central include 
multiplication / comultiplication and consensus / discounting. The functions are found elsewhere 
(Jøsang and McAnally 2004; Jøsang 2001). For brevity, consider two disjoint frames � = {�, �̅} and 
� =  {�, ��} by agent �� on �� then multiplication is {(�, �)} ∈ � × � and comultiplication is 
{(�, �), (�, ��), (�̅, �)} ∈ � × �, i.e. composing the frames by proposition. Discounting and consensus 
operate on one frame and one subject where discounting is when agent �� relies on �� to recommend 
another agent �� providing the experiences in case the trust of �� in �� is discounted by the trust of �� 
in ��. Consensus is when �� has experiences of one proposition on several agents, e.g. �� has 
experiences of � ∈ � regarding �� and �� recommending say ��, then consensus consists in the 
merger of �� and �� experiences in ��. Functions for discounting and consensus are found elsewhere 
(Jøsang et al. 2006b). If the opinions are dogmatic (� =  0), SL behaves as ‘traditional’ probabilities 

and if the opinions are absolute (��⃗ (�) ∈ {0, 1} and � =  0) SL behaves as Boolean logic.  
 
A binomial opinion � in SL is related to abstracted experiences score (����, ����) by the mapping 
function (2), originally proposed by Jøsang et al. (1997) and later elaborated by Jøsang et al. (2006a). 
In this mapping, � denotes the non-informative prior weight that when � > 0  assures a level of 
uncertainty, i.e. � >  0. Typically � = 2 as of binomiality and equal initial distribution in a beta 
probability density function (Βpdf). The relation with the experiences is thus evident and the 
(����, ����) may illustrate the trustworthiness as a Βpdf with inputs defined (���� + � ∗ �, ���� + � ∗
(1 − �)). Thus, with � = 2 and � = 0.5 the initial distribution is even, denoting that all propositions are 
equally possible; or denoting the situation of “do not know” as for full uncertainty. 
 

�

⎩
⎪
⎨

⎪
⎧� =  

���� 

����� ������

� =  
���� 

��������� ��

� =  
�

��������� ��

� = ���� ����

 ⇔

����   =
��

�

���� =
��

�

� = ���� ���� 
 
 ⎭

⎪
⎬

⎪
⎫

�����   (2) 
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3. CASE STUDY: INDOOR TEMPERATURE MEASUREMENT 
 
As a proof of concept, we have applied the presented method of calculating a level of trustworthiness 
on an indoor dataset obtained from four disjoint measurement processes that provide time-stamped 
temperature values. The frequency of indoor measurement values is 10 seconds on a time span of 
one year, with a varying level of incompleteness. The frequency of outdoor measurement value is 1 
day. The goal of the study is to acquire the most probable indoor temperature by calculating the 
weighted mean of the measurement values by their trustworthiness. Thus, the method recognises 
unreliable processes and weighs their values accordingly. Due to decay �, transient errors are 
captured where the process can recover its level of trustworthiness. We have defined the experience 
(value) score evaluation by the three-sigma rule of standard deviation from the normal distribution of 
the posterior weighted mean. Hence, the level of deviation of each measurement value from the 
weighted mean defines its evaluation score. We discarded absent values and measurement values 
not in the interval [−50°�, 50°�], e.g. the dataset contained a faulty (impossible) reading -49950°C 
that due to its level would have significantly affected the analysis.  
 
From the trustworthiness perspective, as all indoor measurement values are of temperature, they all 
evaluate the same proposition. The exclusive and exhaustive scores denote the level of trustworthy 
and untrustworthy, respectively. Hence, the (�, �) notation qualifies where the levels are defined by 
the three-sigma deviation rule from the weighted mean. With one data point every 10 seconds and 
� = 0.95 per second, an observation weighs ~60% of its original weight when recorded and 0.2% after 
2 minutes enabling, thus, prompt reaction to errors. This is illustrated in Figure 2, where the primary 
vertical axis denotes the trustworthiness level, the secondary vertical axis denotes the temperature 
°C, and the horizontal axis denotes time as mm.dd.yyyy hh:min. 
 

 
Figure 2. Indoor temperature and measurement processes’ trustworthiness in June 

 
The abbreviations in the legend of Figure 2 are as follows. On the left scale: FiPl = fireplace sensor, 
LiRo = living room sensor, Hallway = hallway sensor, BedR2ndF = bedroom 2nd floor sensor; and on 
the right scale: Mean temp. = mathematical mean temperature in °C, Daily mean = the daily mean 
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temperature outdoor in °C and Weigh. mean temp. = the weighted mean temperature in °C. What the 
plot reveals is that, once the outdoor temperature (daily mean) exceeds approximately 19°C, the 
trustworthiness levels start to deviate. This holds true when inspecting the raw data, with the 
conclusion that LiRo and BedR2ndF correlate and vary more heavily depending on the time of day 
and outdoor temperature, whereas Hallway is more stable. To illustrate this we select the timespan of 
late June 2013, when the outdoor temperature at the location of the house was over the adjusted 
indoor temperature, thus resulting in deviations in the level of trust. Contrary, the levels of 
trustworthiness are more stable if the timespan were in, for example, October. A trustworthiness score 
for the weighted mean cannot be provided as this is up to the consumer of this reading to decide. 
However, if this were needed, the weight of each trustworthiness level should be taken into account. 

A straightforward function for this could be ∑ �� ���⃗ (��)��
�

/ ∑ � ���⃗ (��)� for � =  1, … , � readings; this is 

the curve of the weighted mean trust in Figure 2. We stress that this is only for illustrative purposes. 
 
 
4. DISCUSSION 
 
This paper proposes a continuous method for evaluating trustworthiness of environmental 
measurement processes. A central aspect of trustworthiness is claimed to be the level of uncertainty. 
Objections on the means and validity of uncertainty are valid. Such an objection can always be raised 
when a method is applied on a changing phenomenon, such as the environment. For a non-dynamic 
(static) phenomenon, a level of trustworthiness could be acquired quantitative analysis given a formal 
model. However, as the environment considered as ever changing and given the lack of a formal 
model of this, quantitative analysis does not suffice. Yet the mathematical framework basing on 
Dempster-Shafter theory of evidence and Subjective Logic is sound with respect to analysing 
uncertainty. The proposed approach considers a dynamic level trustworthiness acknowledging that 
defining correctness (the model) is a serious challenge (Parnas 2010) and is impossible for informal 
events. Hence, as uncertainty is inherent, we argue that it must be treated in its own right without 
abstraction or assumption in a dynamic manner. For this, we argue that the presented method 
qualifies well; motivated by the initial results on the case presented in this paper. 
 
For environmental modelling, uncertainty is inherent and it is continuously varying. Consider for 
example the observed temperature data as considered in this paper. For this, the spatial positioning 
of the sensor is critical, as some indoor locations are subject to greater variations, e.g. exposed to the 
sun, next to the oven, in the sauna etc. Yet, these measurement values may provide highly 
trustworthy readings most of the time, with deviations under specific conditions. Hence, the level of 
trustworthiness on a value is context-dependent. Deriving the context and reasoning on this is a 
research filed of its own, not considered further here. However, regardless of the context, common to 
methods considering trustworthiness is that the consumer of the data needs to react to variations (in 
quality or context) promptly, by adjusting the level of trustworthiness. The proposed method on 
trustworthiness is very apt for this, abstracting the reason of variation and acknowledging that the 
source may not be aware of its decreased ability to provide trustworthy data. The only restriction 
recognised on the method is that the logical topology of the measurement processes needs to be a 
polytree (Neovius 2012), i.e. an undirected acyclic graph. 
 
Criticism regarding the output of the method as some value without semantics is void. This is because 
the expectation value in SL maps any opinion to a dogmatic (probabilistic) value. Questioning what 
the weighted mean actually means may also arise. As for uncertainty, we cannot give a definitive 
answer, having to state that the weighted mean output is the most probable measurement value with 
respect to the parameters and their a priori behaviour. Here the parameters include decay (�) and all 
the other interpretations made by the method.  
 
 
5. CONCLUSION AND FUTURE WORK 
 
This paper presented a novel method for calculating with uncertainty on continuous and ever 
changing values. The method is based on Dempster-Shafer theory of evidence and Subjective Logic. 
The central concept is that of an experience that is represented as a four-tuple, functioning as the 
recorded entity. From a set of such experiences, we show how an abstracted score tuple (����, ����) 
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as defined by function (1) may be derived by computationally light summation. The abstract score 
may be visualised as a Beta probability density function. Moreover, the abstracted score (����, ����) 
can be transformed into the three-valued opinion (ω) by a mapping function (2). The opinion 
representation feature many sound means of treating networks of agents with assigned 
trustworthiness scores in the Subjective Logic.  
 
Scaling the method from an indoor environment to a larger domain is possible. As part of future work 
we plan to apply the method to evaluate vast amounts of data, e.g. city-wide observations capturing 
the microclimate, participatory sensing and ultimately as part of the social computer (Giunchiglia and 
Robertson 2010). From a mathematical point of view, we see no obstacles for this; computationally 
the method is light. Socially however, difficulties are many. Likely difficulties arise in the evaluation of 
loosely coupled data in case a stance needs to be taken on whether or not similar data can be used 
for evaluation. In such cases, the preferences of the perceiver are also a factor as is the preserving of 
intimacy of the provider. Thus, the challenges are great but so are the possibilities.  
 
 
6. ACKNOWLEDGEMENTS 
 
This research is funded by the Academy of Finland project “FResCo: High-quality Measurement 
Infrastructure for Future Resilient Control Systems” (Grant numbers 264060 and 263925).  
 
 
7. REFERENCES 
 

Abrial, J-R. 2010 Modeling in Event-B: System and Software Engineering. Cambridge University 
Press.  

Balazinska, M., A. Deshpande, M. Franklin, P. Gibbons, J. Gray, S. Nath, M. Hansen, M. Liebhold, 
A. Szalay, and V. Tao. 2007. Data Management in the Worldwide Sensor Web. Pervasive 
Computing, IEEE, 6(2): pp. 30 – 40. 

Bastin, L., Cornford, D., Jones, R., Heuvelink, G., Pebesma, E., Stasch, C., Nativi, S., Mazzetti, P., 
Williams, M. 2013. Managing Uncertainty in Integrated Environmental Modelling: The 
UncertWeb framework. Environmental Modelling and Software, vol. 39, pp. 116 – 134. 

Biegel, G., Cahill, V. 2004. A Framework for Developing Mobile, Context-aware Applications. In 
Proceedings of the Second IEEE international Conference on Pervasive Computing and 
Communications (Percom'04).  

Bonatti, P. Duma, C., Olemdilla, D., Shahmehri, N. 2005. An Integration of Reputation-based and 
Policy-based Trust Management. In Proc. Semantic Web and Policy Workshop. 

Box, G.E.P., Draper, N.R. 1987. Empirical Model-Building and Response Surfaces. Wiley. 
Buchholz, T., Küpper, A., Schiffers, M. 2003. Quality of Context Information: What it is and why we 

need it. In proc. of the 10th HPOVUA workshop. 
Coutaz, J., Rey, G. 2002. Foundations for a Theory of Contextors. In Proceedings of the Fourth 

International Conference on Computer-Aided Design of User Interfaces.  
Fitzpatrick, A., Biegel, G., Clarke, S., Cahill, V. 2002. Towards a Sentient Object Model.  In 

Workshop on Engineering Context-Aware Object Oriented Systems and Environments.  
Giunchiglia, F., Robertson, D. 2010. The Social Computer: Combining Machine and Human 

Computation. Ingegneria e Scienza dell'Informazione, University of Trento, Technical Report 
DISI-10-036. 

Gray, P., Salber, D. 2001. Modelling and Using Sensed Context Information in the Design of 
Interactive Applications. In Proceedings of the 8th IFIP international Conference on 
Engineering For Human-Computer interaction. 

Jøsang, A. 1997. Artificial Reasoning with Subjective Logic. In Second Australian Workshop on 
Commonsense Reasoning. 

Jøsang, A. 2001. A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl.-Based 
Syst., vol. 9, no. 3, pp. 279 - 311. 

Jøsang, A., McAnally, D. 2004. Multiplication and Comultiplication of Beliefs. International Journal 
of Approximate Reasoning, vol. 38, no. 1, pp.19-51. 

Jøsang, A., Hayward, R., Pope, S. 2006a. Trust network analysis with subjective logic. In 
Proceedings of the 29th Australasian Computer Science Conference, vol. 48, pp. 85 - 94. 



Neovius et al. / Trustworthiness Modelling on Continuous Environmental Measurement 

Jøsang, A., Pope, S., Marsh, S. 20,tional Conference on Trust Management (iTrust'06), pp. 179 - 
192. 

Jøsang, A., Ismail, R., Boyd, C. 2007. A survey of trust and reputation systems for online service 
provision. Decis. Support Syst., vol. 43, no. 2, pp. 618 - 644. 

Jøsang, A. Subjective Logic. Unpublished. Draft book. Available at: 
http://folk.uio.no/josang/papers/subjective_logic.pdf, visited 6.3.2014. 

Krukow, K. 2006. Towards a theory of trust for the global ubiquitous computer. University of 
Aarhus, PhD Thesis. 

McKnight, H., Chervaney, N. 1996. The Meanings of Trust. Technical Report Working Paper Series 
96-04. 

Naur, P. 1982. Formalization in program development. BIT Numerical Mathematics, vol. 22, no. 4, 
pp. 437 - 453. 

Neovius, M. 2012. Trustworthy context dependency in ubiquitous systems. PhD-thesis, TUCS 
Dissertations nr. 151. 

Neovius, M., Sere, K. 2013. Mastering the Relevance of Subjective Information in Ubiquitous 
Computing. Journal of Communications and Information Sciences, Vol. 3, No. 4, pp. 27 - 44. 

Parnas, D. 2010. Really Rethinking 'Formal Methods. Computer, vol. 43, no. 1, pp. 28 – 34. 
Rey, G., Coutaz, J. 2004. The Contextor Infrastructure for Context-Aware Computing. In 

Component-oriented Approaches to Context-aware Computing ECOOP'04.  
Tollefson, J. 2011. US launches eco-network. Nature, 476(135). 
Wegdam, K., Sheikh, M., van Sinderen, M. 2007. Middleware Support for Quality of Context in 

Pervasive Context-Aware Systems. In: Fifth Annual IEEE International Conference on 
Pervasive Computing and Communications Workshops. 

Zemanek, H. 1980. Abstract Architecture, General concepts for systems design. Paper for the 
Winterschool on Abstract Software Specification at the Danish University of Technology, 
Lecture Notes in Computer Science 86/1980. 

 


